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Abstract We investigate theoretically and experimen-

tally the development of instabilities in passive ring

cavities composed of pieces of fiber with different dis-

persion. We derive an extended version of the Lugiato-

Lefever equation that permits to model dispersion oscil-

lating cavity and we demonstrate that this equation is

valid well beyond the mean field approximation. We re-

view the theory of Turing (modulational) and Faraday

(parametric) instability in inhomogeneous fiber. We re-

port the experimental demonstration of the generation

of stable Turing and Faraday pattern in the same de-

vice, which can be controlled by changing the detun-

ing and/or the input power. Moreover, we experimen-

tally record the round-trip-to-round-trip dynamics of

the spectrum, which shows that Turing and Faraday

instabilities not only differ by their characteristic fre-

quency but also by their dynamical behavior.

Keywords First keyword · Second keyword · More

1 Introduction

Modulation instability (MI) is a central mechanism in

nonlinear optics at the origin of many complex nonlin-

ear phenomena such as Fermi-Pasta-Ulam recurence [1,

2], Peregrine and Kuznetsov-Ma soliton excitation [3,4],

supercontinum generation [5,6], development of rogue

waves [7,8] or frequency combs [9,10]. It is ruled by a

phase-matched four-photon process leading to the expo-

nential growth of a pair of symmetric side lobes around
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the pump. It has been observed in free running fiber

systems in the early 80’s [11] and later on exploited to

develop large band fiber optical parametric amplifiers

for telecommunication applications [12,13], short pulse

amplifications [14] or signal processing [15]. In passive

cavities, MI is usually referred to as Turing instability

by analogy with the pattern formation in chemical ex-

periments [16], and besides its fundamental interest it

has a wealth of applications ranging from optical mem-

ory [17], self referencing [18,19] to ultra-stable optical

clock [18]. Quite recently, the idea of periodically modu-

lating one parameter along fiber length has been investi-

gated in the context of MI in free running configurations

[20]. It has been shown that it adds a new degree of free-

dom to these fiber systems leading to the formation of

new quasi-phase matched waves [21,20,22,23]. In pas-

sive cavities, it can be achieved by periodically modu-

lating group velocity dispersion [24], nonlinearity [25]

or losses [26]. It significantly modifies the dynamics of

these cavities where, in addition to Turing instabilities

observable in uniform cavities, the periodic modulation

acts as a forcing term leading to the birth of parametric

resonances [27], also known as Faraday instabilities in

direct analogy with the seminal discovery of Faraday in

a vertically vibrating bowl [28]. In dispersion oscillating

cavities, it was first theoretically predicted by some of

us [24] and then demonstrated experimentally [29]. We

showed for the first time that while Turing and Faraday

instabilities have different physical origins, they can ex-

ist within the same physical system. Following this first

observation in the steady state regime, the round-trip-

to-round-trip behaviour has been investigated reveal-

ing a complex dynamics during the switching from one

instability regime to the other [30]. The competition

arising between these instabilities was recently investi-

gated theoretically in more details and reveal that in
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addition to have different frequencies, these instabili-

ties are chracterized by a different behavior in the time

domain with P1 or P2 regimes [31].

The Lugiato-Lefever Equation (LLE) [32,33] is the

fundamental tool exploited to study theoretically and

numerically nonlinear dynamics in passive cavities. Some

of us extended LLE to the description of inhomoge-

neous cavities, and showed its validity well beyond the

assumption (mean-field) under which it has been orig-

inally derived [24]. However a satisfactory explanation

of why LLE can describe situations that goes beyond

the mean field approximation is still missing.

The aim of this paper is threefold. First, we propose

an original and rigorous derivation of LLE model under

minimal assumptions, which applies both to uniform

and dispersion oscillating cavities. Secondly, we review

the theory of modulational and parametric instabilities

in homoneneous and passive resonators. Lastly, we re-

port our main experimental results obtained in these

cavities showing the observation of Turing and Faraday

instabilities within the same physical system.

2 Rigorous derivation of LLE

We consider the passive fiber ring resonator sketched in

Fig. 1(a). The input is a train of equally spaced pulses,

perfectly synchronized, i.e. the cavity length is such

that after each cavity transit, the recirculating pulse

perfectly overlaps in time with the next pulse of the

train. The pulses being much longer than the typical

MI period, we can consider a continuous wave pump-

ing. The electric field at the coupler is modelled by the

Ikeda map [34], describing the cavity boundary condi-
tions:

E(n+1)(Z = 0, T ) = θEin(T ) + ρeiφ0E(n)(Z = L, T ),

(1)

where Z measures the distance along the fiber, T is the

retarded time, E and Ein are the intracavity and input

electric field envelopes, ρ2 + θ2 = 1 are the reflection

and transmission coefficients, φ0 = β0L is the linear

phase detuning, β0 = ω0n(ω0)/c is the wavenumber at

the laser frequency ω0 and L is the cavity length. n

being an integer counting the round-trip number. The

electric field envelope evolves inside the cavity (0 ≤
Z ≤ L) according to the nonlinear Schrödinger equation

(NLSE):

i
∂E(n)

∂Z
− β2(Z)

2

∂2E(n)

∂T 2
+ γ|E(n)|2E(n) = 0, (2)

where β2(Z) is the group velocity dispersion (GVD) and

γ is the nonlinear coefficient of the fiber. The function

(b)
βa

z+Λz
βb

Λa Λbinput outputρ
ϑ(a)

Fig. 1 (a) Schematic illustration of a non-uniform passive
fiber ring cavity. (b) Piecewise constant dispersion map over
one period of the GVD.

β2(Z) is periodic and its period is in general a fraction

of the cavity length L [31]. In the rest of the paper we

focus on the simplest case where the periodicity of the

dispersion is equal to the cavity length. In general both

the dispersion and the nonlinearity change, however in

our experimental range we can assume that only the

GVD changes and γ is constant.

The LLE has been originally derived from Eqs. (1-

2) in the so called mean-field approximation [32,35], i.e.

assuming that the intracavity field does not evolve sig-

nificantly over a round-trip. This entails several strong

constraints: the cavity is short with respect to nonlinear

and dispersion length, the intensity loss at the mirror

and the cavity detuning are small. However, LLE holds

valid even when several of these assumptions are vio-

lated. A typical example is the parametric instability in

a dispersion oscillating cavity, where the dispersion and

the field change rapidly over a single round-trip [36].

In the following, we show that the only assumption

needed in order to derive LLE is that only one longitu-

dinal mode of the cavity is excited.

We start by performing a phase rotation

A(n)(Z, T ) = E(n)(Z, T ) exp[iβ0Z], in order to in-

corporate the rapid phase variation into NLSE and re-

move it from the boundary conditions. The equations

for the fast variable A are:

A(n+1)(Z = 0, T ) = θEin(T ) + ρA(n)(Z = L, T ), (3)

i
∂A(n)

∂Z
+β0A

(n)−β2(Z)

2

∂2A(n)

∂T 2
+γ|A(n)|2A(n) = 0. (4)

Now we let the spatial variable to assume all values

from 0 to infinity, i.e. we unfold the cavity. Even if Z is

a continuous variable, the field is physically accessible

only at the coupler, i.e. at distances Z = nL. We in-

corporate the boundary conditions in the propagation

equation with the aid of the delta function, so that we

can write Eqs. (3-4) in the following equivalent compact

way:

i
∂A

∂Z
+β0A−

β2(Z)

2

∂2A

∂T 2
+ γ|A|2A =

i
∑
n

δ(Z − nL) [θEin(T ) + (ρ− 1)A] . (5)



3

By expanding the delta comb in Fourier series:∑
n

δ(Z − nL) =
1

L

∑
n

ein
2π
L Z =

1

L

∑
n

einkZ , (6)

we get

i
∂A

∂Z
+β0A−

β2(Z)

2

∂2A

∂T 2
+ γ|A|2A =

i

L

∑
n

einkZ [θEin(T ) + (ρ− 1)A] . (7)

In order to recognize exponential terms oscillating

at the same rate, we come back to the slow variable

E = A exp[−iβ0Z]:

i
∂E

∂Z
−β2(Z)

2

∂2E

∂T 2
+ γ|E|2E =

iθ

L
Ein

∑
n

ei(nk−β0)Z + i
ρ− 1

L
E
∑
n

einkZ . (8)

Equation (8) is a NLSE forced by two combs with

equal wavenumber spacing k = 2π/L and a relative

shift β0. The solution of (8) can be written as a sum of

slowly-varying envelopes, which modulates the longitu-

dinal modes of the cavity, as E(Z, T ) =
∑
nEn(Z, T )eiknZ .

It is of fundamental importance to choose the cor-

rect forcing terms for each mode, in order to neglect the

fast-rotating exponential in favor of the slowly evolving

ones. When the intracavity power is reasonably small,

we can assume that we have only one mode present in

the cavity, i.e.

E(Z, T ) = E0(Z, T ). (9)

This assumption permits to describe all the phenomena

we observe in our experiments and in most of the situa-

tions. Only when several longitudinal mode are present

in the cavity, as observed recently in a tristable res-

onator [37], the single LLE ceases to be valid and a

more complex model has to be used. It is worth noting

that the single longitudinal mode operation is the only

hypothesis that we made so far.

We retain only the quasi-phase-matched forcing terms

in (8), i.e. the terms that are multiplied by the expo-

nentials with the smallest argument. We find:

i
∂E0

∂Z
−β2(Z)

2

∂2E0

∂T 2
+γ|E0|2E0 =

iθ

L
Eine

iδZ/L+i
ρ− 1

L
E0,

(10)

where the cavity detuning δ is defined as follows

δ = mk − β0, m = arg min
n
|nk − β0|, (11)

that implies δ ∈ [−π, π]. This fixes the detuning

validity range of LLE. Any choice |δ| > π means that

we have neglected the slowest oscillating term in favor

of a rapid one, which means that we have chosen the

wrong n in the first summation in (8). Note that we do

not need to assume that the detuning is small.

We can remove the exponential from the pump by

the phase rotation E0(Z, T ) = U0(Z, T ) exp[iδZ/L], to

find the LLE in the usual (dimensional) form:

i
∂U0

∂Z
−β2(Z)

2

∂2U0

∂T 2
+γ|U0|2U0 =

iθ

L
Ein+

(
δ0
L
− iα

L

)
U0,

(12)

where α = 1 − ρ. The intrinsic fiber losses, that have

been neglected up to now, can be accounted for by tak-

ing α as the total round-trip losses.

We can write Eq. (12) in a convenient non-dimensional

form as follows:

i
∂u

∂z
− β(z)

2

∂2u

∂t2
+ |u|2u = (δ − iα)u+ iS, (13)

where z = Z/L, t = T/T0, u = U
√
γL, T0 =

√
|βav2 |L;

S = θuin(t), and β(z) = β2(z)/|βav2 |, βav2 being the

average group velocity dispersion. The normalized pe-

riodic dispersion profile (normalized period Λ = 1) is of

the form β(z) = βav + βmf(z), where βm is the ampli-

tude and f(z) the shape of the dispersion modulation.

3 Linear stability analysis

The stationary solution of Eq. (13), u0(z, t) =
√
Pu,

which can be assumed real without loss of generality,

follows from the steady state response P = P (Pu), ex-
plicitly P = Pu[(Pu−δ)2+α2], where P = |S|2 is the in-

put power and Pu = |u0|2 is the intracavity power. The

steady state response is bistable whenever δ2 > 3α2. In

this case the function Pu(P ) is multivalued in the range

P (P+
u ) ≤ P ≤ P (P−

u ) where P±
u = (2δ±

√
δ2 − 3α2)/2

stands for the knees of the bistable response. In the mul-

tivalued region, out of the three possible solutions, only

the lower and the higher ones are stable. The interme-

diate one, associated to a negative slope, is dynamically

unstable so it is not reachable in the experiments.

The cavity steady states can destabilize through the

exponential growth of modulations which can be due

to a Turing (modulation instability) or Faraday (para-

metric instability) mechanism, respectively. The Turing

instability is characteristic of a uniform cavity (in a pe-

riodic case it is affected only by the average quantities),

whereas the Faraday instability is a consequence of the

parametric resonance due to the forcing, and hence the

characteristics of the instability are affected by the pe-

riod and the strength of the perturbation. However both
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follow from a linear stability analysis of the steady so-

lution u0, which at some point needs to be specialized

to describe the two mechanisms. To this end, we start

by considering the evolution of a perturbed solution

u(z, t) =
√
Pu + [p(z, t) + iq(z, t)], where we assume

that the real functions p, q are much smaller than u0.

By linearization of Eq. (13), we obtain a linear sys-

tem ruling the evolution of the perturbation:

∂p

∂z
− β(z)

2

∂2q

∂t2
+ (Pu − δ)q + αp = 0, (14)

∂q

∂z
+
β(z)

2

∂2p

∂t2
− (3Pu − δ)p+ αq = 0. (15)

Taking the Fourier transform in time

[p̂(z, ω) =
∫
u(z, t)eiωtdt] of this system leads, for

each frequency, to

d

dz

[
p̂

q̂

]
=

[
−α −g(z)

h(z) −α

] [
p̂

q̂

]
, (16)

where g(z) = β(z)
2 ω2+Pu−δ and h(z) = β(z)

2 ω2+3Pu−
δ.

3.1 Uniform cavity: Turing instability

We start by considering a uniform cavity, where βm =

0, β(z) = βav. System (16) is similar to a damped

harmonic oscillator, whose oscillation spatial frequency

(wavenumber) is

kav =
√
havgav =

√(
βav
2
ω2 + 2Pu − δ

)2

− (Pu)
2
.

(17)

Its eigenvalues, which rule the z evolution, read −α ±
ikav. When the detuning δ is sufficiently high, kav can

become imaginary in a certain range of ω, and the so-

lution of Eqs. (16) involves two exponentials with real

argument. In this range, if |kav| > α the perturbations

p̂, q̂ grows exponentially ∝ exp[G(ω)z] with growth rate

G(ω) = −α +
√
−havgav, entailing MI (Turing) of the

stationary solution [35]. The most unstable Turing fre-

quency ω = ωT and its corresponding gain, can be eas-

ily calculated from the eigenvalues to be

ωT =

√
2

βav
(δ − 2Pu), G(ωT ) = Pu − α. (18)

We recall that, unlike the cavityless fiber configuration

where MI occurs only in the anomalous GVD regime

and without threshold, in the cavity, MI occurs also

with normal GVD and has a threshold Pu = α, ob-

tained by imposing G = 0 in Eq. (18).

The linear stability analysis presented here allows

to determine the conditions of instability with respect

to small perturbations but does not provide any infor-

mation on the dynamics of large amplitude modulated

states. In other words, MI is the generating mechanism

of the Turing pattern but only in a subset of the un-

stable region, the growth of the sideband can generate

a stable pattern. This has been analyzed in details in

[38]. The region of parameter where MI can lead to the

generation of a stable Turing pattern is highlighted in

green in Fig. 3.

3.2 Periodically modulated cavity: Faraday instability

Before proceeding with the analysis, it is useful to fac-

torize the effect of the losses through the transforma-

tion [p̂, q̂] = [p̃, q̃] exp(−αz), that transforms Eqs. (16)

into a one degrees of freedom Hamiltonian system with

canonical coordinates [p̃, q̃]:

d

dz

[
p̃

q̃

]
=

[
0 −g(z)

h(z) 0

] [
p̃

q̃

]
. (19)

Since the coefficients in the equation are z-periodic with

period Λ, Floquet theory applies. This amounts to study

the evolution over one period Λ (Λ = 1 in this paper), to

obtain the Floquet map Φ which is the two by two real

matrix defined by [p̃(Λ), q̃(Λ)]T = Φ[p̃(0), q̃(0)]T . As a

result [p̃(nΛ), q̃(nΛ)]T = Φn[p̃(0), q̃(0)]T . Note that Φ

necessarily has determinant one, since it is obtained by

integrating a Hamiltonian dynamics, which preserves

phase space volume. As a consequence, the two eigen-

values λ± of Φ are constrained to lie either both on the

unit circle, or both on the real axis. Only in the latter

case the system can be unstable, the instability being

associated with |λ| > 1 according to Floquet theory.

Since the system (19) is not autonomous, it can-

not be solved analytically in general. Nevertheless, the

above observations allow us to obtain some informa-

tion about its stability for relatively small βm, which,

importantly, hold valid regardless of the specific shape

of the forcing f(z) [39].

To see this, let us start from the unperturbed limit

βm = 0, β(z) = βav. It is then straightforward to inte-

grate the system (19). The Floquet map is then given

by

Φav =

 cos(kavΛ) −gav
kav

sin(kavΛ)

kav
gav

sin(kavΛ) cos(kavΛ)

 . (20)

The eigenvalues of Φav can be easily computed as

λ±av = exp(±ikavΛ). (21)
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We assume that kav(ω) is real, i.e. the uniform cavity

is stable with respect to perturbations at frequency ω,

and ask ourselves what happens by switching on the

periodic dispersion described by f(z). The system (19)

becomes non-autonomous and hence it is no longer pos-

sible, in general, to give a simple closed form expression

of the eigenvalues. Nevertheless, we do know that, for

sufficiently small βm, the eigenvalues of Φ must be close

to the eigenvalues λ±av. We then distinguish two cases:

1. Off-resonant case kav 6= mπ
Λ . Since kavΛ 6= mπ,

it follows from Eq. (21) that λ−av = (λ+av)
∗, are dis-

tinct and they both lie on the unit circle, away from

the real axis. They then must remain on the unit cir-

cle under perturbation since, for the reasons explained

above, they cannot move into the complex plane away

from the unit circle. In this case, the stationary solution

is linearly stable under a sufficiently small perturbation

βmf(z) and this statement does not depend on the pre-

cise form of f(z).

2. On-resonant case kav = mπ
Λ . It follows from Eq.

(21) that λ+av = λ−av = ±1 (upper or lower sign holds

for m even or odd, respectively) is a doubly degenerate

eigenvalue of Φav. Under a small perturbation, the de-

generacy can be lifted and two real eigenvalues can be

created, one greater than one, one less than one in ab-

solute value. The system has then become unstable. In

principle, under very peculiar perturbations, the eigen-

values might also move along the circle implying that

the system remain stable. However, for the most com-

mon perturbations (sinusoidal, square wave, sawtooth,

comb, ...), the system, for some m, destabilizes under

an arbitrarily small perturbation, following the split of

the eigenvalues on the real axis at the degenerate points

±1.

We recap by saying that, when the forcing is switched

on, the instability sets in under the resonant condition

kav = mπ
Λ . Recalling the expression of kav = kav(ω) in

Eq. (17), it is straightforward to show that the m−th

order resonance is fulfilled at frequency ω = ωm, where

ωm =

√√√√{ 2

βav
(δ − 2Pu)

}
±

[
2

βav

√(mπ
Λ

)2
+ P 2

u

]
(22)

We emphasize that the resonance condition

kav(ωm) = m
π

Λ
= m

kg
2

(23)

is the condition of parametric resonance, i.e. the natural

spatial frequency of the unperturbed harmonic oscillator

(kav) is equal to a multiple of half the forcing spatial

frequency (kg = π/Λ).

We return now to the original (damped) system

for the perturbations [p̂, q̂]. The Floquet map is sim-

ply given by Ψav = exp(−αΛ)Φav, whose eigenvalues

read as:

σ±
av = exp(−αΛ)λ±av = exp[(−α± ikav)Λ]. (24)

That means that the eigenvalues σ±
av lie in the complex

plane either on a circle of radius exp(−αΛ) (case 1),

or on the real axis (case 2). Now the perturbation can

grow only if the forcing βm is sufficient to push one

of the eigenvalues outside the unit circle. In this case,

the perturbations p̂, q̂ will experience an exponential

growth with rate G(ω) = ln(max |σ±|)/Λ. This means

that there is a threshold on βm for the onset of the

parametric instability. On the same footing, for a fixed

βm, there exist a power threshold for the parametric

instability to appear.

To summarize, the Faraday instability appears in

general at multiple frequencies ωm given by Eq. (22)

which depend on the period of the forcing and repre-

sent the tips of the unstable regions known as Arnold

tongues, whereas a threshold in the strength of the forc-

ing (or intracavity power) exists which depends on the

losses (the higher the losses, the higher the threshold)

and on the specific shape of the perturbation (though

no general analytical formulas can be given for the thresh-

old).

The stability analysis presented here allows to de-

termine the conditions of parametric instability with

respect to small perturbations but does not provide any

information on the dynamics of large amplitude mod-

ulated states. In other words, parametric instability is

the generating mechanism of the Faraday pattern but

only in a subset of the unstable region the growth of

the sideband can generate a stable pattern. The region

where parametric instability can lead to the generation

of a stable Faraday pattern is highlighted in blue in Fig.

3, and it was calculated from numerical simulation of

LLE. Above this region, the Faraday pattern becomes

unstable and the behavior of the cavity chaotic.

3.3 Piecewise constant dispersion

An example of practical interest where the Floquet anal-

ysis can be performed analytically is a cavity with a

piecewise constant dispersion [36]. This case corresponds

to the experimental set-up we used, where the intracav-

ity loop is made of two pieces of different fibers spliced

together. The fiber-ring thus exhibit a step-like longi-

tudinal dispersion profile (see Fig. 1(b)). The Floquet
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(a) (b) (c)

TURING TURING

FARADAY

Fig. 2 Color level plot of growth rate G(ω). (a) Uniform cavity βav = 1, βm = 0, Λ = 1. The dashed green curve indicates
the peak gain calculated from Eq. (18). (b) Modulated cavity βav = 1, βa,b = 1±1.5, Λa = Λb = 0.5. The dashed black curves
indicates the peak gain calculated from Eq. (22) for m = 1, 2, 3, 4. (c) Modulated cavity βav = 1, Pu = 1, Λa = Λb = 0.5. In
all three plots, δ = π/5, α = 0.15.

map is given by

Ψ = exp(−αΛ)ΦaΦb, (25)

where Φa,b has the expression (20) calculated for a dis-

persion β(z) = βa,b, where the two pieces of fiber has

length Λa,b, such that Λa + Λb = Λ and the average

dispersion is βav = (βaΛa + βbΛb)/Λ.

The eigenvalues of Ψ are given by

σ± =
D

2
±
√
D2

4
−W, (26)

where

D = e−αΛ
[
2 cos(kaΛa) cos(kbΛb)−

gahb + gbha
kakb

sin(kaΛa) sin(kbΛb)

]
,

(27)

and W = e−2αΛ. We have parametric instability if

|D| > (1 + W ), with gain G(ω) = ln(max |σ±|)/Λ. In

Fig. 2 we report some examples of analytically calcu-

lated instability gain. Figure 2(a) shows the gain as

a function of perturbation frequency and intracavity

power for a homogeneous cavity. In this case, we ob-

serve a branch located around zero frequency, that can

generate a stable Turing pattern. Figure 2(b) shows

the gain for a modulated cavity in the same operat-

ing conditions. The Turing branch survives, and we see

the generation of several branches due to the periodic

forcing. This parametric instability branches (Arnold

tongues) are the generating mechanism for the Faraday

patterns. The existence of both Turing and Faraday

branches in the same device allows us to observe the

competition between the two phenomena. Figure 2(c)

shows the Arnold tongues as a function of the forcing

amplitude βm for a fixed power. Due to nonzero losses

α, there exist a threshold for the onset of the instabil-

ity (as discussed above), which is generally different for

each tongue.

3.4 Chart of instabilities

The behavior of the system is controlled by two main

parameters, namely power and normalized detuning∆ =

δ/α, which are easily accessible experimentally. It can

be summarized in Fig. 3 which shows the domains of the

different instabilities in the parameter plane (∆,Pu) for

a uniform cavity (Fig. 3 (b)), and for a dispersion mod-

ulated cavity (Fig. 3(d)) when the average dispersion is

normal (βav2 > 0). For better clarity, the corresponding

steady state responses are also reported in Figs. 3(a)

and (c), respectively for a large value of detuning of

∆ = 6.25 because it allows to capture all the richness of

the setup with the excitation of both regimes of instabil-

ity. Note that it corresponds to the detuning value used

in the experiments described below. For ∆ ≥
√

3, the

cavity is bistable [32,35], and exhibits an unstable neg-

ative slope branch for P−
u < Pu < P+

u , where P±
u (∆)

stands for the bistability knees, delimiting the domain

labeled “inaccessible” in Fig. 3(b) and (d). Below such

domain, the green area corresponds to the region where

temporally modulated Turing structures can be excited

in uniform and modulated cavities (Fig. 3(b) and (d),

respectivelly). This region has been computed numeri-

cally and corresponds to the tiny domain where Turing

structures, which bifurcate subcritically, can be spon-

taneously formed [40]. We emphasize that this regime

requires to drive the cavity with a detuning ∆ > 4.25,

and with powers belonging to a small portion of the

lower branch of the bistable response (highlighted in

green over the bistable curve for ∆ = 6.25 in Fig. 3(a)

and (c)). It is important to emphasize that this regime

only depends on the average GVD and not on its peri-
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odic modulation. On the contrary, Faraday structures

only develop when the cavity is driven over the upper

branch and the periodic longitudinal variations are ef-

fective.

Δ
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Δ = 6.25
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10 2 30

P u 
=

 |u
|²
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Turing

Δ
2 31 4 5 6 7 8
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=
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|²
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1

1.5

P u
+
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-Inaccessible

Chaotic
Farada

y

Turing

(a)

(c)

(b)

(d)

2

1

Fig. 3 (a) Normalized steady-state curve for a detuning
value ∆ = 6.25. (b) Instability domains of a uniform cav-
ity in the plane (∆,Pu) in the average normal dispersion
regime (βav2 > 0). The “Inaccesible” region corresponds to
the negative-slope branch of the steady-state of (a). The green
domain represent the region where Turing modulated struc-
tures can be excited. (c-d) Same as (a-b) except that the
periodic dispersion is switched on. The Faraday domain of in-
stability appears on the upper branch (for higher powers the
Faraday structures destabilize giving rise to chaotic spatio-
temporal evolutions). Parameters: Λa = 0.97, Λb = 0.03,
βa = 1.5, βb = −14, α = 0.157, θ2 = 0.1, Λ = 1: the period
of the GVD equals the length of the resonator.

As a result, the stable excitation of Faraday struc-

tures requires to operate in the blue domain of Fig.

3(d). Note that no blue area exists in Fig. 3(b) which

summarize the behavior of uniform cavities. In that

configuration, the upper branch is modulationally sta-

ble and thus there is no pattern formation. At higher

powers, such Faraday structures destabilize leading to

chaotic states (see upper portion of Fig. 3(d)). Note

that the Faraday branch (unlike the Turing one) ex-

tends also to the monostable regime ∆ <
√

3. However,

we choose to focus on the bistable regime where the two

instabilities can compete thereby drastically changing

the bistable switching dynamics. Indeed, at high detun-

ings (∆ > 4.25), both instability regimes can be excited

in the same cavity and switching between Turing and

Faraday structures can be controlled by the power (ver-

tical axis in Fig.3(d)).

4 Experimental results

4.1 Steady state regime

We built a fiber ring cavity presenting the piecewise

constant dispersion profile shown in Fig. 4(b). The ring

has a total length of 51.6 m, and is composed of a

50 m long, specially designed dispersion shifted fiber

(DSF, with GVD β2 = 2 ps2/km at 1550 nm) directly

spliced to the two pigtails (total length 1.6 m) of the

input/output coupler made of a standard single-mode

fiber (SMF-28 with GVD β2 = −19 ps2/km). The aver-

age nonlinear coefficient is γ = 5.5 /W/km and we nu-

merically checked that the slight difference (inferior to

10%) between the nonlinear coefficients does not affect

the behaviour of the system. Thus, we can consider that

the nonlinear coefficient is almost constant over all the

cavity length. The cavity is pumped at 1550 nm (well

below the average zero dispersion wavelength of 1562

nm), where the values of GVD reported above gives a

normal average dispersion βav2 ≈ 1.35 ps2/km. We esti-

mated the finesse to be ≈ 20. The experimental setup

is sketched in Fig. 4(a). In order to operate at constant

detuning δ we use a fraction of the power of the pump

called the “Control beam”, launched inside the cavity

in the direction opposed that of the “Nonlinear beam”.

We control the linear phase accumulation of light dur-

ing a round-trip by finely tuning the wavelength of the

laser. The output of the “Control beam” is launched

into a servo controlled system (PID) to be compared to

a reference level related to the desired detuning. It then

generates an error signal that finely tunes the pump

wavelength to compensate for the environmental fluc-

tuations, and thus locks the value of the detuning. The

maximum duration of the locking is strongly linked to

the environment fluctuations for they eventually lead

to a failure of the PID system. As an example, the evo-

lution of the optical path length of the cavity over 10 s

is shown in Fig. 4 (d). As can be seen, the length of the

cavity is stabilized with an accuracy of at least λ/200

rms.

In order to validate the general behaviour depicted

in Fig. 3(d), we performed experiments with ∆ = 6.25

where both instabilities can be excited by simply tuning

the pump power as predicted in Fig. 3 (d).

Figure 5 shows the results obtained for this detun-

ing. For input powers below 3.9 W we do not observe

any spectral signature of periodic structures in the out-

put spectrum. Indeed the system is stable and simply

follows the lower branch of the steady-state response

shown in Fig. 5(a). However, when the power exceeds

a first MI threshold the system enters the Turing re-

gion and exhibits the stable formation of sidebands over
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Fig. 4 (a) Experimental setup. (b) GVD map of the cav-
ity over one round-trip, centered on the 90/10 SMF coupler.
The gray horizontal line gives the average GVD βav2 at the
pump wavelength of 1550 nm (arrow on the right vertical axis,
calibrated in terms of wavelengths). (c) Normalized transfer
functions of the cavity for the Control beam (dashed red)
and the Nonlinear beam in the linear regime (blue). (d) Op-
tical path length (OPL) variation over 10 seconds when the
feedback loop is operating.

the lower branch. An example is shown in Fig. 5(d),

where the primary sidebands are located at 0.70 THz.

This is consistent with the fact that, while the peri-

odic solutions corresponding to Turing structures con-

tinue to bifurcate sub-critically, a stable branch ex-

ists for a finite range of input powers, as shown by

the green curve in Fig. 5(a). Then, when the power

exceeds the value where the Turing branch merge on

the stationary response, the Turing instability induces

up-switching towards the upper branch. As described

above, however, this branch presents narrowband Fara-

day instability [see Fig. 5(b)] and hence two sidebands

are still observed in the spectra [see Fig. 5(b)], though

at much larger frequency (1.16 THz). As can be seen,

experimental spectra (blue curves) in Fig. 5(c) and 5(d)

are in excellent agreement with numerical simulations

(dashed red curves) and with the analytical predictions

of the positions for the sidebands (vertical grey lines,

0.69 THz and 1.15 THz respectively). The large differ-

ence of frequency shifts between Fig. 5(c) and 5(d) al-

lows us to claim that we have unambiguously observed

the crossover between the two instabilities. Thus, we

can conclude that the dynamics of this bistable sys-

tem is dramatically affected by the excitation of modu-

lated structures due to competing Turing and Faraday

branches. We showed that by tuning the pump power

launched inside the cavity, one can control the dynam-

ics this bistable system by switching from one regime

of instability to the other.

4.2 Transient regime

In the previous section, spectra corresponding to steady

state regimes were recorded by means of an optical

spectrum analyser. They are averaged over thousand

of round-trips, since the typical integration time of an

OSA is of the order of the second, to be compared with a

round-trip time that is of the order of the microsecond.

The recording of instantaneous spectra has attracted

a lot of attention in recent years through the develop-

ment of real time spectroscopy techniques such as the

time-stretch dispersive Fourier transformation (DFT).

Its ultra-short recording time enables the recording of

shot-to-shot spectral fluctuations associated to ultra-

fast nonlinear phenomena such as MI [41,42] or su-

percontinuum generation [43] or round-trip-to-round-

trip dynamics of both passive and active fiber cavities

[44–47]. We propose to take benefit of this technique

to observe the transient evolution of Turing and Fara-

day instabilities to capture the growth and saturation

of the power of the different unstable bands as well

as the switching dynamics between these instabilities

driven by abruptly changing the input pump power.

The experimental setup shown in Fig. 6 is very similar

to that described in the previous section to investigate

the steady state behavior of these cavities (Fig. 4(a)),

except three details. (i) We add a second EOM (EOM

2) to create either periodic bursts of pump pulses to ob-

serve the growth of Turing or Faraday instabilities or a

two-level pump pattern to observe the switch from one

to the other. (ii) The output spectra of the cavity are

recorded by using an OSA (steady state regime) and/or

a fast oscilloscope (OSC) coupled to a dispersion com-

pensating fiber (DCF) using the real-time spectroscopy

technique (see Ref. [48] for more details). Note that the

duration of the pulses is slightly shorter in that case

(400 ps) to be able to achieve an accurate frequency to

time conversion via the DFT technique. (iii) The length
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Fig. 5 (a) Bistable response of the cavity calculated for ∆ = 6.25 (δ = π/3.2 rad, α = 0.157); the hatched region is
inaccessible. (b) Pseudo-color level plot of the gain spectrum as a function of the intracavity power calculated from Floquet
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and upper branch respectively (see also Fig. 3(d)): (c) Pin = 5.02 W (4.27 W in experiment); (d) Pin = 3.9 W (3.55 W in
experiment). Estimated frequencies (Theory) are from Eq. (22) with m = 1 in (c) and from Eq. (18) in (d).

of the cavity is slightly different (49.3 m in the present

case vs. 51.6 m before).

We remind that the DFT technique basically con-

sists in stretching the temporal pulses by a highly and

purely dispersive element. Note that sufficient stretch-

ing is all the easier achieved when the pump pulses are

short and this is why we used shorter pump pulses. In

our setup the frequency-to-time conversion is realized

by a DCF with a coefficient βDCF2 × L of 888 ps2. The

time-to-frequency mapping is then easily obtained at

first order by the relation T (ω) = βDCF2 ×L× (ω−ω0),

where ω0 is the angular frequency of the pump. We

use a fast photodiode and a 6 GHz oscilloscope for de-

tection and we estimate the spectral resolution to be

≈ 250 pm [48]. In order to avoid saturation of the pho-

todetector and to be able to reveal weak MI sidelobes,

the pump is filtered out using a notch filter (BSF) cen-

tered at the pump wavelength. The fiber cavity (high-

lighted in green in Fig. 6(a)) still exhibits normal aver-

age dispersion. The accuracy of the frequency-to-time-

to-frequency conversion has been checked by comparing

the results of the DFT technique to an OSA trace. Driv-

ing the resonator with a continuous pulse train of peak

power 13 W and normalized detuning ∆ = 9, which is

large enough to allow for the two regimes of instability

to be independently excited as can be seen in Fig. 3 (d).

Figure 6(c) shows an OSA trace along with the super-

position of 1,500 consecutive spectra acquired using the

DFT setup and the corresponding averaged spectrum.

A good agreement between the two detection methods

is obtained for the range of frequency of interest which

validates our setup.

We then proceeded to investigate the onset of the

Turing and Faraday sideband growth by launching a

burst of pump pulses with constant power. Working at
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Fig. 6 (a) Experimental setup for the recording of both av-
eraged (OSA) and round-trip-to-round-trip (OSC) spectra.
Inset: profile of the pump pulses. (b) Spectrum recorded at
the output of the cavity. A trace from a standard optical
spectrum analyzer is in dashed black line, 1,500 consecu-
tive traces from the DFT technique are in redwith the corre-
sponding average spectrum superimposed in blue. The spec-
trum from the OSA is upshifted for the sake of clarity. EOM:
electro-optic modulator; EDFA: erbium doped fiber amplifier;
BPF: band-pass filter; OI: optical isolator; PC: polarization
controller; PD: photo-detector; PID: proportional-integral-
derivative controller; BSF: band-stop filter; DCF: dispersion
compensating fiber; OSA: optical spectrum analyser; OSC:
oscilloscope.
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fixed detuning, the nature of the instability observed

only depends on the peak power of the pump pulses:

in our setting, 10 W for the Turing branch and 13 W

for the Faraday branch (Fig. 7(a) and (d respectively,

where bistable cycles are shown). Figure 7(b) and (e)

show that in both cases a pair of spectral sidebands ap-

pear symetrically to the pump after a few round-trips,

at a frequency shift slightly higher for Faraday side-

bands, which is in agreement with theory and previous

experiments [24,29]. Furthermore this allows us to un-

ambiguously identify the observed regime of instability,

as shown in the previous section. The growth of the

power of the unstable modes eventually saturates as

the system reaches a stable attractor of the dynamics

[35]. This is clearly illustrated by Fig. 7(c) and (f) which

showcase the temporal evolution of the power content

of the high-frequency sideband in the two regimes. By

comparing Fig. 7(c) and (f), one clearly notices that

the transition to the stable Turing regime appears to

be slower than the transition to the Faraday regime. A

simple and intuitive explanation lies on the difference

of parametric gain between the two regimes of instabil-

ity. Indeed, we verified that the parametric gain is more

than two times higher in the Faraday case compared to

the Turing case. On the other hand, the rise time of

the Faraday mode is nearly two times shorter than the

one of the Turing mode, as can be seen in Fig. 7(c) and

(f). This supports the argument that the difference in

the dynamics between these two regimes is essentially

driven by the strength of the parametric gain. In order

to compare with the experimental recordings, we also

conducted numerical simulations based on the LLE (12)

seeded at the unstable frequency. The outcome is dis-

played as dashed black lines in Fig. 7(c) and (f). A good

qualitative agreement is obtained, clearly highlighting

the faster transition in the case of the Faraday instabil-

ity.

Besides the emergence of the Faraday unstable branch

in addition to the Turing one, the inhomogeneous dis-

persion profile allows the transition between these in-

stability regimes by simply tuning the input power while

keeping the detuning fixed. This power dependence has

been observed in the stationary regime through the

abrupt change of unstable frequency associated to the

two instabilities [29]. Here we address the question of

the transition between those instabilities by recording

the real-time evolution of the cavity output spectrum

when abruptly tuning the input pump power from a

level corresponding to the Turing regime to a higher

one which corresponds to the Faraday regime and vice

versa.

Figure 8(b) shows the evolution of the output spec-

trum corresponding to the pump power evolution of

Fig. 8(a). The abrupt power step is preceded by a large

number of pump pulses of 10 W peak power (not shown

here) to ensure that a stable Turing state is reached.

Once again, the different regimes of instability can be

identified owing to their different characteristic frequen-

cies. The sudden increase of pump power appears to

trigger the Turing-to-Faraday transition i. e. the switch-
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Fig. 8 (a) Input pulse pattern exhibiting an abrupt increase of the pump power. The two levels correspond to peak pump
powers of 10 and 13 W . (b) Corresponding experimental evolution of the cavity output spectrum showing the Turing-to-
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but for a sudden decrease of the input power, thus triggering the Faraday-to-Turing transition.

ing of the system from the lower branch to the upper

branch of the bistable cycle. The opposite transition

can occur when we switch back the input power to its

lower value. This is illustrated in Figs. 8(c-d) which

shows that, after such modification of the driving field,

the system goes back to a stationary state on the lower

branch of the bistable cycle in the region of Turing in-

stability. To summarize, we showed that the dynamics

of dispersion oscillating cavities can be experimentally

investigated in details by means of a standard DFT

technic which allows the round to round trip recording

of output spectra. It revealed that by simply tuning

the pump power one can trigger Turing and Faraday

instabilities.

5 Conclusion

We investigated theoretically and experimentally the

development of different kinds of instabilities in pas-

sive ring cavities composed of pieces of fiber with dif-

ferent dispersion. We presented an original derivation

of the well known Lugiato-Lefever equation adapted for

the description of dispersion oscillating cavity. Quite re-

markably, we demonstrated that this equation is valid

well beyond the mean field approximation, under which

it has been traditionally derived. We reviewed the the-

ory of Turing (modulational) and Faraday (parametric)

instability in inhomogeneous fiber cavities by means of

Floquet theory. We reported the experimental demon-

stration of the generation of stable Turing and Fara-

day patterns in the same device, which can be con-

trolled by changing the detuning and/or input power.

Moreover, we experimentally recorded the round-trip-

to-round-trip dynamics of the spectrum by implement-

ing a real-time spectroscopy technique. We found that

Turing and Faraday instabilities not only differ by their

characteristic frequency but also by their dynamical be-

havior. In more general terms, we showed that com-

pared to other experimental setups fiber ring cavities

made of dispersion oscillating fibers are a fantastic test

bed for fundamental investigations since the dynamics

can easily be recorded by means of simple DFT technics

and the dispersion step easily tuned with different opti-

cal fibers. It paves the way to more complete experimen-

tal and fundamental investigations of parametric insta-

bilities in passive resonators, namely of their nonlinear

regimes. Besides, these fundamental investigations can

find direct applications in the context of soliton or fre-

quency comb generation in microresonators.
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