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Joint Image Reconstruction and Motion Estimation for Spatiotemporal Imaging∗1

Chong Chen† , Barbara Gris‡ , and Ozan Öktem§2

3

Abstract. We propose a variational model for joint image reconstruction and motion estimation applicable to4
spatiotemporal imaging. This model consists of two parts, one that conducts image reconstruction in5
a static setting and another that estimates the motion by solving a sequence of coupled indirect image6
registration problems, each formulated within the large deformation diffeomorphic metric mapping7
framework. The proposed model is compared against alternative approaches (optical flow based8
model and diffeomorphic motion models). Next, we derive efficient algorithms for a time-discretized9
setting and show that the optimal solution of the time-discretized formulation is consistent with that10
of the time-continuous one. The complexity of the algorithm is characterized and we conclude by11
giving some numerical examples in 2D space + time tomography with very sparse and/or highly12
noisy data.13

Key words. spatiotemporal imaging, image reconstruction, motion estimation, joint variational model, shape14
theory, large diffeomorphic deformations15
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1. Introduction. Image reconstruction is challenging in a spatiotemporal setting where18

the object being imaged undergoes a temporal evolution during the data aquisition. This19

arises in tomographic imaging of the heart or lungs [13, 29] where the image recovery needs to20

include estimating and compensating for the unknown motion of the organs. As an example,21

data in positron emission tomography (PET) cardiac imaging is acquired over a relatively22

long period of time (often in the range of minutes). Here, respiratory and cardiac motion23

displaces organs of interest with up to 20–40 mm [48, 58]. Failing to correct for such motion24

leads to a degradation in image quality [29].25

Data in spatiotemporal imaging is time (or quasi-time) dependent and an obvious approach26

is to decompose it into sub-sets (gates) such that data within each gate can be assumed to27

originate from the object in a fixed temporal state [25, 35, 37]. As an example, in the context28

of PET imaging of the heart or lungs, the gates correspond to the phases of breathing and/or29

cardiac motion [23, 32, 15]. Clearly a too fine gating leads to data with worse signal-to-noise-30

ratio, whereas to coarse gating leads to motion artefacts. Much work has been done on how31

to optimize the gating in order to obtain the optimal balance between signal-to-noise-ratio32

and motion artefacts [27, 56].33

Algorithms for spatiotemporal image reconstruction that act on gated data either perform34

image reconstruction followed by motion estimation (sequential approach) or perform these35
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two steps jointly [7, 29]. In the sequential approach, one starts with applying static image36

reconstruction on data from each of the gates, resulting in a series of (low-resolution) images.37

Then, one selects a reconstructed image as target and registers the other reconstructed im-38

ages against this target. The final reconstructed image is obtained as an average of all the39

registered images [2, 3, 22, 24, 30, 29]. The other alternative that seeks to jointly perform40

image reconstruction and motion estimation is much more complex. Several approaches have41

been suggested for how to do this, such as [7, 47, 51, 28, 36, 9, 8, 44, 34, 52, 6, 33, 33, 10, 13].42

The approach taken in this paper seeks to jointly perform image reconstruction and motion43

estimation. The motion is here modelled as deformations induced by diffeomorphisms that44

are provided by the large deformation diffeomorphic metric mapping (LDDMM) framework,45

which is a well-developed framework for diffeomorphic image registration [54, 26, 38, 5, 31,46

60, 55, 11, 12]. Joint image reconstruction and motion estimation can be based on the growth47

model in LDDMM [31] as shown in [33] for 3D space + time computed tomography (CT).48

It can also be used for indirect image registration as shown in [17], which also proves the49

resulting model is stable.50

Specific contributions. The main contribution is a new variational model for joint im-51

age reconstruction and motion estimation in spatiotemporal imaging based on the LDDMM52

framework with deformable templates. As already mentioned, there are two components: one53

corresponding to modified static image reconstruction, and the other to estimating the mo-54

tion. To handle the latter, we generalize the LDDMM framework to a setting that applies to55

a series of coupled sequential indirect image registration problems.56

The mathematical properties of the proposed variational model is compared against the57

optical flow based model in [13] and the diffeomorphic motion model in [33]. The comparison58

shows that the proposed model has some desirable properties in terms of the optimal solution,59

e.g., guaranteeing elastically large diffeomorphic deformations, averagely distributed w.r.t.60

time t, and non-vanishing at both the initial and the end time points, etc. Moreover, a61

computationally efficient gradient-based iterative scheme is presented for a time-discretized62

formulation. More importantly, the optimal solution of the time-discretized problem is shown63

to be consistent with that of the time-continuous one. Most of the computationally demanding64

parts relate to computations involving linearized deformations [43].65

Outline. Section 2 presents a general variational model for joint image reconstruction66

and motion estimation. We also briefly review necessary parts of the LDDMM theory in67

subsection 3.1. Subsection 3.2 proposes the new variational model and subsection 3.3 makes68

the theoretical comparison between this ans other existing models. Section 4 gives the detailed69

numerical algorithms associated with the proposed model. Results of numerical experiments70

are presented in section 5 in the context of 2D space + time tomography. Finally, we conclude71

with section 6 that discusses future work.72

2. A variational model for joint image reconstruction and motion estimation. Spa-73

tiotemporal imaging often leads to the task of recovering a spatially distributed quantity74

(image) that exhibits temporal variations given indirect time-dependent noisy observations75

(measured data). Hence, both the image and its motion are unknown.76

2.1. General spatiotemporal inverse problem. To formalise the notion of spatiotemporal77

imaging, let f : [t0, t1]×Ω→ Rk denote the spatiotemporal image we need to recover. Here k78
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JOINT IMAGE RECONSTRUCTION AND MOTION ESTIMATION 3

is the number of channels/modalities (often k = 1) and Ω ⊂ Rn is the spatial region containing79

the support of the image. Without loss of generality, the general (quasi-)time domain [t0, t1]80

can be re-parameterized onto [0, 1].81

The spatiotemporal inverse problem is now stated mathematically as the problem of re-82

constructing the spatiotemporal image f(t, · ) ∈X given measured data g(t, · ) ∈ Y where83

(2.1) g(t, · ) = T
(
t, f(t, · )

)
+ gnoise(t, · ) for t ∈ [0, 1].84

Here, X (reconstruction space) is the vector space of all possible images on a fixed domain Ω,85

Y (data space) is the vector space of all possible data, and gnoise(t, · ) ∈ Y is the observation86

noise in data. Furthermore, T (t, · ) : X → Y is a time-dependent forward operator, for short87

denoted by Tt, that models how an image at time t gives rise to data in absence of noise88

or measurement errors (e.g., a stack of ray transforms with time varying data acquisition89

parameters in CT or the forward model in PET with time dependent attenuation, etc.) [41].90

To proceed, we further specify the form of the spatiotemporal image f(t, · ) by making91

use of deformable templates from shape theory.92

2.2. Spatiotemporal inverse problem and shape theory. Shape theory seeks to develop93

quantitative tools to study shapes and their variability. The theory can be traced back to94

work by D’Arcy Thompson [53]. The underlying idea is that shapes of objects are represented95

as a deformation that acts on a template [55]. Hence, the template is the “shape invariant”96

part of the object whereas the set of deformations model the various shapes that can be97

generated from the template. Shape similarity between two objects can then be quantified as98

the “cost” of deforming one object into the other by means of a minimal deformation in the99

set of deformations. Further details are given in [60, 31, 40].100

Bearing in mind the above, we separate the spatial and temporal components of a spa-101

tiotemporal image as102

(2.2) f(t, · ) :=W(φt, I) for some φt ∈ G and I ∈X .103

Here I : Ω→ R (template) is the time-independent spatial component, W : G ×X →X is a104

deformation operator the models how a deformation parameter φt ∈ G deforms the an image,105

and φt : Ω→ Ω is the temporal evolution of the deformation parameter.106

We will assume deformations are given by diffeomorphic group actions, so G is a suitable107

subgroup of the diffeomorphic group on Ω and W is given by the group action of G on X ,108

i.e., W(φt, I) := φt . I. The spatiotemporal inverse problem can then be written as109

(2.3) g(t, · ) = Tt(φt . I) + gnoise(t, · ) for t ∈ [0, 1].110

Notice that f(t, · ) = φt . I is the spatiotemporal image at time t generated from the template111

I by the diffeomorphism φt. Hence, the above inverse problem calls for jointly recovering the112

(time-independent) template I and the curve of diffeomorphisms t 7→ φt.113

Common group actions. In imaging, there are several diffeomorphic group actions that one114

could consider. A natural one merely moves intensities without changing them (geometric115

deformations) [17]:116

(2.4) φt . I := I ◦ φ−1
t .117
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4 CHONG CHEN, BARBARA GRIS, AND OZAN ÖKTEM

An alternative group action corresponds to mass-preserving deformations [17, 60]:118

(2.5) φt . I :=
∣∣D(φ−1

t )
∣∣I ◦ φ−1

t .119

Here,
∣∣D(φ)

∣∣ denotes the determinant of the Jacobian of φ. This group action adjusts the120

intensity values but preserves the total mass.121

2.3. Joint image reconstruction and motion estimation. It is not difficult to observe122

that the inverse problem in (2.3) decomposes into two sub-problems. Given a diffeomorphism123

φt, the original problem reduces to a static image reconstruction problem where one seeks124

to recover the template “I” from noisy measured data. The data represents indirect noisy125

measurements of the template that has undergone a known diffeomorphic deformation. Con-126

versely, given the template I, the original problem reduces to an indirect registration problem127

at each point in time t. More precisely, the task is to recover a curve of diffeomorphisms128

“t 7→ φt” that registers the template at time t against a target that is known indirectly129

through noisy measured data g(t, · ). Such a “sequential indirect image registration problem”130

can be seen as a temporal version of the indirect image registration problem in [17].131

Inverse problem of the type (2.3) in imaging applications are often ill-posed. A flexible132

framework for regularizing many of these problems is through a variational formulation [46].133

The idea is to add regularization functional that penalizes a maximum likelihood solution and134

thereby acts as a stabiliser by preventing overfitting. The variational formulation for (2.3)135

reads as136

(2.6) min
I∈X
φt∈G

{∫ 1

0

[
D
(
Tt(φt . I), g(t, · )

)
+ µ2R2(φt)

]
dt+ µ1R1(I)

}
for fixed µ1, µ2 > 0.137

In the above, µ1, µ2 are the regularization parameters that must be chosen depending on138

the noise level in data. Next, D : Y ×Y → R+ above is the data discrepancy functional that139

quantifies the mismatch in data space Y . It is often taken as a suitable affine transform of140

the negative data likelihood for the data, so minimising it amounts to computing a maximim141

likelihood estimator. If one has data with additive Gaussian noise, then it is given by the142

squared L 2-norm:143

(2.7) D
(
g1, g2

)
:=
∥∥g1 − g2

∥∥2

2
for g1, g2 ∈ Y .144

Likewise, Poisson distributed data leads to the Kullback-Leibler (KL) divergence:145

(2.8) D
(
g1, g2

)
:=

∫
M
g1(y)− g2(y) log

(
g1(y)

)
dy for g1, g2 ∈ Y .146

Moreover, the spatial regularization R1 : X → R+ introduces stability by encoding priori147

knowledge about the ground truth image. It is frequently based on a roughness prior given148

as an L p-norm of the gradient magnitude or L 1-norm of a suitable sparse representation.149

Typically, if X := H1(Ω) then one takes the squared L 2-norm of the gradient magnitude:150

(2.9) R1(f) := ‖∇f‖22151
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JOINT IMAGE RECONSTRUCTION AND MOTION ESTIMATION 5

This choice is known to produce smooth images whereas selecting the L 1-norm of the gradient152

magnitude for X := BV (Ω) is better at preserving edges (total variation (TV) regularization)153

[45]:154

(2.10) R1(f) := ‖∇f‖1155

What remains is to describe how to generate the curve t 7→ φt and to select the shape156

regularization R2 : G → R+. An overall difficulty is that diffeomorphisms G do not form157

a vector space. One option is to try re-parametrising the deformations using vector space158

elements. As we shall see next, this can be done within the LDDMM framework.159

3. A variational model for joint image reconstruction and motion estimation. This160

section introduces a new variational model of the framework (2.6) based on LDDMM. We161

begin by recalling the basic principles of LDDMM.162

3.1. The LDDMM framework. The LDDMM framework outlined here offers a powerful163

machinery for generating a flow of diffeomorphisms by means of a velocity field. One advantage164

is that the set of velocity fields form a vector space, so we have in this way re-parametrised165

deformations by vector space elements.166

The idea in LDDMM is to consider a sequence of infinitesimally small vector field pertur-167

bations to the identity mapping. These vector fields can be seen as an instantaneous velocity168

field. Under certain regularity, the composition of such small deformations in the limit gener-169

ates a flow of diffeomorphisms given as the solution to an ordinary differential equation (ODE)170

[60]. More precisely, given a velocity field ν : [0, 1] × Ω → Rn, a flow t 7→ φt is generated by171

the following ODE:172

(3.1)

∂tφt(x) = ν
(
t, φt(x)

)
φ0(x) = x

for x ∈ Ω and 0 ≤ t ≤ 1.173

Note that φ0 = Id, i.e., the flow starts at the identity mapping. If the velocity field ν is174

sufficiently regular (see Definition 3.1), then the above ODE has a well-defined solution that175

is a diffeomorphism at each time point, i.e., (3.1) defines a flow of diffeomorphisms.176

Definition 3.1 (Admissible space [60]). A Hilbert space V ⊂ C 1
0 (Ω,Rn) is admissible if it177

is (canonically) embedded in C 1
0 (Ω,Rn) with the ‖ · ‖1,∞ norm, i.e., there exists a constant178

C > 0 such that179

‖v‖1,∞ ≤ C‖v‖V for all v ∈ V .180

In the above, ‖v‖1,∞ := ‖v‖∞ + ‖Dv‖∞ for v ∈ C 1
0 (Ω,Rn).181

We now consider velocity fields that are L p in time and in an admissible space at every point182

in time, i.e.,183

(3.2) L p([0, 1],V ) :=
{
ν : ν(t, ·) ∈ V and ‖ν‖L p([0,1],V ) <∞ for 1 ≤ p ≤ ∞

}
184

with the associated norm185

‖ν‖L p([0,1],V ) :=

(∫ 1

0

∥∥ν(t, ·)
∥∥p

V
dt

)1/p

.186

This manuscript is for review purposes only.



6 CHONG CHEN, BARBARA GRIS, AND OZAN ÖKTEM

To simplify notation, let L p
V (Ω) denote L p([0, 1],V ) and note in particular that L 2

V (Ω) is a187

Hilbert space with inner product188

〈ν,η〉L 2
V (Ω) =

∫ 1

0

〈
ν(t, ·),η(t, · )

〉
V

dt for ν,η ∈ L 2
V (Ω).189

The following theorem states that admissible velocity field generates a flow of diffeomorphisms.190

Theorem 3.2 ([60, 11]). Let V be an admissible Hilbert space and ν ∈ L 2
V (Ω) be a velocity191

field. Then the ODE in (3.1) admits a unique solution φν ∈ C 1
0 ([0, 1] × Ω,Ω), such that for192

t ∈ [0, 1], the mapping φνt : Ω→ Ω is a C 1-diffeomorphism on Ω.193

Hence, we define194

(3.3) GV :=
{
φ : φ = φν0,1 for some ν ∈ L 2

V (Ω)
}
,195

which becomes a sub-group of the group of diffeomorphisms by Theorem 3.2 whenever V is196

admissible. Next, if φνt denotes the solution to the ODE in (3.1) with given ν ∈ L 2
V (Ω), then197

(3.4) φνs,t := φνt ◦ (φνs )−1 for 0 ≤ t, s ≤ 1198

Furthermore, φν0 = Id and by (3.4) we also get199

(3.5) φνt = φν0,t, (φνt )−1 = φνt,0.200

Next, several important properties about GV are summarised in the following theorem.201

Theorem 3.3 ([60, 11]). Let V be an admissible Hilbert space, GV is defined as in (3.3),202

and dGV
: GV × GV → R+ is defined as203

(3.6) dGV
(φ, ψ) := inf

ν∈L 2
V (Ω)

ψ=φ◦φν0,1

‖ν‖L 2
V (Ω) for φ, ψ ∈ GV .204

Then GV is a group for the composition of functions and GV is a complete metric space205

under the metric dGV
. Furthermore, for each φ, ψ ∈ GV , there exists ν ∈ L 2

V (Ω) satisfying206

ψ = φ ◦ φν0,1, i.e., dGV
(φ, ψ) = ‖ν‖L 2

V (Ω).207

The metric dGV
can now be used to define an energy term for regularizing the registration208

of a template image I0 to a target image I1:209

(3.7) inf
φ∈GV

{∥∥φ . I0 − I1

∥∥2

L 2(Ω)
+ µdGV

(Id, φ)2

}
for fix regularization parameter µ > 0.210

One can show that the infimum in (3.6) is reached, so it can be replaced by a minimum. Next211

one can also show [60, Lemma 11.3] that (3.7) is equivalent to the following variational model212

that optimizes over velocity fields instead of diffeomorphisms:213

(3.8) min
ν∈L 2

V (Ω)

{∥∥φν0,1.I0 − I1

∥∥2

L 2(Ω)
+ µ

∫ 1

0

∥∥ν(t, ·)
∥∥2

V
dt

}
with φν0,1 ∈ GV as in (3.4).214
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JOINT IMAGE RECONSTRUCTION AND MOTION ESTIMATION 7

In conclusion, the regularization term for image registration by LDDMM is215

(3.9) R(φ) := dGV
(Id, φ)2 =

∫ 1

0

∥∥ν̂(t, ·)
∥∥2

V
dt,216

where ν̂ above minimizes ν 7→ dGV
(Id, φ) = ‖ν‖L 2

V (Ω) where φ = Id ◦φν0,1 (such a minimiser217

exists due to Theorem 3.3).218

A final remark concerns the choice of V . If we choose it as a reproducing kernel Hilbert219

space (RKHS) with a symmetric and positive-definite reproducing kernel, then V becomes220

an admissible Hilbert space [11]. Using such vector fields is also advantageous from a com-221

putational point of view as shown in [17]. We will therefore assume that V is henceforth an222

admissible RKHS.223

3.2. Spatiotemporal reconstruction with LDDMM. The aim here is to formulate a spe-224

cial case of (2.6) for solving the spatiotemporal inverse problem in (2.3). Let φt in (2.6) be225

generated by the flow equation (3.1) as in LDDMM, i.e., φt = φν0,t for some velocity field ν.226

If ν ∈ L 2
V (Ω), then φνt is a diffeomorphism on Ω by Theorem 3.2. Consequently, combining227

Theorem 3.3 with (3.9) implies that a shape regularizer R2 for the temporal deformation given228

by φν0,t in (2.6) can be defined as229

(3.10) R2(φν0,t) :=

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ.230

The variational formulation in (2.6) for solving the spatiotemporal inverse problem in (2.3)231

now reads as232

min
I∈X

ν∈L 2
V (Ω)

∫ 1

0

[
D
(
Tt(φν0,t . I), g(t, · )

)
+ µ2

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
dt+ µ1R1(I)

s.t. φν0,t solves (3.1).

(3.11)233

Note that (3.11) is an ODE constrained optimization problem, which henceforth is referred234

to as time-continuous spatiotemporal reconstruction with LDDMM.235

Remark 3.4. Changing the order of integration for the second term in (3.11) yields the236

following equivalent formulation:237

min
I∈X

ν∈L 2
V (Ω)

∫ 1

0

[
D
(
Tt(φν0,t . I), g(t, · )

)
+ µ2(1− t)

∥∥ν(t, ·)
∥∥2

V

]
dt+ µ1R1(I)

s.t. φν0,t solves (3.1).

(3.12)238

3.2.1. Basic properties of optimal velocity fields. The aim here is to characterize tem-239

poral behaviour of velocity fields that solve (3.11) when V is a RKHS. For this purpose, we240

introduce some notation that will simplify the expressions:241

(3.13) Dgt
(
f
)

:= D
(
Tt
(
f
)
, g(t, · )

)
for f ∈X with given g(t, · ) ∈ Y .242
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By Theorem A.4 (in Appendix A), the optimal velocity field in (3.11) satisfies243

(3.14) ν(t, · ) =
1

2µ2(1− t)

∫ 1

t
K
(
∇(φν0,t .I)

∣∣D(φνt,τ )
∣∣∇Dgτ (φν0,τ .I)(φνt,τ )

)
dτ for 0 ≤ t < 1.244

Here, K(ϕ) =
∫

Ω K( · , y)ϕ(y) dy, with K : Ω × Ω → Mn×n
+ denoting the reproducing kernel if245

V is a RKHS.246

By the above, the optimal velocity field can be seen as a time-averaging. Next, ν(1, · ) is247

well-defined at t = 1 and reads as248

(3.15) ν(1, ·) =
1

2µ2
K
(
∇(φν0,1 . I)∇Dg1(φν0,1 . I)

)
.249

Similarely, by (A.9) and (A.7) we get250

(3.16) ν(0, ·) =
1

2µ2
K
(
∇I
∫ 1

0

∣∣D(φν0,t)
∣∣∇Dgt(φν0,t . I)(φν0,t) dt

)
.251

Hence, the optimal velocity field in (3.11) is averagely distributed w.r.t. time t, and non-252

vanishing at both the initial and the end time points.253

3.2.2. Control theoretic formulation. The aim here is to state an equivalent optimal254

control formulation of (3.11) in terms of a partial differential equation (PDE) constrained255

optimization problem. This makes it easier to compare our proposed approach in (3.11)256

against PDE based approaches for registration, as we do in subsection 3.3.257

Theorem 3.5. Let X be a space of real valued functions that are sufficiently smooth, e.g.,258

the space of functions with bounded variation given in subsection 3.3.1. Assume next that259

I ∈X and define f : [0, 1]× Ω→ R as260

(3.17) f(t, · ) := φν0,t . I for 0 ≤ t ≤ 1 with φν0,t given by (3.4).261

Assume furthermore that f(t, · ) ∈ X for any 0 ≤ t ≤ 1. Then, (3.11) is under the group262

action in (2.4) (geometric deformation) equivalent to263

min
f(0, · )∈X
ν∈L 2

V (Ω)

{∫ 1

0

[
D
(
Tt
(
f(t, · )

)
, g(t, · )

)
+ µ2

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
dt+ µ1R1

(
f(0, · )

)}

s.t. ∂tf(t, · ) +
〈
∇f(t, ·),ν(t, ·)

〉
Rn = 0.

(3.18)264

Likewise, (3.11) is under the group action in (2.5) (mass-preserving deformation) equivalent265

to266

min
f(0, · )∈X
ν∈L 2

V (Ω)

{∫ 1

0

[
D
(
Tt
(
f(t, · )

)
, g(t, · )

)
+ µ2

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
dt+ µ1R1

(
f(0, · )

)}

s.t. ∂tf(t, · ) +∇·
(
f(t, · )ν(t, · )

)
= 0.

(3.19)267
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JOINT IMAGE RECONSTRUCTION AND MOTION ESTIMATION 9

Proof. First we consider the geometric deformation in (2.4), so (3.17) reads as268

(3.20) f(t, · ) = I ◦ (φν0,t)
−1 for 0 ≤ t ≤ 1.269

Obviously, f(0, · ) = I, f(1, · ) = I ◦ (φν0,1)−1, and270

(3.21) f
(
t, φν0,t

)
= I for 0 ≤ t ≤ 1.271

Differentiating (3.21) w.r.t. time t leads to272

∂tf
(
t, φν0,t

)
+
〈
∇f
(
t, φν0,t

)
,ν
(
t, φν0,t

)〉
Rn = 0.273

The above is the PDE constraint in (3.18), so a solution to (3.11) also solves (3.18).274

We now consider the reverse implication, i.e., show that a solution to (3.18) also solves275

(3.11). Suppose that f and ν solve (3.18). Define the diffeomorphism ψt that solves the ODE276

in (3.1) with the above given ν. Since f satisfies PDE constraint in (3.18), we get277

d

dt
f(t, ψt) = ∂tf(t, ψt) +

〈
∇f(t, ψt),ν(t, ψt)

〉
Rn = 0.278

Hence, t 7→ f
(
t, ψt

)
is constant and in particular we have279

f
(
t, ψt

)
≡ f

(
0, ψ0

)
= f(0, · ).280

If f(0, · ) := I and ψt := φν0,t, then f
(
t, ·
)

= I ◦ (φν0,t)
−1. Hence a solution to (3.18) also solves281

(3.11).282

Using a mass-preserving deformation (2.5) as group action in (3.17) results in283

(3.22) f(t, · ) =
∣∣D((φν0,t)−1

)∣∣I ◦ (φν0,t)
−1 for 0 ≤ t ≤ 1.284

We then get that f(0, · ) = I and f(1, · ) =
∣∣D((φν0,1)−1

)∣∣ I ◦ (φν0,1)−1. The symmetry of the285

mass-preserving property furthermore yields286

(3.23)
∣∣D(φν0,t)

∣∣ f(t, · ) ◦ φν0,t = I for 0 ≤ t ≤ 1.287

Finally, differentiating (3.23) w.r.t. t leads to the constraint in (3.19). Hence, a minimizer of288

(3.11) with the group action given by (2.5) is also a minimizer of (3.19). Similar to the case289

of geometric deformation, it is not difficult to prove the reverse implication.290

3.3. Comparison with existing approaches. Here we compare (3.11) against several ex-291

isting approaches (i.e., optical flow based model, diffeomorphic motion models).292

3.3.1. Optical flow based models. Recently, [13] proposes an optical flow based varia-293

tional model (joint TV-TV optical flow) for joint motion estimation and image reconstruction294

in spatiotemporal imaging. The model is formulated as a PDE-constrained optimal control295

problem where the constraint is given by a brightness constancy equation. When applied to296

the spatiotemporal inverse problem in (2.3), it reads as297

min
f(t, · )∈X

ν(t, · )∈BV (Ω)

∫ 1

0

[
D
(
Tt
(
f(t, · )

)
, g(t, · )

)
+ µ1R1

(
f(t, · )

)
+ µ2

∣∣ν(t, · )
∣∣
BV

]
dt

s.t. ∂tf(t, · ) +
〈
∇f(t, · ),ν(t, · )

〉
Rn = 0,

(3.24)298
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where | · |BV is the semi-norm on the space of functions with bounded variation:299

BV (Ω) :=
{
u ∈ L 1(Ω) : |u|BV <∞

}
with |u|BV := sup

ϕ∈C 1
0 (Ω,Rn)

‖ϕ‖∞≤1

∫
Ω
u(x) divϕ(x) dx.300

In particular,
∣∣ν(t, · )

∣∣
BV

denotes the sum of the semi-norm of all the elements in ν(t, · ) [1].301

We will use the reformulation in (3.18) to compare the above optical flow based model302

from [13] with our proposed model. The use of the brightness constancy equation points to303

using the geometric deformation in (2.4) as a group action in (3.17), i.e., we assume (3.20)304

holds. It is easy to see that the constraints in (3.18) and (3.24) are equivalent. Hence, the305

optical flow constraint given by the brightness constancy equation in [13] is equivalent to using306

diffeomorphisms generated by LDDMM that act through geometric deformation.307

By comparison, the primary distinction between (3.18) and (3.24) relates to the selection308

of the regularization term w.r.t. vector field ν(t, ·). In the model (3.24), one uses the TV309

functional, so the space of vector fields is assumed to be in BV (Ω), which allows for a vector310

field that is a piecewise-constant vector-valued function distributed on Ω. In contrast, in the311

model (3.18), the space of vector fields reside in an admissible Hilbert space. Hence, the312

vector field is a sufficiently smooth vector-valued function distributed on Ω. This guarantees313

an elastic diffeomorphic deformation, which to some extent mimics the underlying physical314

mechanisms of organ motion [30, 14].315

In addition to the above, both approaches also differ in the selection of regularization316

term R1. In (3.18) one only poses restriction on the initial image f(0, · ), whereas in (3.24)317

the whole time trajectory t 7→ f(t, · ) is regularized. The treatment in (3.18) is reasonable318

to some extent, since regularity properties are assumed to preserved. More precisely, f(t, · )319

is contained in the same space for all t. For example, if f(0, · ) ∈ BV (Ω), then there exists320

a unique weak solution f(t, · ) = f(0, · ) ◦ (φν0,t)
−1 to the PDE constraint of (3.18) is L∞ in321

time and in BV (Ω) at any t [21, Theorem 4]. Hence, (3.18) has a simpler structure which is322

also beneficial in implementation.323

3.3.2. Diffeomorphic motion models. A diffeomorphic motion model for 4D CT image324

reconstruction was proposed in [33]. It is based on the LDDMM growth model [31] with a325

time-continuous model that reads as326

min
I∈X

ν∈L 2
V (Ω)

∫ 1

0

[
D
(
Tt(φν0,t . I), g(t, · )

)
+ µ2

∥∥ν(t, ·)
∥∥2

V

]
dt

s.t. φν0,t solves (3.1).

(3.25)327

Compared to (3.11), the above has no regularization term R1. Another difference relates to328

the selection on the shape regularization R2. In (3.25) one uniformly weights the
∥∥ν(t, ·)

∥∥2

V
329

term. In contrast, (3.11) uses a non-uniformly weighting (see (3.12) for more clarity) that330

puts more weight on the previous time instance.331

Remark 3.6. Note that in (3.11), we regularize the velocity field more at the beginning,332

and which is relevant because the template is selected at the initial time t = 0, then the333
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velocity field at time ti has influence on the geodesic trajectory at t ≥ ti. Equivalently, the334

geodesic trajectory at time ti depends on the velocity field at t ≤ ti. The earlier on we335

are at the velocity field, the more influence one has on the entire geodesic trajectory. Since336

the optimal velocity field (3.14) is averagely distributed w.r.t. time t (subsection 3.2.1), the337

motion of the object is close to a uniform speed. This can also result in a velocity field that338

is non-vanishing at the end time points (see (3.15) and (3.16)).339

Next, by Theorem A.4 it is easy to see that the L 2
V (Ω)-norm minimizer of (3.25) satisfies340

(3.26) ν(t, ·) =
1

2µ2

∫ 1

t
K
(
∇(φν0,t . I)

∣∣D(φνt,τ )
∣∣∇Dgτ (φν0,τ . I)(φνt,τ )

)
dτ for 0 ≤ t ≤ 1.341

It is not difficult to see from (3.26) that the optimal velocity field is not averagely distributed342

w.r.t. time t. In addition, the minimizer w.r.t. variations of the template satisfies343

(3.27)

∫ 1

0

∣∣D(φν0,t)
∣∣∇Dgt(φν0,t . I)(φν0,t) dt = 0.344

Combining (3.26) and (3.27) yields ν(0, ·) = ν(1, ·) = 0, i.e., the optimal velocity field accord-345

ing to the model (3.25) vanishes at both the initial and end time points.346

To summarise, both (3.11) and the approach taken in [33] address joint reconstruction and347

motion estimation. Both approaches model the latter as diffeomorphic deformations generated348

by velocity fields within the LDDMM framework. A difference is that the regularization of349

the velocity field in [33] is equally weighted over the entire time trajectory. Next, the optimal350

velocity field vanishes at both the initial and end time points. This is not the case with the351

model in (3.11).352

A variant to (3.11) based on (2.6) would regularise the template I (image at t = 0) instead353

of its entire time evolution φν0,t . I. This leads to354

min
I∈X

ν∈L 2
V (Ω)

∫ 1

0

[
D
(
Tt(φν0,t . I), g(t, · )

)
+ µ1R1(φν0,t . I) + µ2

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
dt

s.t. φν0,t solves (3.1).

(3.28)355

By Theorem A.4, the optimal velocity field for 0 ≤ t < 1 satisfies356

(3.29) ν(t, · ) =
1

2µ2(1− t)

∫ 1

t
K
(
∇(φν0,t . I)

∣∣D(φνt,τ )
∣∣∇Sgτ (φν0,τ . I)(φνt,τ )

)
dτ357

where Sgt
(
f
)

:= D
(
Tt
(
f
)
, g(t, · )

)
+ µ1R1

(
f
)

for fixed g(t, · ) ∈ Y and f ∈ X . The corre-358

sponding optimal template satisfies359

(3.30)

∫ 1

0

∣∣D(φν0,t)
∣∣∇Sgt(φν0,t . I)(φν0,t) dt = 0.360

Evidently, the above optimal velocity field is also a time average of the integrand. Next,361

ν(1, · ) is well-defined at t = 1 and reads as362

ν(1, ·) =
1

2µ2
K
(
∇(φν0,1 . I)∇Sg1(φν0,1 . I)

)
.363
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However, by (3.29) and (3.30) at t = 0 we have ν(0, ·) = 0. Hence, the optimal velocity field in364

(3.28) is averagely distributed w.r.t. time t, but vanishing at the initial time point. In addition,365

as stated in subsection 3.3.1, we only need to regularize I rather than φν0,t . I to some extent,366

since I and its time evolution reside in the same space. This proposed model has a simpler367

structure to implement.368

To summarise, the comparative analysis points to several advantages that come with using369

(3.11) over alternative approaches.370

4. Numerical implementation. The first part of the numerical implementation is to derive371

a time-discretized formulation of (3.11).372

4.1. Time-discretized formulation. Assume the time sampling of data is uniform, i.e.,373

there is a uniform partition of [0, 1] and data is acquired at time points {ti}Ni=0 with ti = i/N374

for 0 ≤ i ≤ 1. We refer to this as the gating grid and the time-discretized formulation of the375

general spatiotemporal inverse problem in (2.1) is the task to recover t 7→ f(t, · ) from data376

g(ti, · ) ∈ Y where377

(4.1) g(ti, · ) = Tti
(
f(ti, · )

)
+ gnoise(ti, · ) for i = 1, . . . , N .378

Then, a time-discretized version of (3.11) reads as379

min
I∈X

ν∈L 2
V (Ω)

{
1

N

N∑
i=1

[
D
(
Tti(φν0,ti . I), g(ti, · )

)
+ µ2

∫ ti

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
+ µ1R1(I)

}
s.t. φν0,t solves (3.1).

(4.2)380

381

Remark 4.1. The time-discretized version (4.2) can be also written such that the image382

in the first gate is the template:383

min
I∈X

ν∈L 2
V (Ω)

{
1

N + 1

N∑
i=0

[
D
(
Tti(φν0,ti . I), g(ti, · )

)
+ µ2

∫ ti

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
+ µ1R1(I)

}
s.t. φν0,t solves (3.1).

384

Since (4.2) contains highly coupled arguments, it is difficult to jointly solve for the template385

I and the velocity field ν. An approach that is computationally more feasible is to compute I386

and ν through an intertwined iterative scheme. More precisely, if the velocity field ν is given387

then the spatiotemporal reconstruction problem (4.2) reduces to a static image reconstruction388

problem: Conversely, if the template I is fixed, then (4.2) reduces to a sequentially indirect389

image registration problem where we seek the velocity field ν from time-series data that are390

indirect observations of the target. Formalising the above, we try to solve (4.2) through the391

following intertwined iterative scheme (Ik,νk) ∈X ×L 2
V (Ω):392

(4.3)


Ik ∈ arg min

I∈X
Jνk−1(I)

νk ∈ arg min
ν∈L 2

V (Ω)

EIk(ν)
393
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where the functionals Jν : X → R, for given ν ∈ L 2
V (Ω), and EI : L 2

V (Ω) → R, for given394

I ∈X , are defined as395

Jν(I) :=
1

N

N∑
i=1

D
(
Tti(φ

νk−1

0,ti
. I), g(ti, · )

)
+ µ1R1(I)(4.4)396

EI(ν) :=
1

N

N∑
i=1

[
D
(
Tti(φν0,ti . Ik), g(ti, · )

)
+ µ2

∫ ti

0

∥∥ν(τ, ·)
∥∥2

V
dτ
]

(4.5)397

s.t. φν0,t solves (3.1).398399

To proceed, we consider the special case when the data discrepancy term is the squared400

L 2-norm as in (2.7) and the spatial regularization is the TV functional as in (2.10). Then401

(4.2) reads as402

min
I∈X

ν∈L 2
V (Ω)

{
1

N

N∑
i=1

[
‖Tti

(
φν0,ti . I

)
− g(ti, · )‖22 + µ2

∫ ti

0

∥∥ν(τ, ·)
∥∥2

V
dτ
]

+ µ1‖∇I‖1
}

s.t. φν0,t solves (3.1).

(4.6)403

Correspondingly, (4.5) become404

Jν(I) =
1

N

N∑
i=1

∥∥∥Tti(φν0,ti . I)− g(ti, · )
∥∥∥2

2
+ µ1‖∇I‖1(4.7)405

EI(ν) =
1

N

N∑
i=1

[∥∥∥Tti(φν0,ti . I)− g(ti, · )
∥∥∥2

2
+ µ2

∫ ti

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
(4.8)406

407

Inserting the above into (4.3) yields the following intertwined scheme for solving (4.6):408

(4.9)


Ik := arg min

I∈X
Jνk−1(I) with Jνk−1 given by (4.7)

νk := arg min
ν∈L 2

V (Ω)

EIk(ν) with EIk given by (4.8).
409

4.2. Template reconstruction. We henceforth consider geometric deformations where the410

deformation operator is given as φ0,t . I := I ◦ φ−1
0,t = I ◦ φt,0. This is a common choice for411

image registration [7, 9, 36, 13].412

Next, consider the problem of computing a minimiser to Jνk−1 (static reconstruction) in413

(4.7). This is a non-smooth TV-`2 minimization problem that is convex when the forward414

operator Tti : X → Y is linear. Solving it by a first order method, like a gradient descent415

scheme as outlined in Algorithm 4.1, requires smoothing the TV-component, i.e., we seek to416

solve417

(4.10) min
I∈X

{
1

N

N∑
i=1

∥∥Tti(I ◦ φνti,0)− g(ti, · )
∥∥2

2
+ µ1

∫
Ω
|∇I(x)|2,ε dx

}
,418
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where |∇I(x)|2,ε :=
√∑

i

(
∂iI(x)

)2
+ ε with ε > 0 small, e.g., ε = 10−12. This is a frequently419

used modification of the TV functional in imaging applications [50, 18, 16]. A gradient descent420

scheme for (4.10) assuming a linear Tti reads as421

422

(4.11) Ik+1 = Ik − αk
(

2

N

N∑
i=1

∣∣D(φν0,ti)∣∣T ∗ti(Tti(Ik ◦ φνti,0)− g(ti, · )
)

(φν0,ti)423

+ µ1∇∗
( ∇Ik

|∇Ik|2,ε

))
.424

425

Here, αk is the stepsize for the k-th iteration and T ∗ti is the adjoint of Tti . The iterative scheme426

(4.11) is used for updating the template in the intertwined scheme (4.3) for solving (4.6).427

Remark 4.2. There are several optimization techniques for solving convex non-smooth428

problems, like minimising I 7→ Jν(I) in (4.7). Proximal gradient methods [49, 19, 42, 20, 4]429

are an important class of methods that are suitable for solving non-differentiable convex430

optimization problems, so they can be applied for solving (4.7). However, evaluating the431

proximal operator of a function itself involves solving a small convex optimization problem. For432

this reason, these more advanced methods introduce further auxiliary variables/parameters433

and they come with slower convergence rates.434

4.2.1. Computing diffeomorphic deformations. Updating the template requires access435

to diffeomorphic deformations φνti,0 and φν0,ti for 1 ≤ i ≤ N . By definition, φνs,t solves the flow436

equation437

(4.12)

∂tϕ(t, x) = ν
(
t, ϕ(t, x)

)
ϕ(s, x) = x

for x ∈ Ω and 0 ≤ s, t ≤ 1,438

where s is a fixed time point. Integrating w.r.t. time t in (4.12) yields439

(4.13) φνs,t = Id +

∫ t

s
ν
(
τ, φνs,τ

)
dτ for 0 ≤ t ≤ 1.440

The time interval [0, 1] is subdivided uniformly into MN parts thereby forming a dis-441

cretized time grid that is given as τj = j/(MN) for j = 0, 1, . . . ,MN . Evidently, τiM = ti for442

i = 0, 1, . . . , N , so each subinterval [ti, ti+1] is segmented into M even parts. The M is named443

as a factor of discretized time degree. If M = 1, then τi = ti, implying that the discretized444

time grid is consistent with the gating grid. Note also that the different subintervals of the445

gating grid can be discretized adaptively according to the degree of motions.446

Within a short-time interval one can approximate the diffeomorphic deformation with447

linearized deformations [43]. More precisely, let s = τj , t = τj−1 and τj+1 in (4.13). Then, the448

small deformations φντi,τi−1
and φντi,τi+1

can be approximated by449

(4.14) φντj ,τj−1
≈ Id− 1

MN
ν(τj , · ), and φντj ,τj+1

≈ Id +
1

MN
ν(τj , · ).450
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Moreover, by (3.4) we get φντj ,0 = φντj−1,0
◦ φντj ,τj−1

, which combined with (4.14) yields451

(4.15) φντj ,0 ≈ φ
ν
τj−1,0 ◦

(
Id− 1

MN
ν(τj , · )

)
for j = 1, 2, . . . ,MN .452

This yields the following estimate for I ◦ φντj ,0:453

(4.16) I ◦ φντj ,0 ≈
(
I ◦ φντj−1,0

)
◦
(

Id− 1

MN
ν(τj , · )

)
for j = 1, 2, . . . ,MN454

and I ◦ φντ0,0 = I. Similarly, (3.4) also implies φντj ,ti = φντj+1,ti ◦ φ
ν
τj ,τj+1

for i ≥ 1, which455

combined with (4.14) gives the following approximation:456

(4.17) φντj ,ti ≈ φ
ν
τj+1,ti ◦

(
Id +

1

MN
ν(τj , · )

)
for j = iM − 1, iM − 2, . . . , 0457

and φνti,ti = Id. To summarize, the deformation between two images at adjacent points in the458

discretized time grid is approximately represented by a linearized deformation.459

4.2.2. Computing mass-preserving deformations. Expression for the gradient of the data460

discrepancy term for the mass-preserving group action in (2.5) involves terms of the type461 ∣∣D(φν0,ti)∣∣T ∗ti(Tti(I ◦ φνti,0)− g(ti, · )
)
◦ φν0,ti for i ≥ 1.462

Starting with the Jacobian determinant, by (4.17) we get463

(4.18)
∣∣D(φντj ,ti)

∣∣ ≈ (1 +
1

MN
div ν(τj , · )

)∣∣D(φντj+1,ti)
∣∣ ◦ (Id +

1

MN
ν(τj , · )

)
464

for j = iM − 1, iM − 2, . . . , 0 and where
∣∣D(φνti,ti)

∣∣ = 1. Next, (4.17) also yields the following465

approximation:466

467

(4.19) T ∗ti
(
Tti
(
I ◦ φνti,0

)
− g(ti, · )

)
◦ φντj ,ti468

≈ T ∗ti
(
Tti
(
I ◦ φνti,0

)
− g(ti, · )

)
◦ φντj+1,ti ◦

(
Id +

1

MN
ν(τj , · )

)
469
470

for j = iM − 1, iM − 2, . . . , 0. For simplicity, let471

(4.20) ηI,ντ,t =
∣∣D(φντ,t)∣∣T ∗t (Tt(I ◦ φνt,0)− g(t, · )

)
◦ φντ,t.472

Then multiplying (4.18) by (4.19), and using (4.20), ηI,ν0,ti
for i ≥ 1 is computed by473

(4.21) ηI,ντj ,ti ≈
(

1 +
1

MN
div ν(τj , · )

)
ηI,ντj+1,ti

◦
(

Id +
1

MN
ν(τj , · )

)
474

for j = iM − 1, iM − 2, . . . , 0 with ηI,νti,ti = T ∗ti
(
Tti
(
I ◦ φνti,0

)
− g(ti, · )

)
.475

Based on the above derivations, the concrete implementation is given as the gradient476

descent scheme in Algorithm 4.1.477
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Algorithm 4.1 Gradient descent scheme for minimizing I 7→ Jν(I) in (4.7)

1: Initialize:
2: k ← 0.
3: ti ← i

N for i = 0, 1, . . . , N .

4: τj ← j
MN for j = 0, 1, . . . ,MN .

5: Given ν.
6: Ik ← I0. Here I0 is a given initial template.
7: Spatial regularization parameter µ1 > 0.
8: Error tolerance εI > 0, stepsize αk = α > 0, and iteration number KI > 0.
9: Loop:

10: Compute Ik ◦ φντj ,0 for 1 ≤ j ≤MN by

Ik ◦ φντj ,0 ←
(
Ik ◦ φντj−1,0

)
◦
(

Id− 1

MN
ν(τj , · )

)
with Ik ◦ φν0,0 = Ik.

11: Update ηI
k,ν
ti,ti

for 1 ≤ i ≤ N by

ηI
k,ν
ti,ti
← T ∗ti

(
Tti(Ik ◦ φνti,0)− g(ti, · )

)
.

12: Compute ηI
k,ν

0,ti
for 1 ≤ i ≤ N by

ηI
k,ν
τj ,ti
←
(

1 +
1

MN
div ν(τj , · )

)
ηI

k,ν
τj+1,ti

◦
(

Id +
1

MN
ν(τj , · )

)
for j = iM − 1, iM − 2, . . . , 0.

13: Evaluate Ik+1 by

Ik+1 ← Ik − α
(

2

N

N∑
i=1

ηI
k,ν

0,ti
+ µ1∇∗

( ∇Ik

|∇Ik|2,ε

))
.

14: If
∣∣Ik+1 − Ik

∣∣ > εI and k < KI , then k ← k + 1, goto Loop.
15: Output Ik+1.

4.3. Velocity field estimation. The aim here is to provide an algorithm for minimising478

EI in (4.8), which amounts to sequential indirect image registration. We will for this purpose479

use a gradient descent scheme of the form480

(4.22) νk+1 = νk − βk∇EI(νk).481

Here, βk is the step-size in the k-th iteration, and ∇EI(νk) ∈ L 2
V (Ω) is calculated by (B.1).482

The challenge here lies in the computation of this gradient (subsection 4.3.1) and the final483

algorithm for the gradient descent scheme in (4.22) is given in Algorithm 4.2.484
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4.3.1. Computing the gradient ∇EI . We begin by introduce notations485

(4.23) hI,ντ,t :=

η
I,ν
τ,t 0 ≤ τ ≤ t ≤ 1

0 t < τ,
and ντ,t :=

ν(τ, · ) 0 ≤ τ ≤ t ≤ 1,

0 t < τ.
486

Theorem B.1 gives an expression for ∇EI where the kernel function K : Ω × Ω → Mn×n
+487

is evaluated on points that do not move as iteration proceeds. By choosing a translation488

invariant kernel and points on a regular grid in Ω, we can use FFT-based convolution scheme489

to efficiently evaluate the velocity field at each iteration. This is computationally more feasible490

than letting the kernel depend on points that move in time as in the shooting method [39, 57].491

In what follows, we write out the explicit derivations for computing ∇EI . As derived in492

subsection 4.2.1, I ◦φντj ,0 can be approximated by (4.16). The key step is now to update hI,ντj ,ti493

for {i : ti ≥ τj} in (B.1). We know, by (4.23),494

(4.24) hI,ντj ,ti = ηI,ντj ,ti for ti ≥ τj .495

By using (4.21) for 1 ≤ i ≤ N , we can compute hI,ντj ,ti as496

(4.25) hI,ντj ,ti ≈
(

1 +
1

MN
div ν(τj , · )

)
hI,ντj+1,ti

◦
(

Id +
1

MN
ν(τj , · )

)
497

for j = iM − 1, iM − 2, . . . , 0 and with hI,νti,ti = T ∗ti
(
Tti(I ◦ φνti,0)− g(ti, · )

)
. Hence, at t = τj ,498

we get from (B.1) that499

(4.26) ∇EI(ν)(τj , x) = − 2

N

∑
{i≥1:ti≥τj}

[∫
Ω

K(x, y)∇
(
I ◦ φντj ,0

)
(y)hI,ντj ,ti(y) dy − µ2ν(τj , x)

]
500

for 0 ≤ j ≤MN and x ∈ Ω. In particular, for j = MN (i.e., τj = 1) we have501

∇EI(ν)(1, x) = − 2

N

[∫
Ω

K(x, y)∇
(
I ◦ φν1,0

)
(y)hI,ν1,1 (y) dy − µ2ν(1, x)

]
.502

Remark 4.3. It is easy to verify that the optimal solution of the time-discretized version503

of the proposed model is consistent with that of the time-continuous one. Here the concept504

of consistency is that the time-discretized solution converges to the time-continuous solution505

for increasingly fine time discretization. This is however not the case for the diffeomorphic506

motion model (3.25) in [33]. As an example, at τj = 1, the optimal velocity field of the507

time-discretized problem in [33] satisfies508

ν(1, x) =
1

µ2

∫
Ω

K(x, y)∇
(
I ◦ φν1,0

)
(y)hI,ν1,1 (y) dy.509

On the other hand, as derived in subsection 3.3.2, the optimal velocity field at t = 1 of its510

time-continuous problem satisfies ν(1, x) = 0. This obviously causes inconsistencies and our511

consistent approach is an advantage compared to the approach in [33].512

Finally, Algorithm 4.2 outlines the procedure for computing the gradient descent scheme513

(4.22) that makes use of the above derivations.514
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Algorithm 4.2 Gradient descent scheme for minimizing ν 7→ EI(ν) in (4.8)

1: Initialize:
2: k ← 0.
3: ti ← i

N for i = 0, 1, . . . , N .

4: τj ← j
MN for j = 0, 1, . . . ,MN .

5: Fixed I.
6: νk(τi)← ν0(τi), where ν0 is a given initial velocity field.
7: Fixed kernel function K( · , · ).
8: Shape regularization parameter µ2 > 0.
9: Error tolerance εν > 0, stepsize βk = β > 0, and maximum iterations Kν > 0.

10: Loop:
11: Update I ◦ φνkτj ,0 for 1 ≤ j ≤MN by

I ◦ φνkτj ,0 ←
(
I ◦ φνkτj−1,0

)
◦
(

Id− 1

N
νk(τj , · )

)
with I ◦ φνk0,0 = I.

12: Update hI,ν
k

ti,ti
for 1 ≤ i ≤ N by

hI,ν
k

ti,ti
← T ∗ti

(
Tti(I ◦ φν

k

ti,0)− g(ti, · )
)
.

13: Compute hI,ν
k

τj ,ti
for 1 ≤ i ≤ N by

hI,ν
k

τj ,ti
←
(

1 +
1

MN
div ν(τj , · )

)
hI,ν

k

τj+1,ti
◦
(

Id +
1

MN
νk(τj , · )

)
for j = iM − 1, iM − 2, . . . , 0.

14: Compute ∇ν EI(νk)(τj , · ) (using FFT for convolutions) by

∇EI(νk)(τj , x)

← − 2

N

∑
{i≥1:ti≥τj}

[∫
Ω

K(x, y)∇
(
I ◦ φνkτj ,0

)
(y)hI,ν

k

τj ,ti
(y) dy − µ2ν

k(τj , x)

]

for 0 ≤ j ≤MN .
15: Update νk(τj , · ) for 0 ≤ j ≤MN by:

νk+1(τj , · )← νk(τj , · )− β∇EI(νk)(τj , · ).

16: If
∣∣νk+1 − νk

∣∣ > εν and k < Kν , then k ← k + 1, goto Loop.
17: Output νk+1.
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4.4. Alternating template reconstruction and velocity field estimation. As described515

in the beginning of section 4, we aim to solve (4.6) by an iterative scheme where iterates516

for template image I and velocity field ν are updated in an alternating manner as in (4.9).517

Hence, at each iterative step requires solving two sub-problems, one for updating I given ν518

(Algorithm 4.1) and the other for updating ν given I (Algorithm 4.2).519

The algorithms for solving the two sub-problems are iterative, so there are inner iterations520

for each outer iterative step that update the template and velocity field. In order to have a521

computationally feasible approach, we limit the number of inner iterations to one. The final522

algorithm for recovering the template and velocity field is presented in Algorithm 4.3. The523

proposed model is non-convex so a convergence analysis of the algorithm towards a global524

optima is currently too difficult to obtain.

Algorithm 4.3 Alternately minimizing model (4.8)

1: Initialize:
2: Given M,N .
3: k ← 0.
4: ti ← i

N for i = 0, 1, . . . , N . This subdivides the time [0, 1] uniformly into N parts.

5: τj ← j
MN for j = 0, 1, . . . ,MN . This subdivides the time interval [0, 1] uniformly into

MN parts.
6: Fixed kernel function K( · , · ).
7: Given regularization parameters µ1, µ2 > 0.
8: Ik ← I0, where the template is initialized.
9: νk(τi)← 0, where the velocity field is initialized to a zero velocity field.

10: Error tolerances εI , εν > 0, stepsizes αk = α > 0, βk = β > 0, and maximum iteration
number K > 0.

11: Loop:
12: Let ν = νk. Perform lines 10–13 in Algorithm 4.1. Output Ik+1.
13: Let I = Ik+1. Perform lines 11–15 in Algorithm 4.2. Output νk+1.
14: If

∣∣νk+1 − νk
∣∣ > εν or

∣∣Ik+1 − Ik
∣∣ > εI , and k < K,

then k ← k + 1, goto Loop.
15: Output Ik+1, νk+1.

525

Complexity analysis. Here we consider the complexity, including computational cost and526

memory footprint, of Algorithm 4.3. The main computationally demanding steps at each527

iteration is located on lines 12–13 (actually lines 10–13 in Algorithm 4.1 and lines 11–15 in528

Algorithm 4.2), so we restrict our complexity analysis to these parts. For ease of description,529

we assume Ω ⊂ R2 and the size of the image to be reconstructed is n× n pixels.530

On line 10 of Algorithm 4.1 and line 11 of Algorithm 4.2, we need to update I ◦ φντj ,0531

for j = 1, . . . ,MN . Moreover, each of them should be used to compute the gradient of the532

objective functional on line 14 of Algorithm 4.2, so they need to be stored at hand. Hence, in533

these two steps, the computational cost is O(n2MN) and the memory footprint is O(n2MN).534

For line 11 of Algorithm 4.1 and line 12 of Algorithm 4.2, the ηI,νti,ti (i.e., hI,νti,ti) need to be535

updated and then stored for i = 1, . . . , N . The computational cost is O(n2NdN), where Nd536
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is the number of data points. Actually, the Nd is at least proportional to the size of n, which537

is often
√

2nNv with Nv denoting the number of views. Hence, the computational cost scales538

as O(n3NNv). Since the calculation for the forward and backward projections is on the fly,539

the required space is not too demanding.540

Furthermore, on line 12 of Algorithm 4.1 and line 13 of Algorithm 4.2, for i = 1, . . . , N ,541

the ηI,ντj ,ti (i.e., hI,ντj ,ti) need to be updated and stored for j from iM − 1 to 0, then are used to542

compute the gradient of the objective functional for each time point on line 14 of Algorithm 4.2.543

Therefore, the computational cost is O(n2MN2). For lines 11-12 of Algorithm 4.1 and lines 12-544

13 of Algorithm 4.2, the memory footprint is O(n2MN2).545

For line 13 of Algorithm 4.1, we need to update I once, the computational cost is O(n2N)546

and the memory footprint is O(n2N). At each time point, the FFT is used to compute the547

gradient of the objective functional on line 14 of Algorithm 4.2. Hence the computational548

cost for this line is O(MN2n2 log n). For line 15 of Algorithm 4.2, we need to update a vector549

field at each time point. Since a vector field would take twice more memory than a scalar550

field on 2D domain, we spend twice more computational cost to update that. Even so, the551

computational cost is O(n2MN) and the memory footprint is O(n2MN).552

In summary, for Algorithm 4.3, the computational cost scales as O(n3N) and the memory553

footprint scales as O(n2MN2).554

5. Numerical experiments. In this section, the proposed method for joint image recon-555

struction and motion estimation is applied to parallel beam tomography with very sparse or556

highly noisy data in spatiotemporal (e.g., 2D + time) imaging. We use the intensity-preserving557

group action to consider the involved deformations. The algorithms were implemented in558

Python using the Operator Discretization Library (http://github.com/odlgroup/odl), which559

offers GPU parallellized routines for evaluating the ray transform and it adjoint. The source560

code is available from https://github.com/chongchenmath/SpatiotemporalImaging. The nu-561

merical experiments ran on ThinkStation with Xeon E5-2620 v4 2.10 GHz CPU, 64Gb RAM,562

TITAN Xp GPU, and Ubuntu 16.04 OS. Although not a complete evaluation, the experiments563

illustrate the performance of the proposed method.564

5.1. Spatiotemporal 2D CT. Image reconstruction in classical static 2D CT amounts to565

inverting the 2D ray transform. In our spatiotemporal setting, we assume that the temporal566

variation comes from the object itself that undergoes motion. Hence, the forward operator567

Tt : X → Y , which is the 2D ray transform, is not dependent on time t:568

T (f)(ω, x) :=

∫
R
f(x+ sω) ds for ω ∈ S1 and x ∈ ω⊥.569

Here, S1 is the unit circle and (ω, x) encodes a line on R2 with direction ω through x.570

Moreover, consider V as the space of vector fields that is a RKHS with a reproducing571

kernel represented by symmetric and positive definite Gaussian function K : Ω × Ω → M2×2
+572

given as573

(5.1) K(x, y) := exp
(
− 1

2σ2
‖x− y‖22

)(1 0
0 1

)
for x, y ∈ R2 and σ > 0 (kernel width).574

The images of all gates are supported on Ω. At each gate, the noise-free data per view is575
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measured by evaluating the 2D parallel beam scanning geometry. Then the additive Gaussian576

white noise at varying levels is added onto the noise-free data, which leads to the noise data.577

As in [17], the noise level in data is quantified in terms of signal-to-noise ratio (SNR) defined578

in logarithmic decibel (dB).579

5.2. Test suites and results. The test suites seek to assess the performance against dif-580

ferent noise levels, and the sensitivity against various selections of regularization parameters581

µ1, µ2, and kernel width σ. We also compare the proposed method to TV-based static recon-582

struction method.583

5.2.1. Test suite 1: Overview performance. Here we consider a test for evaluating the584

overview performance. This test uses a multi-object phantom with five gates (i.e., N = 5).585

The used phantom is shown in the last row of Figure 2, which is taken from [17].586

The image at each gate is consisting of six separately star-like objects with grey-values587

over [0, 1], which is digitized using 438× 438 pixels. The images of all gates are supported on588

a fixed rectangular domain Ω = [−16, 16] × [−16, 16]. At each gate, the noise-free data per589

view is measured by the 2D parallel beam scanning geometry with even 620 bins, which is590

supported on the range of [−24, 24]. For gate i (1 ≤ i ≤ N), the scanning views are distributed591

on [(i− 1)π/36, π + (i− 1)π/36] uniformly, and the view number is 12. Then three different592

levels of additive Gaussian white noise are added onto the noise-free data. The resulting SNR593

are about 4.71dB, 7.7dB, and 14.67dB, respectively. To make it more clear, we show the594

noise-free and noise projection data at the first view for Gate 1 with respective noise levels in595

Figure 1.

Figure 1: Data at the first view for Gate 1. The left, middle, and right figures show data
at the first view for different noise levels 4.71dB, 7.7dB, and 14.67dB, respectively. The blue
smooth curve is noise-free data, and the red jagged curve is noisy data.

596

The factor of discretized time degree is M = 2, which is defined in subsection 4.2.1. The597

kernel width is selected to σ = 2. The gradient stepsizes are set as α = 0.01 and β = 0.05598

respectively, which should not be chosen too large or too small, otherwise could result in the599

algorithm not convergent or convergent too slow. First we apply Algorithm 4.1 to obtain600

an initial template image after 50 iterations, then use Algorithm 4.3 to solve the proposed601

model. Note that the above iteration number is not unchangeable, just needs enough to gain602

an appropriately initial template for Algorithm 4.3.603

The regularization parameters (µ1, µ2) are selected as (0.05, 10−7) for data noise level604
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4.71dB, (0.025, 10−7) for data noise level 7.7dB, and (0.01, 10−7) for data noise level 14.67dB,605

respectively. The lower SNR, the lager value of µ1. The maximum iteration number is set to606

be 200, which should be large enough to guarantee a satisfying result. The runtime for each607

example is about 29 minutes. The reconstructed results are shown in Figure 2. It is clear608

that the reconstructed images (rows 1–3) are close to the corresponding ground truth, even609

though the data SNR is very low.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

Figure 2: Multi-object phantom. Columns represent the gates and the first three rows are re-
constructed spatiotemporal images for the data with noise levels 4.71dB, 7.7dB, and 14.67dB,
respectively. The last row shows the ground truth for each gate. The regions of interest (the
small boxes in images at the 3rd column in rows 3 and 4) is enlarged in Figure 4.

610

Apart from the visual perception, the reconstruction is quantitatively compared using611

structural similarity (SSIM) and peak signal-to-noise ratio (PSNR), which is frequently used612

to evaluate image quality [59]. The SSIM and PSNR values are tabulated in Table 1. As613

listed in the above table, the corresponding SSIM and PSNR values are depended on SNR of614

the data. The higher SNR, the larger values of SSIM and PSNR.615
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Figure 2 Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

Row 1
0.4069 0.4208 0.4273 0.4305 0.4337
22.10 23.02 23.27 23.40 23.64

Row 2
0.5934 0.6086 0.6131 0.6149 0.6156
25.36 27.22 27.37 27.66 27.86

Row 3
0.8411 0.8523 0.8564 0.8576 0.8587
28.30 31.49 32.48 32.65 32.76

Table 1: SSIM and PSNR values of reconstructed spatiotemporal images for data with varying
noise levels, see Figure 2 for the images. Comparisons are made against ground truth. Each
table entry has two values, the top being the SSIM and the bottom being the PSNR. The
image is shown in the corresponding row/gate in Figure 2.

Comparison against static TV-regularized reconstruction. It is well-known that tomographic616

reconstruction by TV-regularization outperforms other methods, such as filtered back projec-617

tion (FBP), when the gradient of the image is sparse. This is furthermore especially notable618

when data is under-sampled. In our tests we use a phantom (ground truth image) that has619

sparse gradient, so comparing against static TV-regularized reconstruction pitches our ap-620

proach against one of the best static reconstruction methods.621

For static TV-regularized reconstruction we disregard any temporal evolution, which is622

equivalent to simplify the spatiotemporal problem into a static problem. The whole tomo-623

graphic data set will then have 60 projection views. The regularization parameter for static624

TV-regularized reconstruction is selected depending on the SNR of data in the same way as625

for spatiotemporal reconstruction.

Figure 3: Static TV-regularized reconstructions for the measured data with different noise
levels 4.71dB (left), 7.7dB (middle), and 14.67dB (right), respectively. The region of interest
in the small box (right) is enlarged in Figure 4.

626

Reconstructions obtained by static TV-regularized reconstruction are shown in Figure 3,627

the edges of which become blurring against those by our method. To make it more clear,628

we enlarge the regions of interest in the small boxes of Figure 2 (column 3, rows 3–4) and629

Figure 3 for comparison, which are shown in Figure 4.630

In addition, the corresponding SSIM and PSNR values are listed in Table 2 and compared631

to Table 1, the values of SSIM and PSNR for static TV-regularization are lower than those632

with the proposed method.633
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Figure 4: Regions of interest for the images in column 3 in Figure 2. Left images shows the
region of interest in row 4 (ground truth), middle is for row 3 (the proposed method)) and
right is from Figure 3 (static TV-regularization).

Figure 3 Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

Left
0.3012 0.3163 0.3202 0.3146 0.3030
18.57 19.94 20.42 19.98 18.80

Middle
0.4673 0.4867 0.4910 0.4840 0.4694
20.44 22.82 23.76 22.90 20.79

Right
0.6004 0.6239 0.6291 0.6212 0.6029
21.42 24.71 26.40 25.00 21.95

Table 2: SSIM and PSNR values of TV-regularized reconstructions compared to each ground
truth. Data is from Gates 1–5 with varying noise levels, see Figure 3 for the images. Each
entry has two values, where the upper is the value of SSIM and the bottom is the value of
PSNR.

5.2.2. Test suite 2: Sensitivity against selections of regularization parameters. To634

solve the proposed model, three regularization parameters µ1, µ2 and σ need to be selected.635

Hence the sensitivity test should be concerned against the selections of these parameters.636

As shown in the last row of Figure 5, a heart phantom with four gates (i.e., N = 4) is used637

in this test, which is originated from [31]. The image at each gate is consisting of a heart-like638

object with grey-values in [0, 1], which is digitized using 120 × 120 pixels. The images of639

all gates are supported on a fixed rectangular domain Ω = [−4.5, 4.5] × [−4.5, 4.5]. At each640

gate, the noise-free data per view is measured by evaluating the 2D parallel beam scanning641

geometry with uniform 170 bins, which is supported on the range of [−6.4, 6.4]. Then the642

additive Gaussian white noise is added onto the noise-free data. The resulting SNR is about643

14.9dB. For gate i (1 ≤ i ≤ N), the scanning views are distributed on [(i−1)π/5, π+(i−1)π/5]644

evenly, which totally has 20 views. The factor of discretized time degree is M = 2. The645

gradient stepsizes are set as α = 0.01 and β = 0.05, respectively.646

We first employ Algorithm 4.1 to gain an initial template after 50 iterations, then use647

Algorithm 4.3 to solve the proposed model. With selecting different values for regularization648

parameters, after 200 iterations, the reconstructed results are obtained, as shown in Figure 5.649

The runtime for each example is about 3 minutes. The detailed selections of varying param-650

eters can be referred to the caption of Figure 5.651

For comparison, we also present the result for static TV-regularized reconstruction in652
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Gate 1 Gate 2 Gate 3 Gate 4

Figure 5: Heart phantom. The columns are the 4 gates and the first 6 rows are recon-
structed spatiotemporal images with parameter pairs (µ1, µ2, σ) chosen as (0.01, 10−7, 1.0),
(0.01, 10−6, 1.0), (0.01, 10−7, 0.5), (0.005, 10−7, 0.5), (0.01, 10−6, 0.5), and (0.005, 10−6, 0.5).
The last row shows the ground truth for each gate. The regions of interest in the small
boxes (column 3, rows 6–7) are enlarged in Figure 6.
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Figure 6 as we did in the first test. As shown in Figure 5, the related reconstructed results are653

almost the same and close to the counterpart ground truth. However, the reconstructed result654

by static TV-regularization in Figure 6 is severely degraded. To illustrate this, we enlarge655

the regions of interest in the small boxes of Figure 5 (column 3, rows 6-7) and Figure 6 for656

comparison, which are shown in Figure 6.

Figure 6: Leftmost image shows reconstruction using static TV-regularization from the mea-
sured data with comparable noise level with the region of interest shown separately in the
image ot the right. The next image to the right is the same region taken from column 3, row 6
in Figure 5 (the proposed method). Finally, the rightmost image is from column 3, row 7 in
Figure 5 (ground truth).

657

Furthermore, SSIM and PSNR values are reported in Table 3. As can be seen, the SSIM658

and PSNR values for the proposed method are better than those obtained by static TV-659

regularized reconstruction. Furthermore, they are quite similar for different parameter choices.660

661

As shown in Table 3, these values are a little bit decreased when the value of kernel662

parameter σ is changed from 1.0 to 0.5 with fixed µ1 and µ2, as compared the values between663

row 1 and row 3, also row 2 and row 4, for instance. Therefore, this test demonstrates that to664

some extent the proposed method is not sensitive to the precise selection of the regularization665

parameters under the visual perception and the quantitative comparison (SSIM and PSNR).666

However, those values are selected too big or too small, which would causes over- or under-667

regularized results.668

As indicated in subsection 3.3, the optimal velocity field of the proposed model is nonva-669

nishing at both the initial and the end time points. To verify this standpoint in numerical670

way, we display the computed optimal velocity field at times t = 0 and t = 1 in Figure 7 for671

the example with parameter pair (0.005, 10−7, 0.5) on Row 4 of Figure 5.672

6. Conclusions and the future work. A general framework of variational model has been673

investigated for joint image reconstruction and motion estimation in spatiotemporal imag-674

ing, which is based on the deformable templates from shape theory. Along this framework,675

we proposed a new variational model for solving the above joint problem using the prin-676

ciple of LDDMM. The proposed model is equivalent to a PDE-constrained optimal control677

problem. Based on the equivalency, we made a mathematical comparison against the joint678

TV-TV optical flow based model [13], which showed that our method can guarantee elasti-679

cally diffeomorphic deformations, and is of benefit to the practical computation additionally.680
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Gate 1 Gate 2 Gate 3 Gate 4

Row 1
0.8928 0.9382 0.9340 0.9235
24.25 28.44 27.64 26.28

Row 2
0.8960 0.9415 0.9346 0.9234
24.30 28.47 27.67 26.37

Row 3
0.9103 0.9497 0.9459 0.9343
25.33 29.41 28.97 27.78

Row 4
0.8940 0.9368 0.9361 0.9291
25.13 29.06 28.60 27.65

Row 5
0.9087 0.9472 0.9462 0.9336
25.14 29.30 28.83 27.68

Row 6
0.8884 0.9339 0.9358 0.9295
25.23 29.06 28.65 27.74

Static TV
0.5641 0.7310 0.7458 0.5969
14.09 19.09 18.96 14.01

Table 3: Rows 1–6: SSIM and PSNR values of reconstructed spatiotemporal images for
varying values of the regularization parameters µ1, µ2, and the kernel width σ. Each table
entry has two values, the top being the SSIM and the bottom being the PSNR. The image is
shown in the corresponding row/gate in Figure 5. The bottom row reports SSIM and PSNR
values of TV-regjularized reconstructions compared to each ground truth from gates 1–4 by
the measured data with comparable noise level.

Figure 7: The computed optimal velocity fields at times t = 0 (left) and t = 1 (right) for the
example with parameter pair (0.005, 10−7, 0.5) on row 4 in Figure 5.

Furthermore, the theoretical comparison was also performed between the proposed model and681

other diffeomorphic motion models, which demonstrated that the optimal velocity field of our682

model is distributed w.r.t. time t averagely, and non-vanishing at both the initial and the end683

time points. We also presented an efficient computational method for the time-discretized for-684

mulation and showed that its optimal solution is consistent with that of the time-continuous685

one. This is not the case for the diffeomorphic motion model in [33].686
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An alternating gradient descent algorithm was designed to solve the time-discretized pro-687

posed model, where the main calculations were only based on the easily-implemented linearized688

deformations. For spatiotemporal (2D space + time) parallel beam tomographic imaging, the689

computational cost of the algorithm is then O(n3NNv) and its memory requirement scales as690

O(n2MN2). With Algorithm 4.3, we have evaluated the performance of the proposed model691

in dealing with the 2D space + time tomography in the case of very sparse and/or highly692

noisy data. As shown in these visual and quantitative results, the new method can yield693

reconstructed spatiotemporal images of high quality for the above difficult problems.694

The future work will focus on the theoretical analysis of the proposed model, such as the695

existence and uniqueness of the solution, the convergence analysis of the proposed algorithm,696

and its extensions and applications to more complicated modalities in spatiotemporal imaging.697

Appendix A. Optimality conditions. To derive optimality conditions for (3.11), we begin698

with the following result, which is proved in [60].699

Lemma A.1. Let ν,η ∈ L 2
V (Ω), φν0,t denotes the solution to the ODE in (3.1) with given700

ν at time t, and φνs,t is defined as in (3.4). Then,701

(A.1)
d

dε
φν+εη
s,t (x)

∣∣∣
ε=0

=

∫ t

s
D
(
φντ,t
)(
φνs,τ (x)

)(
η
(
τ, φνs,τ (x)

))
dτ for x ∈ Ω and 0 ≤ s, t ≤ 1.702

Lemma A.1 can be used to prove the following statement:703

Lemma A.2. Let the assumptions in Lemma A.1 hold and assume I ∈ L 2(Ω,R) is differ-704

entiable. Then, under the group action in (2.4) we have705

(A.2)
d

dε

(
φν+εη

0,t . I
)
(x)
∣∣∣
ε=0

= −
∫ t

0

〈
∇(φν0,τ . I)

(
φνt,τ (x)

)
,η
(
τ, φνt,τ (x)

)〉
Rn

dτ for x ∈ Ω.706

Proof. By the chain rule we get707

(A.3)
d

dε

(
φν+εη

0,t . I
)
(x)
∣∣∣
ε=0

=

〈
∇I
(
φνt,0(x)

)
,
d

dε
φν+εη
t,0 (x)

∣∣∣
ε=0

〉
Rn
.708

Using Lemma A.1, we know709

(A.4)
d

dε
φν+εη
t,0 (x)

∣∣∣
ε=0

= −
∫ t

0
D
(
φντ,0

)(
φνt,τ (x)

)(
η
(
τ, φνt,τ (x)

))
dτ.710

Inserting (A.4) into (A.3), we immediately prove (A.2).711

The following result is a direct consequence of the above definition and Lemma A.2.712

Lemma A.3. Let the assumptions in Lemma A.2 hold and define the data discrepancy713

functional Dgt : X → R as in (3.13). If Dgt is differentiable, then714

715

(A.5)
d

dε
Dgt
(
φν+εη

0,t . I
)∣∣∣
ε=0

716

=

∫ t

0

〈
−
∣∣D(φντ,t)

∣∣∇Dgt(φν0,t . I)(φντ,t)∇(φν0,τ . I),η(τ, · )
〉

L 2(Ω,Rn)
dτ.717

718
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We are now ready to characterize optimality conditions for (3.11).719

Theorem A.4. Let the assumptions in Lemma A.3 hold and L : X ×L 2
V (Ω)→ R denotes720

the objective functional in (3.11), i.e.,721

(A.6) L(I,ν) :=

∫ 1

0

[
Dgt
(
φν0,t . I

)
+ µ2

∫ t

0

∥∥ν(τ, ·)
∥∥2

V
dτ

]
dt+ µ1R1(I).722

Assuming that the regularization term R1 is differentiable, and V is a RKHS with a repro-723

ducing kernel K : Ω× Ω→Mn×n
+ . Then, the optimality conditions for (3.11) read as724

(A.7) ∇ν L(I,ν)(t, · ) = 0 and ∇I L(I,ν) = 0.725

Here, the L 2
V (Ω)–gradient w.r.t. the velocity field ν of L(I, · ) : L 2

V (Ω)→ R is726

727

(A.8) ∇ν L(I,ν)(t, · ) = K
(
−∇(φν0,t . I)

∫ 1

t

∣∣D(φνt,τ )
∣∣∇Dgτ (φν0,τ . I)(φνt,τ) dτ

)
728

+ 2µ2(1− t)ν(t, · )729730

for 0 ≤ t ≤ 1 with K(ϕ) :=
∫

Ω K( · , y)ϕ(y) dy. Furthermore, the gradient w.r.t. the template I731

of L( · ,ν) : X → R is732

(A.9) ∇I L(I,ν) =

∫ 1

0

∣∣D(φν0,t)
∣∣∇Dgt(φν0,t . I)(φν0,t) dt+ µ1∇R1(I),733

where ∇R1 denotes the gradient of R1 : X → R.734

Proof. Applying the result in Lemma A.3, we immediately have735
736

d

dε
L(I,ν+εη)

∣∣∣
ε=0

=

∫ 1

0

∫ t

0

〈
−
∣∣D(φντ,t)

∣∣∇Dgt(φν0,t .I)(φντ,t)∇(φν0,τ .I),η(τ, · )
〉

L 2(Ω,Rn)
dτ dt737

+ 2µ2

∫ 1

0

∫ t

0

〈
ν(τ, · ),η(τ, · )

〉
V

dτ dt.738
739

Changing the order of integration in the above equation gives740
741

(A.10)
d

dε
L(I,ν + εη)

∣∣∣
ε=0

742

=

∫ 1

0

〈
−∇(φν0,τ . I)

∫ 1

τ

∣∣D(φντ,t)
∣∣∇Dgt(φν0,t . I)(φντ,t) dt,η(τ, · )

〉
L 2(Ω,Rn)

dτ743

+ 2µ2

∫ 1

0

〈
(1− τ)ν(τ, · ),η(τ, · )

〉
V

dτ.744
745

As V is a RKHS with a reproducing kernel represented by K : Ω× Ω→Mn×n
+ , then746

(A.11) 〈v,u〉L 2(Ω,Rn) =

〈∫
Ω

K( · , y)v(y) dy,u

〉
V

for v,u ∈ V .747

Combining (A.10) with (A.11) proves (A.8). Finally, the results in (A.9) and (A.7) are rather748

straightforward to obtain, so we omit their proofs.749
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Appendix B. First-order variation of EI .750

Theorem B.1. Let the assumptions in Lemma A.2 hold and EI : L 2
V (Ω)→ R is given as in751

(4.8). Assume furthermore that V is a RKHS with a reproducing kernel K : Ω× Ω → Mn×n
+ .752

Then, the L 2
V (Ω)–gradient of EI is753

(B.1) ∇EI(ν)(t, x) = − 2

N

∫
Ω

K(x, y)∇(I◦φνt,0)(y)
∑

{i≥1:ti≥t}

hI,νt,ti (y) dy+
2µ2

N

∑
{i≥1:ti≥t}

νt,ti(x),754

for 0 ≤ t ≤ 1 and x ∈ Ω.755

Proof. From Lemma A.2 it is not difficult to derive756

d

dε
EI(ν + εη)

∣∣∣
ε=0

=
1

N

N∑
i=1

∫ ti

0

〈
−2ηI,ντ,ti∇(I ◦ φντ,0),η(τ, · )

〉
L 2(Ω,Rn)

dτ757

+
µ2

N

N∑
i=1

∫ ti

0

〈
2ν(τ, · ),η(τ, · )

〉
V

dτ758

=

∫ 1

0

〈
− 2

N

N∑
i=1

hI,ντ,ti∇(I ◦ φντ,0),η(τ, · )
〉

L 2(Ω,Rn)

dτ759

+

∫ 1

0

〈
2µ2

N

N∑
i=1

ντ,ti( · ),η(τ, · )
〉

V

dτ760

=

∫ 1

0

〈
− 2

N

∑
{i≥1:ti≥t}

hI,νt,ti∇(I ◦ φνt,0),η(t, · )
〉

L 2(Ω,Rn)

dt761

+

∫ 1

0

〈
2µ2

N

∑
{i≥1:ti≥t}

νt,ti( · ),η(t, · )
〉

V

dt.762

763

The last two equations are obtained by inserting (4.23). Combining the above with (A.11)764

proves (B.1).765
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