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Abstract

Electric vehicle routing problems (E-VRPs) deal with routing a fleet of electric vehicles (EVs) to serve a

set of customers, while minimizing an operational criterion, e.g., cost or time. The feasibility of the routes

is constrained by the autonomy of the EVs, which may be recharged along the route. Much of the E-VRP

research neglects the capacity of charging stations (CSs), and thus implicitly assumes that an unlimited

number of EVs can be simultaneously charged at a CS. In this paper, we model and solve E-VRPs considering

these capacity restrictions. In particular, we study an E-VRP with non-linear charging functions, multiple

charging technologies, en route charging, and variable charging quantities, while explicitly accounting for

the number of chargers available at privately managed CSs. We refer to this problem as the E-VRP with

non-linear charging functions and capacitated stations (E-VRP-NL-C). We introduce a continuous-time

model formulation for the problem. We then introduce an algorithmic framework that iterates between

two main components: 1) The route generator, which uses an iterated local search algorithm to build a

pool of high-quality routes and 2) The solution assembler, which applies a branch-and-cut algorithm to

combine a subset of routes from the pool into a solution satisfying the capacity constraints. We compare

four assembly strategies on a set of instances. We show that our algorithm effectively deals with the E-

VRP-NL-C. Furthermore, considering the uncapacitated version of the E-VRP-NL-C, our solution method

identifies new best-known solutions for 80 out of 120 instances.

Keywords— Electric vehicle routing; non-linear charging function; synchronization constraints; mixed integer linear

programming; matheuristic; iterated local search; branch-and-cut

1 Introduction

In recent years, competitive prices and technological advances have made electric vehicles (EVs) an attractive alternative

to internal combustion engine-powered vehicles for logistics operations (Juan et al., 2016; Pelletier et al., 2016). To allow

companies and private vehicle users to fully integrate EVs in their operations and their trips, the operations research

community has turned its attention to EV route planing. The resulting literature can be divided into two streams:

optimal path and vehicle routing problems. As the name suggests, the first stream focuses on problems in which the

objective is to find an optimal path from an origin to a destination on a road network, while taking into account the

EV’s short driving range and accommodating stops at charging stations (CSs) to recharge the vehicle’s battery. These

problems are out of the scope of this paper, but we refer the reader to the works of Baum et al. (2019) and Baum et al.

(2020) for a thorough literature review and a state-of-the-art results for these problems. We focus on the second stream,

namely, electric vehicle routing problems (E-VRPs).

E-VRPs consist of designing routes to serve a set of customers using a fleet of EVs. Due to their relatively short

driving range, EVs may need to detour to CSs to replenish their battery. This is especially critical in the context of
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mid-haul or long-haul routing (Schiffer et al., 2018b; Villegas et al., 2018). Therefore, key decisions in E-VRPs concern

not only the assignment of the customers to the vehicles and their sequencing, but also where and how much to charge

the vehicles.

One of the main modeling elements in E-VRPs is the charging process of batteries. Some studies assume that

EVs are fully recharged whenever they detour to a CS. That is the case, for instance, in the green vehicle routing

problem (G-VRP). The G-VRP was introduced by Erdoğan and Miller-Hooks (2012) and tackled by Koç and Karaoglan

(2016), Montoya et al. (2016), Andelmin and Bartolini (2017), and Bruglieri et al. (2019a), among others. One of the

main assumptions in the G-VRP is that the charging time is constant, meaning that the vehicle takes a fixed amount

of time to charge the battery to its full capacity, independently of the initial state of charge (SoC). Authors such

as Schneider et al. (2014) and Hiermann et al. (2016) relaxed this assumption and incorporated charging times that

linearly depend on the SoC upon arrival at the CS. As Montoya et al. (2017) pointed out, the full charge policy may

lead to unnecessary out-of-the-depot charging, which translates into expensive driver idling time and overpriced energy

purchases. To overcome this drawback, several researchers have studied problem variants in which the charging time is

a decision variable; notable examples include the work of Felipe et al. (2014) Desaulniers et al. (2016), Montoya et al.

(2017), Keskin and Çatay (2018), and Froger et al. (2019). In the first two examples, the authors assume that the

charge retrieved at a CS is a linear function of the charging time. In reality, however, the battery charging process

follows a non-linear function with respect to time (Pelletier et al. (2017)). To account for this, Montoya et al. (2017),

Koç et al. (2018), and Froger et al. (2019) modeled the charging process using concave piecewise linear functions, while

Lee (2020) considered a general concave and non-decreasing charging function. In the resulting problem, known as the

electric vehicle routing problem with non-linear charging function (E-VRP-NL), the charging times no longer rely solely

on the quantity of energy charged but also on the initial SoC of the EV.

In all the previously discussed research, the authors assume that CSs are always available to charge a vehicle, thus,

implicitly assuming that CSs are uncapacitated and can simultaneously charge an unlimited number of EVs. In practice,

however, each CS has a fixed and often small number of chargers. The intuition behind neglecting the CS capacity

constraints is that accounting for the detour and charging times (or costs) while planning the routes is enough to capture

the impact of the charging decisions on the cost and feasibility of solutions. Nonetheless, the long charging times (which

may range from tens of minutes to several hours) and the small number of chargers typically available at CSs may

generate congestion.

The nature of the congestion problem at CSs largely depends on the access options available to the fleet operator.

For instance, a few networks of public (as in accessible to anyone) CSs allow for charging time reservations. In this

case, congestion may be neglected and the fleet operator only needs to make sure that routes reach the CSs within

the reserved time windows. To accurately model the availability of each charger at a CS, the fleet operator may also

manage their allocation to the EVs within the reserved time windows (see for instance Bruglieri et al. (2019b) for an

example). In practice, most public charging stations do not allow for reservations. In this case, the exact time at

which EVs can access CSs is uncertain. Indeed, upon arrival, the chargers may be busy and the vehicle may have to

wait in a queue or detour to a close by station. Keskin et al. (2019) dealt with this issue by explicitly considering

expected (i.e., deterministic) time-dependent queuing times at CSs. Kullman et al. (2020) went a step further and

proposed dynamic optimization policies that constantly adapt charging and routing decisions depending on the state

of CS queues. While these authors demonstrated that their approaches can effectively handle CS access uncertainty,

as Villegas et al. (2018) pointed out, most companies are unwilling to bear this risk, and thus decide to install their

own private out-of-depot charging infrastructure (e.g., at satellite depots, company office branches, or exclusive-access

parking spots in city centers).

Relying on a privately operated charging infrastructure only changes the nature of the congestion problem, but does

not solve it. To illustrate this point, we ran a feasibility test on the 120 best-known solutions (BKSs) for the E-VRP-NL

reported in Montoya et al. (2017) limiting the number of chargers per CS to one, two, three, and four. According to

our results, 55 of the BKSs become infeasible if there is only one charger per CS. This figure drops to 23 and three for

the cases with two and three chargers. The only scenario where all BKSs are feasible is when CSs have four chargers

(see Appendix A for details). Intuitively, one may think that by merely shifting the starting time of the charging

operations, the feasibility problem will be solved. However, our experiments show that this is not only unnecessarily

expensive (albeit with a very limited time increase), but more importantly it may be infeasible. Another option to
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mitigate the effects of congestion is to increase the number of chargers installed at each CS, but this may not be a

viable solution in practice. Indeed, Gnann et al. (2018) predict that by the end of 2020, the purchase and installation

costs of a fast charging point (i.e., power rates above 22 kW) will be around 40,000e and its annual operation cost will

reach 4,000e. Thus, if a company decides to invest in out-of-the-depot charging infrastructure, there is little chance

that it will decide to install more than a couple of chargers at each CS. In conclusion, we argue that in most practical

situations, the congestion at the CSs should be taken into account when planning the routes by explicitly modeling the

capacity constraints.

We are aware of only one work taking into account CS capacity constraints when optimizing routing decisions in the

context of a private charging infrastructure. Bruglieri et al. (2019b) extended the G-VRP to account for the number

of pumps in the alternative refueling stations. They introduced a path-based formulation and solved it using a cutting

plane algorithm. They reported optimal solutions on instances up to 20 customers. Out of the field of vehicle routing,

some researchers have studied related problems. For instance, Sassi and Oulamara (2014) and Pelletier et al. (2018)

considered the problem of scheduling charging operations at the depot, assuming that the routes are given as an input.

Both papers considered not only constraints on the number of available chargers, but also electricity grid constraints

limiting the amount of power that can be drawn from the electric grid at any given time. The latter is typically a

binding constraint for central depots with a large number of available chargers, but is usually not a concern for CSs

since they are designed to operate at full capacity. Brandstätter et al. (2020) studied the problem of finding optimal

locations and sizes for charging stations based on the number of expected trips. They explicitly took charging station

capacity into account using a time-expanded location graph.

In order to help the readers find their way through the different assumptions, Table 1 summarizes the main E-VRPs

variants addressed in the literature (it excludes the literature on location-routing problems). The table is not exhaustive,

but it provides a good overview of the current state of the research on E-VRPs.

In this paper we introduce the E-VRP-NL with capacitated CSs (E-VRP-NL-C). The problem extends classical E-

VRPs to account for the fixed number of chargers available at each CS. We assume that the CSs are privately operated.

Our research extends the work of Bruglieri et al. (2019b) by considering a more general charging function and charging

policy, which introduces additional decisions. Specifically, rather than assuming that every EV is fully charged in

constant time when it stops at a CS, the quantity of energy charged during every stop at a CS is a decision variable.

Moreover, since charging functions are piecewise linear, the charging time of an EV depends on its initial SoC and the

quantity of energy charged. Last but not least, we also propose an algorithm to tackle medium and large-size instances.

The E-VRP-NL-C is a complex combined routing-scheduling problem belonging to the family of VRPs with syn-

chronization constraints. More specifically, according to the taxonomy introduced by Drexl (2012), the E-VRP-NL-C

belongs to the class of VRPs with resource synchronization, where vehicles compete to access scarce resources (i.e., the

chargers at every CS). The E-VRP-NL-C shares similarities with problems where vehicles need to wait while the loading

equipment is busy. Examples of problems in this class include the log truck scheduling problem (El Hachemi et al., 2013;

Rix et al., 2015) and routing and scheduling problems arising in public works (Grimault et al., 2017). The E-VRP-NL-C

also relates to VRPs with inter-tour resource constraints. In these problems, the scarce resources are located only at

the terminal vertex of the routes (i.e., the depot). An example of a problem in this category is the VRP introduced by

Hempsch and Irnich (2008), where there is a limited number of ramps at the depot, and therefore only a fixed number

of vehicles can be served simultaneously. The problem that is most closely related to the E-VRP-NL-C is the VRP

with location congestion introduced by Lam and Van Hentenryck (2016). In this problem, each customer has a given

number of requests and a limited number of resources (e.g., conveyors). When a vehicle arrives at a customer location,

it must wait until at least one resource becomes available to handle the shipping. However, there exist two fundamental

differences between their problem and our E-VRP-NL-C. The first is that in our problem, visiting locations with limited

resources (the CSs) is needed for feasibility reasons. As a consequence, not only the number, but also the location and

duration of the charging operations depend on the configuration of the routes. In other words, the tasks that must be

synchronized are not known a priori. The second difference is that in contrast to their problem, in our E-VRP-NL-C,

the task synchronization has a direct impact on the solution cost.

The contribution of this paper is twofold. First, we propose a mixed integer linear programming (MILP) formulation

for the E-VRP-NL-C, showing how CS capacity constraints can be integrated into a standard E-VRP model. Second,

we introduce a framework to solve E-VRPs with CS capacity constraints in general, and the E-VRP-NL-C in particular.
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Table 1: Summary of the literature on E-VRPs

Reference

Charging infrastructure Charging process

Fleet Model(s) Main algorithm
Cong. | Access.

Multiple Partial
Function

speed policy

Erdoğan and Miller-Hooks (2012) NEG C H CS-Repl Heuristics

Felipe et al. (2014) NEG X X L H CS-Repl Local-search heuristics

Schneider et al. (2014) NEG L H CS-Repl Hybrid VNS/TS

Goeke and Schneider (2015) NEG L M CS-Repl ALNS

Schneider et al. (2015) NEG C/L H CS-Repl AVNS

Desaulniers et al. (2016) NEG X L H SP Branch-and-price1

Hiermann et al. (2016) NEG L M CS-Repl, SP Branch-and-price + ALNS

Keskin and Çatay (2016) NEG X L H CS-Repl ALNS

Koç and Karaoglan (2016) NEG C H CS-Repl, CS-Path-1 Simulated annealing + B&C

Montoya et al. (2016) NEG C H - Multi-space sampling heuristic

Montoya et al. (2017) NEG X X PL H CS-Repl Matheuristic

Andelmin and Bartolini (2017) NEG C H SP (CS-Path) Two-phase exact algorithm

Leggieri and Haouari (2017) NEG C H CS-Repl, CS-Path-1 B&C

Keskin and Çatay (2018) NEG X X L H CS-Repl ALNS

Andelmin and Bartolini (2019) NEG C H CS-Path Multi-start local search heuristic

Bruglieri et al. (2019a) NEG C H Customer-Path B&C (exact and heuristic)

Bruglieri et al. (2019b) SCH | PUB-R/PO C H CS-Repl, Customer-Path B&C

Froger et al. (2019) NEG X X PL H CS-Repl, CS-Path MILP Models

Hiermann et al. (2019) NEG X L M - Matheuristic (genetic + SP)

Macrina et al. (2019) NEG X X L M CS-Repl Iterated local search

Lee (2020) NEG X Cv SV Customer-Path Branch-and-price

Keskin et al. (2019) DWT | PUB X PL H CS-Repl ALNS + MILP for route enhancement

Kullman et al. (2020) DYN | PUB/PO X X PL SV CS-Repl Static and dynamic policies

Our research SCH | PO X X PL H CS-Path Matheuristic (ILS + B&C)

1 Improved results can be found in Desaulniers et al. (2020)

• Charging infrastructure:

– Strategy to deal with congestion at CSs and accessibility of CSs (Cong. | Access.): neglected (NEG), scheduling of charging operations according

to the number of available chargers (SCH), deterministic time-dependent waiting times (DWT), dynamic decision making (DYN) | public (PUB)

–accessible to anyone, public with reservation (PUB-R), privately operated (PO)

– Multiple speed: each station may charge at a different speed (e.g., fast, moderate, slow)

• Charging process:

– Partial policy: the quantity of energy charged is a decision

– Function: constant charging time (C), charging times linearly depending on the quantity of energy charged (L), charging times depending on the

quantity of energy charged and on the initial SoC: concave piecewise linear charging function (PL), concave and non-decreasing charging function

(Cv)

• Fleet: homogeneous (H), mixed (M), single vehicle (SV)

• Model(s): CS replication-based formulation (CS-Repl), path-based formulation in which each path corresponds to a sequence of stops at CSs between

customers and/or the depot (CS-Path), CS-Path in which every path contains at most one stop at a CS (CS-Path-1), path-based formulation in which

each path corresponds to a sequence of visits to customers between CSs and/or the depot (Customer-Path), classical set partitioning with a variable per

route (SP)
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Figure 1: Piecewise linear charging function of a CS j P F .

It is made up of two interacting components: a route generator and a solution assembler. The first component builds

a set of high-quality solutions, while relaxing the capacity constraints. The routes making up these solutions are

stored in a pool which is sent to the assembler every few iterations. The latter combines routes from the pool in an

attempt to build a solution meeting the capacity constraints. If such a solution does not exist or cannot be found

within a given computing time, the assembler sends a signal to the generator to modify the search space in order to

favor feasibility. For the particular case of the E-VRP-NL-C, we have developed a route generator based on a new

and efficient iterated local search (ILS) for the E-VRP-NL, and a solution assembler based on branch-and-cut. We

present four assembly strategies allowing for different tradeoffs between efficiency and effectiveness. We have carried

out extensive computational experiments on a large set of instances with different characteristics adapted from available

benchmarks. The results demonstrate that our approach can handle the CS capacity constraints effectively. In addition,

we report new BKS for 80 out of the 120 instances of a well-established benchmark set for the closely related E-VRP-NL.

The remainder of this paper is organized as follows. Section 2 formally introduces the E-VRP-NL-C. Section 3

describes a MILP formulation of the problem. Section 4 presents the proposed solution method. Section 5 shows the

computational results. Finally, Section 6 concludes and outlines research perspectives.

2 Problem description

We define the E-VRP-NL-C as follows. Let I be the set of customers that need to be served and let F be the set of

CSs at which recharging can take place. The CSs are privately operated, meaning that there is no uncertainty on their

availability. Each customer i P I has a service time gi. The customers are served using a homogeneous fleet of EVs.

Each EV has a battery of capacity Q (expressed in Wh). At the beginning of the planning horizon, the EVs are located

in a single depot, from which they leave fully charged. The depot is continuously open for Tmax hours. Traveling from

one location i (the depot, a customer, or a CS) to another location j incurs a driving time tij ě 0 that corresponds to

the shortest path in time from i to j and an energy consumption eij ě 0 associated to this path.

Due to their limited battery capacity, EVs may need to stop en route at CSs. Charging operations can occur at

any CS, they are non-preemptive, and EVs can be partially recharged. The CS j P F has a concave piecewise linear

charging function φj that maps for an empty battery the time spent charging at j and the SoC of the vehicle upon

departing from j. If q is the SoC of the EV upon arrival at j and ∆ is the charging time, then the SoC of the EV upon

departure from j is given by φjp∆ ` φ´1
j pqqq (Figure 1). We denote by Bj “ tpaj0, qj0q, . . . , pajbj , qjbj qu the totally

ordered set of breakpoints of the charging function at CS j, where every breakpoint is a (charging time, SoC) pair,

sorted in non-decreasing order of time.

Each CS j P F also has a capacity, given by the number of available chargers Cj . Due to the limited capacity of

CSs, vehicles may incur waiting times while they queue for a charger. We therefore note that optimal solutions are not

necessarily left-shifted schedules, as is the case for the E-VRP-NL and other E-VRP variants assuming uncapacitated

CSs.

Feasible solutions to the E-VRP-NL-C must satisfy the following conditions: 1) each customer is visited exactly
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once by a single vehicle, 2) each route starts at the depot not before time 0 and ends at the depot not later than time

Tmax, 3) each route is energy-feasible, i.e., the SoC of an EV when it enters and leaves from any location lies between

0 and Q, and 4) no more than Cj EVs simultaneously charge at each CS j P F . The objective of the E-VRP-NL-C is

to minimize the total time needed to serve all customers, including driving, service, charging, and waiting times. Note

that to avoid congestion at CSs, the starting times of the routes can be delayed at no cost. Moreover, an E-VRP-NL-C

instance may have no feasible solution.

3 A mixed-integer linear programming formulation

We can classify explicit the mixed integer linear programming formulations for E-VRPs into two categories: CS

replication-based formulations and path-based formulations. CS replication-based formulations are the compact MILP

formulations typically used in the E-VRP literature to mathematically define the problem and solve toy instances. As

their name suggests, in these formulations the nodes representing CSs are replicated and the number of stops at each

CS replication is constrained to one. Note that in this case the number of stops at a CS is limited to its number of

replications. This modeling artifice allows for tracking of the routes’ travel time, distance, and SoC whenever there are

several stops at the CS. To ensure that no optimal solution is cut off, the number of replications of each CS must be

very large. For instance, Froger et al. (2019) provided an example where this value is equal to 4|I|, when the congestion

at each CS is neglected. CS replication-based formulations yield intractable MILPs and introduce symmetry issues.

Path-based formulations are based on a more intricate modeling strategy by which the problem is defined on a

multigraph. In a nutshell, in these formulations, the nodes represent locations (the depot and the CSs or the depot

and the customers) and the arcs represent possible paths between every pair of locations. A path may be defined as

a sequence (possibly empty) of visits to customers between two CSs or the depot (Bruglieri et al., 2019a,b) or as a

sequences of stops at CSs between two customers or the depot (Roberti and Wen, 2016; Andelmin and Bartolini, 2017;

Froger et al., 2019). We refer to the former case a as customer path and to the latter as a CS path. In both cases,

dominance rules are defined to limit the number of paths taken into consideration. These formulations no longer require

CS vertices replication.

There also exist set partitioning-based formulations (see for instance Desaulniers et al. (2016)), but they are out of

the scope of this paper. Table 1 provides details on the formulations used in the E-VRP research.

We introduce a path-based formulation for the E-VRP-NL-C. We decided to use CS paths rather than customer

paths for two reasons. First, the number of customer paths grows much faster than the number of CS paths. Second,

customer path-based formulations require introducing a sufficient number of clones of paths that do not visit any

customer between two CSs, whereas a CS path can at most be traveled by a single EV. We point out that the modeling

of the CS capacity constraints we introduce below can easily be adapted to customer path-based formulations.

The concept of CS paths leads to a redefinition of the problem on a directed multigraph G “ pV, P q, where V “

t0u Y I, and P is the set of arcs connecting the vertices of V . An arc in P represents a CS path p, starting in vertex

orgppq visiting a sequence of CSs or none and ending in vertex destppq. We denote nppq the number of CSs in p. If nppq

is equal to 0, then p does not stop at any CS between orgppq and destppq. Otherwise, we denote by cspp, lq the l-th CS

visited in p (with l P t1, ..., nppqu). We define inputs eppq and tppq as the energy consumption (energy used to travel the

arcs of the path) and the driving time (time to travel the arcs of the path) initially associated with CS path p. Given

two vertices i, j P V , we define Pij as the set of CS paths connecting i to j.

Our path-based formulation of the E-VRP-NL-C involves the following decisions variables. The binary variable xp is

1 if and only if an EV travels CS path p P P . The continuous variables τp and yp track the time and SoC of an EV when

it departs from vertex orgppq to destppq using CS path p. To model the charging process at cspp, lq, we introduce a

group of variables. The continuous variables q
pl

and qpl specify the SoC of an EV when it enters and leaves cspp, lq. For

k P Bizt0u, the binary variables wplk and wplk are equal to 1 if and only if the SoC is between qcspp,lq,k´1 and qcspp,lq,k

when the EV enters and leaves cspp, lq. The variables apl and apl are the scaled arrival and departure times, according

to the charging function of cspp, lq. The continuous variables λplk and λplk represent the coefficients associated with

the breakpoints pacspp,lq,k, qcspp,lq,kq of the piecewise linear charging function, when the EV enters and leaves cspp, lq.

The continuous variable ∆pl and ∇pl represents the duration of the charging operation performed at cspp, lq and the

waiting time incurred before charging at this CS. Lastly, the continuous variables spl and spl represent the starting and
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completion time of the charging operation performed at cspp, lq.

To model the CS capacity constraints, we propose a flow-based formulation inspired from the one introduced by

Artigues et al. (2003) for the Resource Constrained Scheduling Problem. For every CS j P F , we consider Cj resources

(represented by the chargers). Each resource can execute at most one operation at any given time. For convenience,

we introduce the set Oj of potential charging operations at CS j. Every operation o P Oj represents a stop at j at a

specific position lpoq in a CS path going from orgpoq to destpoq. Although there may exist several CS paths between

two specific vertices that stop at j at the same position, at most one these CS paths can be selected in a solution.

We also introduce two dummy operations o`j and o´j , which act as the source and the sink of the flow for each CS j.

Specifically, the resources flow from o`j to o´j through the charging operations. Let po, o1q P
`

Oj Y to
`
j u

˘

ˆ
`

Oj Y to
´
j u

˘

be a couple of charging operations; then the continuous flow variable foo1 denotes the number of chargers that are

transferred from operation o to operation o1. When both these operations are not dummy, foo1 is equal to one if and

only if these operations are scheduled on the same charger, o1 is scheduled after o, and no other operation is scheduled

on the charger between the completion of o and the beginning of o1. Binary variable uoo1 is equal to 1 if and only if

operation o1 starts after the completion of operation o ‰ o1. For notational convenience, we define Cpoq :“ 1 for all

o P Oj and Cpo`j q :“ Cpo´j q :“ Cj .

A path-based formulation for the E-VRP-NL-C, denoted as rP path
s, is as follows:

rF path
s minimize

ÿ

pPP

˜

tppqxp `

nppq
ÿ

l“1

p∆pl `∇plq

¸

(1)

subject to
ÿ

jPV,i‰j

ÿ

pPPij

xp “ 1 i P I (2)

ÿ

jPV,i‰j

ÿ

pPPji

xp ´
ÿ

jPV,i‰j

ÿ

pPPij

xp “ 0 i P V (3)

ÿ

jPV,j‰i

ÿ

pPPji

˜

yp ´ eppqxp `

nppq
ÿ

l“1

pqpl ´ qplq

¸

“
ÿ

jPV,j‰i

ÿ

pPPij

yp i P I (4)

yp ´ eorgppq,cspp,1qxp “ q
p1

p P P (5)

qp,l´1 ´ ecspp,l´1q,cspp,lqxp “ q
pl

p P P, l P t2, ..., nppqu (6)

yp ´ eppqxp `

nppq
ÿ

l“1

pqpl ´ qplq ě 0 i P I, p P Pi0 (7)

yp “ Qxp i P V zt0u, p P P0i (8)

yp ď Qxp p P P (9)

q
pl
“

ÿ

kPBcspp,lq

λplkqcspp,lq,k p P P, l P t1, ..., nppqu (10)

apl “
ÿ

kPBcspp,lq

λplkacspp,lq,k p P P, l P t1, ..., nppqu (11)

ÿ

kPBcspp,lq

λplk “
ÿ

kPBcspp,lqzt0u

wplk p P P, l P t1, ..., nppqu (12)

ÿ

kPBcspp,lqzt0u

wplk “ xp p P P, l P t1, ..., nppqu (13)

λpl0 ď wpl1 p P P, l P t1, ..., nppqu (14)

λplk ď wplk ` wpl,k`1 p P P, l P t1, ..., nppqu, k P Bcspp,lqzt0, bcspp,lqu (15)

λplbcspp,lq
ď wplbcspp,lq

p P P, l P t1, ..., nppqu (16)

qpl “
ÿ

kPBcspp,lq

λplkqcspp,lqk p P P, l P t1, ..., nppqu (17)

apl “
ÿ

kPBcspp,lq

λplkacspp,lqk p P P, l P t1, ..., nppqu (18)

ÿ

kPBcspp,lq

λplk “
ÿ

kPBcspp,lqzt0u

wplk p P P, l P t1, ..., nppqu (19)
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ÿ

kPBcspp,lqzt0u

wplk “ xp p P P, l P t1, ..., nppqu (20)

λi0 ď wpl1 p P P, l P t1, ..., nppqu (21)

λplk ď wplk ` wpl,k`1 p P P, l P t1, ..., nppqu, k P Bcspp,lqzt0, bcspp,lqu (22)

λplbcspp,lq ď wplbcspp,lq p P P, l P t1, ..., nppqu (23)

∆pl “ apl ´ apl p P P, l P t1, ..., nppqu (24)

ÿ

jPV,j‰i

ÿ

pPPji

˜

τp ` tppqxp `

nppq
ÿ

l“1

p∆pl `∇plq

¸

` gi “
ÿ

jPV,j‰i

ÿ

pPPij

τp i P I (25)

τp `

nppq
ÿ

l“1

p∆pl `∇plq ď
`

Tmax ´ tppq ´ gdestppq ´ tdestppq,0
˘

xp p P P (26)

τp ` torgppq,cspp,1qxp `∇p1 “ sp1 p P P (27)

sp,l´1 ` tcspp,l´1q,cspp,lqxp `∇pl “ spl p P P, l P t2, ..., nppqu (28)

spl “ spl `∆pl p P P, l P t1, ..., nppqu (29)
ÿ

o1POjYto
`
j u

fo1o “
ÿ

pPPorgpoq,destpoq

:cspp,lpoqq“jpoq

xp j P F, o P Oj (30)

ÿ

o1POjYto
`
j u

fo1o ´
ÿ

o1POjYto
´
j u

foo1 “ 0 j P F, o P Oj (31)

ÿ

oPOjYto
´
j u

f
o
`
j ,o

“ Cj j P F (32)

ÿ

oPOjYto
`
j u

f
o,o´j

“ Cj j P F (33)

ÿ

pPPorgpoq,destpoq

:cspp,lpoqq“jpoq

sp,lpoq ´
ÿ

pPPorgpo1q,destpo1q

:cspp,lpo1qq“jpo1q

sp,lpo1q ě Tmax puo1o ´ 1q j P F, o, o1 P Oj (34)

foo1 ď minpCpoq, Cpo1qquoo1 j P F, po, o1q P
`

Oj Y to
`
j u

˘

ˆ
`

Oj Y to
´
j u

˘

(35)

xp P t0, 1u p P P (36)

τp ě 0, yp ě 0 p P P (37)

q
pl
, qpl, apl, apl, spl, spl,∆pl,∇pl ě 0 p P P, l P t1, ..., nppqu (38)

λplk ě 0, λplk ě 0 p P P, l P t1, ..., nppqu, k P Bcspp,lqzt0u (39)

wplk P t0, 1u, wplk P t0, 1u p P P, l P t1, ..., nppqu, k P Bcspp,lqzt0u (40)

uoo1 P t0, 1u j P F, o, o1 P Oj (41)

foo1 ě 0 j P F, po, o1q P
`

Oj Y to
`
j u

˘

ˆ
`

Oj Y to
´
j u

˘

. (42)

The objective function (1) minimizes the total driving, charging, and waiting time. Constraints (2) ensure that each

customer is visited exactly once. Constraints (3) impose flow conservation: at each vertex the number of incoming EVs

is equal to the number of outgoing EVs. Constraints (4) track the SoC of EVs at each customer location. Constraints (5)

track the SoC at the arrival at the first CS of each CS path. Constraints (6) couple the SoC of an EV that leaves a CS

with its SoC upon arrival to the next CS of the same path. Constraints (7) ensure that if the EV travels from a customer

to the depot, it has sufficient energy to reach its destination. Constraints (8) state that every EV leaves the depot with

a fully charged battery. Constraints (9) couple the SoC tracking variables with the path travel variables. Constraints

(10)–(24) model the relationship between the SoCs of an EV upon entering and leaving a CS and the charging time.

Constraints (25) track the departure time at each customer. Constraints (26) couple the time tracking variable with the

path travel variables, and impose the route duration limit. Constraints (27) and (28) define the starting and completion

times of every charging operation, as well as the potential waiting time before the start of the operation. Constraints

(29) define the completion time of the charging operations based on their starting time and duration. Constraints

(30) state that a charger has to be allocated to every charging operation of each selected CS path (at most one CS

path in the sum can be selected in a solution). Constraints (31) ensure flow conservation or the chargers of each CS.
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Constraints (32) and (33) compute the flow value at the beginning and at the end of the time horizon, which is equal to

the number of available chargers at each CS. Constraints (34) couple the sequencing variables with the starting time of

the corresponding charging operations. Constraints (35) couple the flow variables with the operation sequence variables.

Specifically, a charger can be sent from a charging operation o1 to another charging operation o if o starts after the

completion of o1. Finally, constraints (36)–(42) set the domains of the decision variables.

Without preprocessing, the number of CS paths explodes with the number of CSs and the number of customers.

However, a large number of these arcs cannot be part of an optimal solution. Froger et al. (2019) presented a filtering

procedure to reduce the number of CS paths based on the definition of a dominance rule between two CS paths having

the same origin and destination. Due to the potential waiting times that can occur at CSs, we cannot apply the

dominance rule described in the work of Froger et al. (2019) between CS paths with the same origin and destination

if they both contain CSs. This is due to the fact that waiting times depend on all the CS paths selected to build a

complete solution. In our computational experiments, we apply the dominance rule between the unique CS path with

no CS between i and j (if it exists) and every other CS path of Pij , with i and j in V .

4 Solution method

In this section, we introduce a matheuristic to solve the E-VRP-NL-C. The method relies on an algorithmic framework

based on two interacting components: a route generator and a solution assembler. The first component builds a pool of

high-quality and diverse routes exploring the solution space of the problem without CS capacity constraints, while the

second component recombines routes from the pool trying to build a solution satisfying the CS capacity constraints.

Algorithm 1 outlines the general structure of the method. The algorithms starts by generating an initial solution

without taking the CS capacity constraints into account (line 1). In our implementation, this step is carried out using

a modified version of the classical Clarke and Wright heuristic. Next, the algorithm enters the main loop (lines 3–

27). During nmax iterations the algorithm alternates between the route generation and solution assembly phases. In

particular, the algorithm uses procedure generateRoutes(¨) to retrieve a triplet pΦO,ΦR,Ω
ST
q, where ΦO,ΦR are sets

of high-quality solutions for the original and relaxed problems (i.e., with and without CS capacity constraints), and ΩST

is a set of independent, feasible, and high-quality routes. The latter will be referred to as the short-term pool, since it

is reset before each call to the route generator. Next (lines 4–12) the algorithm adds the routes making up the solutions

in ΦO and ΦR to a long-term pool ΩLT (never reset) while keeping track of the best solutions for both the original (s˚O)

and the relaxed problem (s˚R). The intuition behind adding routes coming from potentially infeasible solutions to the

original problem (i.e., solutions to the relaxed problem) to the long-term pool is to foster diversity. Indeed, these routes

tend to be of high quality (in terms of the objective function) and might be recombined efficiently with others later.

The algorithm then enters the assembly phase (line 13). In the first step of this phase, the algorithm merges the

short- and long-term pools ΩST and ΩLT . Thus, seeking to combine the past and recent history of the search into a

single set of routes that has a size that is manageable for the solution assembler. The assumption is that a new part of

the search space has been explored since the last call to the assembler. The algorithm then calls procedure assemble(¨)

to retrieve a tuple ps1, S1q, where s1 is the best solution and S1 is the set of all improving solutions (with respect to s˚O)

for the original problem found during the call. If the assembler retrieves a solution, the algorithm adds its routes in S1

to the long-term pool ΩLT and updates the incumbent s˚O (lines 14–17).

If after the call to the assembler, the algorithm still has not found a feasible solution (i.e., s˚O is still equal to

NULL), it implements two actions. First, it slightly modifies the search space to favor feasibility. In our implementation,

we modify the search space by artificially reducing the opening hours of the depot (line 20). The underlying idea is

that the reduction of the depot’s operating hours would lead to shorter routes with more slack to accommodate a late

departure from the depot or waiting times at charging stations during the assembly phase. Second, it tries to repair the

best-known solution for the relaxed problem (i.e., s˚R) by making it comply with the new solution space (line 21). In

our implementation, if a route visiting n customers has a duration strictly greater than the new value T of the depot

hours, the algorithm creates two new routes by adding a return to the depot after the tn{2u
th customer and reoptimizes

the charging decisions within these routes. To avoid feasibility issues, the value of T is not considered when a route

visits only one customer. The same procedure is performed on the newly created routes as long as the routes contain

more than one customer and their duration exceeds T . On the other hand, if after the call to the assembler a feasible
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solution is available (i.e., s˚O is different than NULL), the algorithm then reestablishes (if needed) the original solution

space (i.e., resets the value of the depot opening hours to Tmax) and moves to a new iteration.

In our implementation of the framework, we develop an iterative local search algorithm as the route generator and

a branch-and-cut algorithm as the solution assembler. The remainder of this section describes these two components.

Algorithm 1: Solution method - general structure

/* fpsq denotes the value of the objective function for a solution s and we assume that fpNULLq “ `8*/

1 s0R ÐgenerateInitialSolution()

2 nÐ 0, T Ð Tmax, ΩLT ÐH, s˚R Ð s0R, sR Ð s0R, s˚FO Ð NULL, sO Ð NULL

3 while n ă nmax do

4 pΦO,ΦR,Ω
ST q ÐgenerateRoutes(sR,sO,T ) (see Algorithm 2)

5 for each s1R P ΦR do

6 Add the routes of s1R to ΩLT

7 if fps1Rq ă fps˚Rq then s˚R Ð s1R

8 end

9 for each s1O P ΦO do

10 Add the routes of s1O to ΩLT

11 if fps1Oq ă fps˚Oq then s˚O Ð s1O

12 end

13 ps1, S1q Ð assemblepΩST Y ΩLT , s˚Oq (see Algorithm 3) /* s1 “ NULL if no improving solution is found */

14 if s1 ‰ NULL then

15 s˚O Ð s1

16 if fps1q ă fps˚Rq then s˚R Ð s1

17 for each s P S1 do Add the routes of s to ΩLT

18 end

19 if s˚O “ NULL then

20 T Ð maxtTmin, α ¨ T u /* Tmin : minimum possible value for T, α ă 1 a tuning parameter */

21 sR Ð repair(s˚R), sO Ð NULL

22 else

23 if T ă Tmax then T Ð Tmax

24 sO Ð s˚O, sR Ð s˚R

25 end

26 nÐ n` 1

27 end

28 return s˚O

4.1 Route generator: an iterated local search algorithm for the E-VRP-NL

Our route generator is based on an ILS algorithm that solves the E-VRP-NL, while populating the pool of routes that

is used to assemble solutions to the E-VRP-NL-C. Introduced by Lourenço et al. (2003), ILS is a metaheuristic that

iteratively applies a local search phase to produce local optima, and perturbation mechanisms to escape from them. It

is initialized with a solution generally provided by a constructive heuristic. In our implementation, we combine ILS with

a variable neighborhood descent (VND) search strategy for the local search phase. Algorithm 2 outlines the general

structure of our method. First, the current best solution s˚R is set equal to the initial solution s0
R provided as input.

The algorithm then enters an iterative process. Except during the first iteration, it perturbs the current best solution

s˚R to escape from the current local optimum and potentially explore a new region of the search space (see §4.1.2). This

produces a new start point s1R for the VND which computes a new local optimum sR to the E-VRP-NL (see §4.1.1)

and also returns the best solution sO to the E-VRP-NL-C it has encountered. Note that we only check the CS capacity

constraints after accepting a move (i.e., when building a new solution to the E-VRP-NL). If appropriate, the algorithm

updates the best-known solutions s˚R and s˚O, as well as the sets ΦR and ΦO of improving solutions. It also populates a

pool of routes Ω. Note that we only add a route to Ω if it does not already contains a route visiting the same sequence of

vertices. This procedure is reiterated until the targeted number of iterations δmax has been reached. The optimization

returns the sets of improving solutions to the E-VRP-NL and E-VRP-NL-C and the generated pool of routes Ω. To
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speed up the ILS algorithm, its implementation is based on the static move descriptor concept introduced by Zachariadis

and Kiranoudis (2010) which prevents unnecessary reevaluations of moves and provides an efficient way of exploring

neighborhoods (see Appendix B).

Algorithm 2: The route generating procedure

Input : a solution s0R to the E-VRP-NL, a solution s0O to the E-VRP-NL-C (possibly equal to NULL), a maximum route

duration limit T

Output: a set ΦR and a set ΦO of improving solutions to the E-VRP-NL and to the E-VRP-NL-C, a pool of routes Ω

Procedure generateRoutes(s0R,s0O,T):

/* We denote fpsq the value of the objective function for a solution s and we assume fpNULLq “ `8*/

δ Ð 0, ΦR ÐH, ΦO ÐH, Ω ÐH

s˚R Ð s0R, s˚O Ð s0O
while δ ă δmax do

if δ “ 0 then s1R Ð s0R
else s1R Ðperturb(s˚R,T) (see §4.1.2)

psR, sOq Ð VND(s1R,T) (see Algorithm 5)

Add the routes of sR to Ω

if fpsRq ă fps˚Rq then ΦR Ð ΦR Y tsRu, s
˚
R Ð sR

if fpsOq ă fps˚Oq then ΦO Ð ΦO Y tsOu, s
˚
O Ð sO

δ Ð δ ` 1

end

return pΦR,ΦO,Ωq

4.1.1 The VND search phase

The VND relies on an ordered list of local search operators. A single operator is considered at a time. If an improving

move is found, the search restarts with the first operator of the list. Otherwise, it moves to the next operator. The

search reaches a local optimum when the last operator fails to improve the current solution.

Our VND employs several classical VRP operators focusing on sequencing decisions. These operators are defined

for solutions represented as sequences of customer visits without CSs. We use five vertex exchanges operators that work

by relocating or exchanging customer visits : 1-0, 2-0, 1-1, 2-1, and 2-2 vertex exchanges. We also use the inter-route

and intra-route versions of 2-opt. We also define a specific operator for the E-VRP-NL, referred to as separate. This

operator creates two routes from a single route by inserting a return to the depot after a customer visit. It may improve

the cost of a solution if at least one CS is part of the split route. Indeed, creating two routes rather than one may

decrease the total time when an expensive detour to a CS is avoided. We stop applying an operator as soon as it has

found an improving move. We refer to Algorithm 5 in Appendix C for a description of the general scheme of the VND

search phase.

We only consider CSs when evaluating local search moves. In order to make charging decisions in such a way that

every route involved in a move has the lowest possible duration, we solve one (inter-route moves) or more (intra-route

moves) fixed route vehicle charging problems (FRVCPs). In a nutshell, this problem consists in inserting CSs into a

fixed route (i.e., sequence of customers) trying to gain (energy) feasibility while minimizing the total duration of the

route. To this end, we use the labeling algorithm described by Froger et al. (2019) that applies shortest path techniques

similar to the one presented in Baum et al. (2019). After each call, the duration of the route is stored in a cache memory

to avoid recomputing it. It is worth noting that this procedure yields a “true” evaluation of the move. Indeed, all local

search-based metaheuristics for E-VRPs reported in the literature use only approximate evaluations of the moves. The

reason is that, in a quest for computational efficiency, these approaches embed local search operators that either do not

revise the charging decisions (where, when, and how much to charge) or solve the resulting FRVCP heuristically.

Since only improving solutions are accepted in the VND framework, we only solve FRVCPs for potentially improving

moves. Therefore, we rely on a procedure that filters out unpromising or infeasible moves as done for example in Schiffer

et al. (2018a) and Hiermann et al. (2019). Such moves are determined by establishing a lower bound on the duration

of the routes resulting from a move. The value of this lower bound is computed as the sum of two terms: the minimum

increase in time to detour to a CS between two successive vertices in the route, and a lower bound on the charging

time. The latter is computed by dividing the sum of the energy consumption of the route and the minimum increase in
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energy consumption to detour to a CS between two successive vertices in the route, by the steepest slope for a segment

of the piecewise linear charging functions. Similar ideas are used in shortest path algorithms for electric vehicles within

the computation of a lower bound on the trip time from any vertex to the target vertex (see Baum et al. (2019)). We

note that this lower bound corresponds to the true duration of a route in the case where its energy consumption does

not exceed Q. If the lower bound on the route duration exceeds the limit, then the route is infeasible. Otherwise,

the procedure checks whether the route duration is stored in the cache memory and modifies the lower bound value

accordingly. We use the lower bound on the duration of the routes to determine whether the move is strictly non-

improving. We refer to Algorithm 6 in Appendix C for a detailed explanation on this procedure. If a move is not

discarded by the lower bound on the basis that it is infeasible or non-improving, we solve FRVCPs for all the routes

that have not been evaluated exactly, as long as the move remains feasible and potentially improving.

4.1.2 The perturbation phase

Whenever we reach a local optimum, we perturb the current solution by removing geographically close customers and

by reinserting them at different positions. First, we randomly select a customer i P I. We then remove the κ closest cus-

tomers to i from their respective routes, with κ randomly selected in the interval rmint|I|, 5u,maxtmint|I|, 5u, r
a

|I|sus.

We set the distance between two customers i1 and i2 as equal to 0.5
`

ti1,i2 ` ti2,i1 ` pei1,i2 ` ei2,i1q{ρ
˚
˘

. The value of

ρ˚ corresponds to the steepest slope for a segment of the piecewise linear charging functions. Finally, customers are

reinserted in the solution one at a time and in a random order by applying the following rules. A removed customer

cannot be reinserted in the same route from which it was removed. We evaluate the increase in time of every feasible

insertion of the customer. This is done by reoptimizing the charging decisions. The probability of selecting a given fea-

sible insertion is set inversely proportional to the time increase due to the insertion. If there exists no feasible insertion,

we simply create a new route with the customer.

4.2 Solution assembler: a branch-and-cut method

The objective of the second component of the matheuristic is to assemble the best possible solution to the E-VRP-NL-C

from the pool of routes Ω, obtained from the route generator component. We recall that the charging decisions made

for a route are such that its total duration is minimized. The main challenge of this second component is to combine

the routes in a solution that satisfies the CS capacity constraints.

Determining the best solution that can be built from selected routes in a pool is a strategy that has been successfully

applied to several hardcore VRPs. Usually, this reduces to solving a set partitioning model (Alvarenga et al., 2007;

Subramanian et al., 2013; Villegas et al., 2013; Montoya et al., 2017; Andelmin and Bartolini, 2019). The strategy

is used either as a post-optimization phase or as an intensification phase within a methaheuritic. An example of the

latter is the matheuristic proposed by Subramanian et al. (2013) to solve a class of VRPs. This approach has been

mostly applied to problems without route coupling constraints (i.e., the feasibility of one route is independent of the

feasibility of other routes). Due to the CS capacity constraints, the route coupling constraints need to be accounted for

in the E-VRP-NL-C. To the best of our knowledge, only two studies have dealt with route coupling constraints in the

assembly phase of a solution from a pool of routes: Morais et al. (2014) and Grangier et al. (2017), both in the context

of cross-dock VRPs.

In this work, we propose assembling the solutions using a decomposition of the problem into a route selection master

problem and a CS capacity management subproblem. The master problem consists in selecting a set of routes such that

every customer is covered by exactly one route. The charging decisions within the selected routes (as imported from the

first component) may lead to a violation of the CS capacity constraints. In such cases, the subproblem checks whether

the CS capacity constraints can be met by revising some of the decisions in these routes.

We propose four versions of the subproblem, which primarily depend on the degree of allowed modifications on the

routes selected by the master problem. In the first version (denoted by N – No possible revision), we do not revise

the charging decisions in the selected routes and we only check whether the CS capacity constraints are satisfied. In

the second version (denoted by D – Delay), we allow delaying the starting time of each route (i.e., we postpone the

departure of the EV from the depot) to satisfy the CS capacity constraints. We note that in versions N and D no

increase in the total time of the solution is incurred. In the third version (denoted by DW – Delay+Waiting times), we
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allow delaying the starting time of each route, and we also allow vehicles to wait for a charger if a CS is overcrowded

by EVs. In DW, waiting times can only occur when a route stops several times for charging, since, when there is only

one stop at a CS, delaying the starting time of the route is preferable, as this does not penalize the objective function.

In the fourth version (denoted by DWR – Delay+Waiting times+Revision of charging amounts), we also revise the

amount of energy charged at the CSs. If a route contains at least two stops at CSs, we may decide to charge more

during the first stop in order to avoid waiting at the second stop before charging the EV. We note that this strategy

may sometimes avoid detouring to one of the CSs visited in the original route.

We designed a branch-and-cut algorithm to efficiently solve the assembling problem while exploiting the decompo-

sition discussed above. While solving the route selection problem, we dynamically solve the CS capacity management

subproblem. More specifically, at each node of the branch-and-bound tree, we solve the subproblem for the current

selection of routes. Depending on the version of the subproblem, we generate different cuts to discard infeasible route

selections (see §4.2.3). For versions DW and DWR, we also add cuts to account for the underestimation of the increase

in the total time to visit the customers.

We outline the general structure of the branch-and-cut method in Algorithm 3 (we focus on its most common used

implementation based on interacting with the branch-and-bound procedure embedded into the MILP solver via callback

routines). When provided as an input, we give to the solver the objective function value of a solution to the E-VRP-NL-

C as a cutoff value (i.e., an upper bound on the value of the objective function of the master problem). Therefore, the

solver only considers the solutions with an objective function value strictly less than this cutoff value. The solver returns

the best solution assembled from a given pool of routes by the branch-and-cut algorithm. The component also returns

a set Φ of improving solutions (compared to the initial solution s) computed throughout the algorithm. Whenever a

selection of routes x̄ at an integer node of the branch-and-bound tree does not lead to the introduction of a cut after

solving the capacity management subproblem CMP.px̄q, we save it along with the updated charging decisions (delays,

waiting times, revision of charging amounts) to build a complete solution.

Algorithm 3: The assembling procedure (focus on the implementation)

Input : a pool Ω of routes / a solution s (possibly equal to NULL) to the E-VRP-NL-C

Output: the best solution s˚ computed by the branch-and-cut algorithm / a set Φ of improving solutions to the

E-VRP-NL-C (in comparison with s)

Procedure assemble(Ω,s):
‚ Build the MILP formulation rHC1s or rHC2s of the route selection problem from pool Ω (see §4.2.1 and §4.2.2)

‚ Define the callback function (function called at every node of the branch-and-bound tree) as procedure

SolveSubProblem(x̄) (see Algorithm 4) and associate to it a CPU time limit of τSP per call

‚ Give the model rHC.s, the callback function, the cutoff value fpsq (objective function value of s) to the MILP

solver and launch it with a CPU time limit equal to τ

‚ Retrieve the best solution s˚ computed within the CPU time limit and the set Φ of improving solutions (compared

to s)

return ps˚,Φq

In the following subsections, we provide a detailed description of our four versions of the CS capacity management

subproblem. We use the following notation. The binary parameter apr, iq is equal to one if and only if route r P Ω

serves customer i P I. We define parameter tprq as the duration of a route r P Ω, obtained from the route generation

component. We denote by OpΩq the set containing all the charging operations occurring in the routes belonging to Ω,

and by OjpΩq Ď OpΩq all the charging operations occurring at CS j P F in these routes. We denote by Optruq the

list of charging operations occurring in route r. Let rpoq and jpoq be the route and the CS associated with a charging

operation o. Let Spoq and dpoq be the starting time and duration of charging operation o in the route rpoq P Ω. For each

route r P Ω, we assume that the operations in Optruq are sorted in non-decreasing order of their starting times. We

denote by sucpoq the charging operation following o in route rpoq. If there does not exist any charging operation after

o, we set sucpoq “ ´1. For every route r P Ω and for each charging operation o P Optruq we denote by t`poq the total

time (driving and customer serving) spent in r by the EV between its departure from jpoq and its arrival at jpsucpoqq

or at the depot if sucpoq “ ´1. For each operation o, we also introduce two parameters ESpoq and LSpoq representing

its earliest and latest possible starting times. The values of these parameters depend on the different versions of the

subproblem and they are specified in the following subsections.

13



4.2.1 N and D subproblem versions

To model the route selection problem, we introduce a binary variable xr equal to 1 if and only if route r P Ω is selected.

A MILP formulation of this problem is then the following classical set partitioning model:

rHC1s minimize
ÿ

rPΩ

tprqxr (43)

subject to
ÿ

rPΩ

apr, iqxr “ 1 i P I (44)

xr P t0, 1u r P Ω. (45)

The objective (43) is to select a subset of routes from Ω that minimizes the total duration. Constraints (44) ensure

that each customer is visited exactly once. Constraints (45) set the domains of the decision variables.

Let Ω1`px̄q denote the set of routes with at least one charging operation resulting from a feasible solution x̄ to the

above problem, i.e., Ω1`px̄q “ tr P Ω : x̄r “ 1 ^ Optruq ‰ Hu. Note that the routes without mid-route charging do

not need to be considered when verifying the CS capacity constraints. We also define Ω1`px̄, jq Ď Ω1`px̄q as the set of

routes with a charging operation at j P F .

Version N In this version of the subproblem, the CS capacity management subproblem does not revise the charging

operations scheduled in the selected routes. It only checks the feasibility of the charging operations with respect to the

capacity constraints. We therefore set ESpoq “ LSpoq “ Spoq. Let CMP1px̄q be this subproblem defined for the routes

that belong to Ω1`px̄q. It can be decomposed into |F | independent problems, one for every CS. To solve CMP1px̄q,

for every CS j P F we apply a polynomial algorithm to check the existence of subsets of operations overloading the

CS. Specifically, we call procedure CheckCapacityCut(OjpΩ1`px̄qq, Cj) to check whether the capacity constraints are

satisfied according to the scheduled charging operations in OjpΩ1`px̄qq. We refer the reader to Algorithm 7 in Appendix

D for the details of this procedure.

Version D The main drawback of version N is that it may discard promising routes. Indeed, in some cases simply

delaying the starting time of some of the routes may allow their combination into a feasible solution to the problem. Note

that shifting the start time of a route does not increase the objective function. In version D, we seek to resolve capacity

violations by shifting starting times of the routes. Let CMP2px̄q be this subproblem. In contrast to CMP1px̄q, CMP2px̄q

does not decompose into an independent problem for each CS. Let o be a charging operation. Its earliest starting time

ESpoq is equal to Spoq since by construction the operations are left shifted in each route of the pool. The parameter LSpoq is

computed by subtracting from Tmax the time needed to complete the route (considering the duration of the next charging

operations, the driving times, and no waiting times). Specifically, LSpoq “ Tmax ´
ř

o1POptrpoquq:Spo1qěSpoqpt
`
po1q ` dpo1qq.

We now define a continuous-time MILP formulation of CMP2px̄q. Let the variable So define the starting time of

operation o P OpΩ1`px̄qq. We model the capacity constraints using the flow-based formulation used in Section 3. For

each CS j P F , we consider two dummy operations o`j and o´j , and we define Cpoq :“ 1 for all o P OjpΩ1`px̄qq and

Cpo`j q :“ Cpo´j q :“ Cj . We then introduce the continuous variable foo1 representing the quantity of resource (i.e.,

chargers) that is transferred from charging operation o to charging operation o1. We also define the sequential binary

variable uoo1 taking the value of 1 if operation o is processed before operation o1. The MILP formulation of CMP2px̄q

is as follows:

rCMP2px̄qs minimize 0 (46)

subject to uoo1 ` uo1o ď 1 j P F, o, o1 P OjpΩ1`px̄qq : o ă o1 (47)

uoo2 ě uoo1 ` uo1o2 ´ 1 j P F, o, o1, o2 P OjpΩ1`px̄qq (48)

So1 ě So ` dpoquoo1 ` pLSpoq ´ ESpo1qqpuoo1 ´ 1q j P F, o, o1 P OjpΩ1`px̄qq (49)

Ssucpoq “ So ` dpoq ` t
`
poq o P OpΩ1`px̄qq : sucpoq ‰ ´1 (50)

ÿ

o1POjpΩ1`
px̄qqYto`j u

fo1o “ 1 j P F, o P OjpΩ1`px̄qq (51)

ÿ

o1POjpΩ1`
px̄qqYto`j u

fo1o ´
ÿ

o1POjpΩ1`
px̄qqYto´j u

foo1 “ 0 j P F, o P OjpΩ1`px̄qq (52)
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ÿ

oPOjpΩ1`
px̄qqYto´j u

f
o
`
j ,o

“ Cj j P F (53)

ÿ

oPOjpΩ1`
px̄qqYto`j u

f
o,o´j

“ Cj j P F (54)

foo1 ď max
`

Cpoq, Cpo1q
˘

uoo1 j P F, o, o1 P OjpΩ1`px̄qq (55)

ESpoq ď So ď LSpoq o P OpΩ1`px̄qq (56)

foo1 ě 0 j P F,

po, o1q P
`

OjpΩ1`px̄qq Y to
`
j u

˘

Y
`

OjpΩ1`px̄qq Y to
´
j u

˘

(57)

uoo1 P t0, 1u j P F, o, o1 P OjpΩ1`px̄qq. (58)

CMP2px̄q is a feasibility problem. Constraints (47) state that for two distinct operations o and o1, either o precedes o1,

o1 precedes o, or o and o1 are processed in parallel (if there is more than one charger at the CS). Constraints (48) express

the transitivity of the precedence relations. Constraints (49) are the disjunctive constraints on the operations related

to the same CS. Each such constraint is active when uoo1 “ 1 and, in which case, it enforces the precedence relation

between charging operations o and o1. Note that no waiting times can occur before a charging operation. Constraints

(50) enforce the precedence relation and the time lag between the charging operations occurring in the same route.

Constraints (51) state that a charger has to be allocated to each charging operation. Constraints (52) ensure flow

conservation. Constraints (53) and (54) define the value of the flow leaving the source and the flow entering the sink.

Constraints (55) couple the flow variables with the sequence variables. Constraints (56) and (58) define the domains of

the decision variables.

4.2.2 DW and DWR subproblem versions

In these versions of the subproblem, we allow a possible increase in the total duration of the routes. Indeed, introducing

waiting times at CSs or revising the amount of charged energy may help resolve capacity violations, but such modifica-

tions may extend routes due to the non-linearity of the charging functions and the consideration of multiple charging

technologies. Let θ be a non-negative variable estimating the added delay when solving the CS capacity management

subproblem. A MILP formulation of the route selection problem (derived directly from rHC1s) follows:

rHC2s minimize
ÿ

rPΩ

tprqxr ` θ (59)

subject to (44), (45)

θ ě 0. (60)

Thereafter, we assume that we have a fixed selection Ω1`px̄q of routes given by fixing the variables txrurPΩ to values

respecting the current constraints of the route selection problem.

Version DW In this version of the subproblem, we assume that EVs can wait at CSs if delaying the starting times

of the routes is not sufficient to avoid capacity violations. Let CMP3px̄q be the scheduling subproblem of the routes

Ω1`px̄q, which has the objective of minimising the addition of waiting times. The MILP formulation of CMP3px̄q uses

the decision variables So, foo1 , uoo1 defined in CMP2px̄q. We also introduce variable ∇o that represents the waiting time

incurred before the start of charging operation o P OpΩ1`px̄qq. For every charging operation o, its earliest starting time

ESpoq is equal to Spoq and its latest starting time LSpoq is equal to Tmax ´
ř

o1POptrpoquq:Spo1qěSpoqpt
`
po1q ` dpo1qq. The

MILP formulation of CMP3px̄q is as follows:

rCMP3px̄qs minimize
ÿ

oPOpΩ
1`
px̄qq

∇o (61)

subject to (47)´ (49), (51)´ (58)

Ssucpoq “ So ` dpoq ` t
`
poq `∇sucpoq o P OpΩ1`px̄qq : sucpoq ‰ ´1 (62)

∇o ě 0, o P OpΩ1`px̄qq. (63)
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The objective (61) is to minimize the waiting time inserted in each route. Constraints (62) define the minimum time

lag between the charging operations occurring in the same route. Constraints (63) define the domains of the waiting

decision variables.

Version DWR In this version of the subproblem, in addition to the introduction of waiting times, resolving capacity

violations at CSs can also be achieved by revising the amounts of energy charged at each CS in every route. We denote

by CMP4px̄q the subproblem in which we want to minimize the increase in the duration of the selected routes. Indeed,

revising the charging operations leads to an increase in time when the CSs in a route have different charging technologies

or when the charging functions are non-linear. Note that if we substantially increase the charging amounts at a CS we

may not need to stop at the subsequent CS in the route. We therefore need to account for the potential removal of stops

at CSs.

We denote by e`poq the energy consumption of the EV between its departure from jpoq and its arrival at jpsucpoqq

if sucpoq ‰ ´1. This takes into account the energy consumed to visit all the customers scheduled in the route between

charging operations o and sucpoq or the depot. Since a charging operation can be skipped by charging more energy

during the previous or next charging operations of the same route, we define rtpoq and repoq as the driving time and

energy saved if the EV does not detour to perform the charging operation o. We define Ω2`px̄q as the subset of Ω1`px̄q

that contains only the routes including at least two charging operations (i.e., Ω2`px̄q “ tr P Ω1`px̄q : |Optruq| ě 2u).

Our formulation of CMP4px̄q draws upon formulation rCMP3px̄qs. Aside from using decision variables defined in

the latter, rCMP4px̄qs also uses the following decision variables for the operations in OpΩ2`px̄qq. The variables to and

to are the scaled arrival and departure times, according to the charging function of CS jpoq. The binary variables

wok and wok are equal to 1 if and only if the SoC lies between qjpoq,k´1 and qjpoq,k, with k P Bjpoqzt0u, upon starting

and finishing operation o, respectively. The continuous variables λok and λok are the coefficients associated with the

breakpoints pajpoq,k, qjpoq,kq of φjpoq upon starting and finishing operation o, respectively. The continuous variables y
o

and yo represent the SoC of the EV upon starting and finishing charging operation o. The continuous variable ∆o

represents the duration of charging operation o.

For each route, we check whether it might be possible for a charging operation o to be skipped by considering that

the EV leaves the previous CS (or depot) with a fully replenished battery. If this allows the EV to reach the next CS

or to return to the depot without performing o, then we allow the EV not to detour to the corresponding CS. To this

end, we introduce the binary variable zo equal to 1 if and only if the charging operation o is executed.

We also compute for every charging operation the time windows during which it must be scheduled. The earliest

starting time ESpoq of a charging operation o is computed assuming that the EV skips (if the previous computation has

shown it is possible) the previous charging operations (if any), and charges the maximum between the energy needed to

recover the detour to the CS and the energy required to reach the next CS. To compute the latter, we consider that the

SoC of the EV upon arriving at the CS is maximal (i.e., a full charge occurs at the previous CS). Then, we estimate the

charging times assuming that the EV arrives with an empty battery. The latest starting time LSpoq of operation o is

computed assuming that the EV returns to the depot at time Tmax and assuming that the EV skips the next charging

operations (if possible).

The MILP formulation of CMP4px̄q is as follows:

rCMP4px̄qs minimize
ÿ

oPOpΩ
1`
px̄qq

∇o `
ÿ

oPOpΩ
2`
px̄qq

`

∆o ´ dpoq ´ p1´ zoqrtpoq
˘

(64)

subject to (47)´ (48), (52)´ (58), (63)

y
o
“

ÿ

kPBjpoq

λokqjpoqk o P OpΩ2`px̄qq (65)

to “
ÿ

kPBjpoq

λokajpoqk o P OpΩ2`px̄qq (66)

ÿ

kPBjpoq

λok “
ÿ

kPBjpoqzt0u

wok o P OpΩ2`px̄qq (67)

ÿ

kPBjpoqzt0u

wok “ zo o P OpΩ2`px̄qq (68)

λo0 ď wo1 o P OpΩ2`px̄qq (69)
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λok ď wok ` wo,k`1 o P OpΩ2`px̄qq, k P Bjpoqzt0, bjpoqu (70)

λobjpoq
ď wobjpoq

o P OpΩ2`px̄qq (71)

yo “
ÿ

kPBjpoq

λoqjpoqk o P OpΩ2`px̄qq (72)

to “
ÿ

kPBjpoq

λoajpoqk o P OpΩ2`px̄qq (73)

ÿ

kPBjpoq

λok “
ÿ

kPBjpoqzt0u

wok o P OpΩ2`px̄qq (74)

ÿ

kPBjpoqzt0u

wok “ 1 o P OpΩ2`px̄qq (75)

λo0 ď wo1 o P OpΩ2`px̄qq (76)

λok ď wok ` wo,k`1 o P OpΩ2`px̄qq, k P Bjpoqzt0, bjpoqu (77)

λobjpoq ď wobjpoq o P OpΩ2`px̄qq (78)

∆o “ to ´ to o P OpΩ2`px̄qq (79)

∆o ď ajpoq,bjpoqzo o P OpΩ2`px̄qq (80)

y
ofirstprq

“ qfirstprq r P Ω2`px̄q (81)

y
sucpoq

“ yo ´ e
`
poq ` repoqp1´ zoq o P OpΩ2`px̄qq : sucpoq ‰ ´1 (82)

yo ´ e
`
poq ` repoqp1´ zoq ě 0 o P OpΩ2`px̄qq : sucpoq “ ´1 (83)

So1 ě So ` dpoquoo1 ` pLSpoq ´ ESpo1qqpuoo1 ´ 1q j P F, o, o1 P OjpΩ1`px̄qzΩ2`px̄qq (84)

So1 ě So `∆o ` pLSpoq ´ ESpo1qqpuoo1 ´ 1q j P F, o, o1 P OjpΩ2`px̄qq (85)

Ssucpoq “ So ` dpoq ` t
`
poq `∇sucpoq o P OpΩ1`px̄qzΩ2`px̄qq : sucpoq ‰ ´1 (86)

Ssucpoq “ So `∆o ` t
`
poq ´ rtpoqp1´ zoq `∇sucpoq o P OpΩ2`px̄qq : sucpoq ‰ ´1 (87)

So `∆o ` t
`
poq ´ rtpoqp1´ zoq ď Tmax o P OpΩ2`px̄qq : sucpoq “ ´1 (88)

ÿ

o1POjpoqpΩ1`
px̄qqYto`

jpoq
u

fo1o “ 1 o P OpΩ1`px̄qzΩ2`px̄qq (89)

ÿ

o1POjpoqpΩ1`
px̄qqYto`

jpoq
u

fo1o “ zo o P OpΩ2`px̄qq (90)

zo P t0, 1u,∆o ě 0, 0 ď y
o
ď Q, 0 ď yo ď Q o P OpΩ2`px̄qq (91)

wok, wok P t0, 1u, o P OpΩ2`px̄qq, k P Bjpoqzt0u (92)

λok, λok P t0, 1u o P OpΩ2`px̄qq, k P Bjpoq. (93)

The objective (64) is to minimize the total additional time inserted in each route. Constraints (65)–(79) model the

piecewise linear charging functions. Constraints (80) impose a duration equal to 0 for each charging operation that is

not executed anymore. For each route r P Ω2`px̄q, constraints (81) define the SoC qfirstprq of the EV upon starting

its first charging operation (denoted ofirstprq). Constraints (82) couple the SoC of the EV after finishing a charging

operation with its SoC when starting the next charging operation occurring in the route. Note that if zo is equal to

0, then the SoC y
o
“ yo still takes into account the energy consumed to detour to CS jpoq. The energy saved by not

stopping at this CS is subtracted when computing the SoC at the beginning of the next operation of the route or at

the arrival at the depot (see (83)). For each route, constraints (83) force the corresponding EV to have enough SoC

at the end of the last charging operation to reach the depot. Constraints (84) and (85) are the disjunctive constraints

on the operations related to the same CS. Constraints (86) and (87) define a minimum time lag between the charging

operations occurring in the same route. Note that if zo is equal to 0, then the starting time So still takes into account

the detour to CS jpoq. The time saved by not stopping at this CS is subtracted during the computation of the departure

time for the next operation of the route. Constraints (88) limit the route duration. Constraints (89) and (90) assign a

charger to each operation that is executed. Constraints (91)–(93) define the domains of the new decision variables.
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4.2.3 Cut generation procedure

To couple the route selection problem with the CS capacity management subproblem, we generate constraints to cut

off infeasible selections of routes in Ω1`px̄q and to bound the variable θ (for versions DW and DWR). The efficiency

of our branch-and-cut method is based on the strength of these cuts. Rather than only cutting the current solution,

we investigate a strategy that generates cuts for a large portion of the solution space of the route selection problem.

Moreover, we try to add several cuts at a time to speed up the convergence of the algorithm.

We first focus on the cuts that are applicable only to version N. Given a CS j, let Oj be a set containing subsets

of operations with a cardinality strictly larger than Cj , which overlap in time. To discard the current solution x̄ in the

route selection problem, we add to rHC1s the following cuts:

ÿ

rPΩ
1`
px̄q:OptruqXU‰H

xr ď Cj j P F,U P Oj . (94)

For the other versions of the subproblem, Algorithm 4 summarizes the procedure used to solve the capacity man-

agement subproblem and to generate cuts to discard infeasible selection of routes. We first try to detect, before solving

CMP.px̄q, the potential infeasibility of the subproblem using two fast procedures focusing independently on each CS. If

the subproblem is deemed infeasible, then we generate cuts specially crafted for our problem. If not, we solve the MILP

formulation rCMP.px̄qs with a commercial solver. If possible, we decompose the subproblem into smaller independent

problems beforehand. We present below the details of the cut generation procedure.

The two algorithms we apply to detect capacity violations that cannot be solved by the CS capacity management

subproblem are frequently used in scheduling problems. They focus on a single CS and are based on a reasoning rooted

in the time windows (derived from the opening hours of the depot) in which every charging operation can be scheduled.

The first algorithm focuses on the fixed part of the charging operations (line 3). We call a fixed part of a charging

operation o the time interval (if it exists) between the latest starting time LSpoq and earliest completion time ESpoq`dpoq.

Based on the fixed part of the charging operations, we detect subsets of operations that will necessarily lead to a violation

of the capacity constraints and we add cuts to forbid the underlying subset of routes (line 6). Hereafter, we refer to

this algorithm as the fixed part based algorithm. The details of this procedure are provided in Algorithm 8 (Appendix

D). The second algorithm is based on an energy reasoning (line 8). The required energy consumption of a charging

operation o during a time interval rt1, t2q is equal to the minimum duration (possibly equal to 0) for which o is surely

executed within the interval. For a CS j, the total required energy consumption by the charging operation o scheduled

at j over time interval rt1, t2q cannot exceed Cjpt2 ´ t1q. The difference between the last term and the total required

energy consumption is called the slack over rt1, t2q. The slack over any time interval must always be non-negative. The

number of intervals that needs consideration is bounded (see Baptiste et al. (2001) for more details). When there exists

an interval for which a slack is strictly negative, the subset of operations having a non-zero energy consumption on

this interval cannot be performed without leading to a violation of the capacity constraints. We add a no-good cut to

discard it (line 10). Hereafter, we refer to this algorithm as the energy reasoning based algorithm. The details of this

procedure are provided in Algorithm 9 (Appendix D). To limit the computation time, if the two previous algorithms

prove the infeasibility of the subproblem, we add to the route selection problem the generated cuts and we do not solve

the subproblem.

The decomposition of the subproblem CMP2px̄q, CMP3px̄q, or CMP4px̄q into several independents smaller subprob-

lems is based on reasoning about the stops at the CSs in the different routes. The interest is to potentially formulate

cuts for each of these small subproblems. Let Gpx̄q be a graph in which each vertex represents a CS and there exists an

edge between two CSs if there exists a route in Ω1`px̄q with charging operations at these two CSs. We can decompose

the subproblem into as many independent subproblems as the number of connected components of Gpx̄q. Let CpGpx̄qq
be the connected components of Gpx̄q. For every connected component C P CpGpx̄qq, only the charging operations

scheduled at the CSs in C need consideration. We denote by CMPpx̄, Cq the subproblem restricted to these operations.

When CMPpx̄, Cq is infeasible, we generate an integer Benders cut, also called combinatorial Benders cut (Codato and

Fischetti, 2006), to invalidate the current solution to the route selection problem (line 18). For versions DW and DWR

of the subproblem, we also compare the current value θ̄ of θ with the increase in time computed over the set Cfeas of

connected components for which the corresponding subproblem is feasible. For each subset C of Cfeas, we generate an
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integer Benders optimality cut if the route selection problem underestimates the increase in time needed to resolve the

capacity violations at CSs (line 25).

Algorithm 4: Solving the CS capacity management subproblem and generating cuts for version D,

DW, or DWR
Input: a solution x̄ to the current master problem

1 Procedure SolveSubProblem(x̄):

2 Compute ESpoq and LSpoq for each charging operation o P OpΩ1` px̄qq

3 for j P F do

4 O ÐFixedPartsAlgorithm(Ojpx̄q, Cj) (see Algorithm 8)

5 if O ‰ H then

6 for U P O do Generate the following cut and add it to rHC.s:
ř

rPΩ
1`
px̄,jq:OptruqXU‰H

xr ď Cj

7 else

8 O ÐEnergeticAlgorithm(Ojpx̄q, Cj) (see Algorithm 9)

9 if O ‰ H then

10 for U P O do Generate the following cut and add it to rHC.s: 1`
ř

rPΩ
1`
px̄,jq:OptruqXU‰H

pxr ´ 1q ď 0

11 end

12 end

13 end

14 if no cuts have been generated and x̄ is integer then

15 Cfeas ÐH

16 for each C P CpGpx̄qq do
/* Let CMPpx̄, Cq be the subproblem restricted to the CSs in connected component C and z pCMPpx̄, Cqq denotes

the value of the objective function (when a solution is found) */

17 Solve the MILP formulation of CMPpx̄, Cq that corresponds to the selected version of the subproblem

18 if no solution is found then

19 Generate the following cut and add it to rHC.s: 1`
ř

rP
`

Ť

jPC
Ω

1`
px̄,jq

˘

pxr ´ 1q ď 0

20 else

21 Cfeas Ð Cfeas Y tCu /* Only for versions DW and DWR

22 end

23 end

/* Only for versions DW and DWR

24 for every subset C of connected components of Cfeas do

25 if
ř

CPC
z pCMPpx̄, Cqq ą θ̄ then Generate the following cut and add it to rHC.s:

ˆ

ř

CPC
z pCMPpx̄, Cqq

˙ˆ

1`
ř

CPC

ř

rP
`

Ť

jPC
Ω

1`
px̄,jq

˘

pxr ´ 1q

˙

ď θ

26 end

27 end

28 if no cuts have been generated then

29 Save the solution result of calling the subproblem on the routes of Ω1` px̄q

30 end

5 Computational results

We considered the 120-instance testbed of Montoya et al. (2017) (available from http://www.vrp-rep.org/). In this

testbed, there are six sets of 20 instances, each with 10, 20, 40, 80, 160, or 320 customers. The EVs are Peugeot

iOns which have a consumption rate of 0.125 kWh/km and a battery of 16 kWh. We note that in these instances

the triangular inequalities hold for energy consumption. However, this assumption is not necessary for our model and

solution method. When dealing with the E-VRP-NL-C, we adapted each instance by fixing a number of chargers for

each CS. We decided to consider instances in which all the CSs have one or two chargers.
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The first aim of our computational experiments is to assess the performance of a commercial MIP solver for solving

small-size instances of the E-VRP-NL-C using the path-based formulation introduced in Section 3 (although the primary

motivation for introducing the latter formulation was to give a precise definition of the problem). These results are

presented in §5.1. The second aim of our computational experiments is to assess the quality of the ILS presented in §4.1

as a solution method for the E-VRP-NL. A comparison with results from the literature is presented in §5.2. The third

aim of our experiments is to assess the effectiveness of our algorithmic framework to build high-quality solutions to the

E-VRP-NL-C. We compare the results given by our matheuristic according to the version of the subproblem selected

during the assembly phase. These results are presented in §5.3.

We implemented all the algorithms using Java 8. In all the tables, the CPU time is given in seconds and rounded

to the nearest integer.

5.1 Results for the E-VRP-NL-C formulation

We considered the twenty 10-customer and the twenty 20-customer instances. We ran the path-based model with a

three-hour CPU time limit. We used Gurobi 8.1.1 through its Java API. The results were obtained using a standard PC

with an Intel(R) Core(TM) i7-9700K processor clocked at 3.6 GHz, equipped with 128 GB RAM, and running Debian

GNU/Linux 10. Each instance was executed on a single thread.

Table 2 reports the number of instances with a solution proven to be optimal (#Opt), the average CPU time in

seconds (Time) for these latter instances, and the average gap (Gap) for the remaining instances. We compute the gap

as pz ´ zLB
q{z, where z is the objective function value of the best integer solution returned by the solver, and zLB is

the best lower bound retrieved by the solver. The detailed results for all the tested instances are reported in Appendix

E.1.

Our results show that the path-based model cannot solve all the 10-customer instances to optimality within the CPU

time limit whereas the results in Froger et al. (2019) showed that they can be solved within an average computation

time of roughly four minutes when CS capacity constraints are ignored. We also observe that the 20-customer instances

are already very challenging for the model since zero instances were solved. As expected, since the linear relaxation

of the model is weak, we conclude that solving the MILP formulations with a commercial solver does not constitute

an efficient solution method for the E-VRP-NL-C. Still, 17 out of the 40 tested instances were optimally solved when

considering one or two chargers per CS (the number of chargers appears to have no impact).

Table 2: Computational results for the CS path-based formulation on the 10-customer and 20-customer in-

stances.

|I|
Capacity “ 1 Capacity “ 2

#Opt Time Gap #Opt Time Gap

10 17 873 22% 17 776 19%

20 0 - 32%˚ 0 - 29%˚

˚: There are 16 out of 20 instances for which the solver reaches the CPU time limit without finding any solution. They are not

considered when computing the gap.

5.2 Results for the E-VRP-NL

Since the route generator of our matheuristic essentially solves the E-VRP-NL, we wanted to assess its quality on this

problem. We considered the 120 instances of the original Montoya et al. (2017) testbed. Each instance was executed on

a single thread with 12 GB RAM and on a cluster of 27 computers, each having 12 cores and two Intel(R) Xeon® X5675

3.07 GHz processors. We performed 10 test runs for each instance using Algorithm 2 and compared the results with

those obtained in the E-VRP-NL literature through two solutions methods: the metaheuristic of Montoya et al. (2017)

which combines an ILS with a heuristic concentration (HC), and the large neighborhood search (LNS) of Koç et al.

(2018). Table 3 shows the results of this comparison. Given a number of customers in the instances, it reports for each

solution method the number of BKS to the E-VRP-NL (#BKS), the average gap to the BKS (Gap), and the average

number of routes in the best computed solution. We compute the gap as pz ´ z˚q{z, where z is the objective function
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value of the best solution returned by the solution method, and z˚ is the objective function value of the BKS. Table 3

also reports the average gap to the best average objective function value (Gap BA) as pzavg ´ z
˚
avgq{zavg, where zavg is

the average objective function value of the solutions obtained in 10 runs by the solution method, and z˚avg is the best

average (BA) objective function value obtained in 10 runs by one of the existing solution method for the E-VRP-NL.

The detailed results for all the tested instances are reported in Appendix E.2.

Table 3: Comparison of the results obtained by ILS with the results of Montoya et al. (2017) and Koç et al.

(2018) for the E-VRP-NL.

ILS + HC LNS ILS

2.33 GHz processor - 16GB of RAM 3.6 GHz processor - 32 GB of RAM 3.07 GHz processor - 12 GB of RAM

|I| #BKS Gap BKS #R Gap BA Time #BKS Gap BKS #R Gap BA Time #BKS Gap BKS #R Gap BA Time

10 20 0.0% 2.7 0.3% 6 20 0.0% 2.7 0.1% 8 20 0.0% 2.7 0.0% 5

20 11 0.3% 3.7 0.7% 11 12 0.2% 3.6 0.4% 14 20 0.0% 3.6 0.0% 8

40 3 1.0% 6.5 2.6% 35 6 0.9% 6.4 1.1% 45 20 0.0% 6.2 0.0% 20

80 0 3.8% 9.2 5.4% 80 0 3.8% 8.8 3.8% 99 20 0.0% 8.6 0.0% 64

160 0 7.3% 16.7 8.1% 568 0 7.7% 16.6 7.8% 632 20 0.0% 15.3 0.0% 295

320 0 11.2% 32.6 12.6% 4398 0 11.7% 32.6 12.4% 4555 20 0.0% 29.0 0.0% 1118

All 34 3.9% 11.9 4.9% 850 38 4.1% 11.8 4.3% 892 120 0.0% 10.9 0.0% 252

ILS + HC: (Montoya et al., 2017), LNS: (Koç et al., 2018).

The results presented in Table 3 clearly show that our ILS outperforms all existing methods for the E-VRP-NL. We

have identified 80 new BKS and matched the existing BKS for the remaining instances. We have improved the previous

solutions by about 4.0%. The improvement increases with the number of customers. The algorithm is also stable as

the average results on 10 test runs for each instance are better than those reported for previous methods. While it is

difficult to draw definitive conclusions on the computation times since these tests were run on different machines, it

seems that the ILS is at least as fast as the other methods, if not the fastest one. The major difference between our

method and the existing ones comes from the reoptimization of the charging decisions when evaluating a move and the

use of larger neighborhoods.

5.3 Results for the E-VRP-NL-C

We have performed several tests to assess the effectiveness of our matheuristic in obtaining high-quality solutions for

the E-VRP-NL-C. Each instance was executed on a single thread with 12 GB RAM and on a cluster of 27 computers,

each having 12 cores and two Intel(R) Xeon® X5675 3.07 GHz processors. We used Gurobi 7.5.0 (through its Java

API) to solve the MILP models.

After some preliminary experiments, we set the values of the parameters of the matheuristic as presented in Table 4.

Setting the stopping criterion to 12 iterations and the number of ILS iterations to 200 proved to be a good compromise

between solution quality and computation time. In some rare cases we were not able to optimally solve the assembly phase

using version DWR of the subproblem. Indeed, when it is difficult to find a solution satisfying the CS capacity constraints

or when such a solution does not exist, the MILP formulation becomes computationally expensive. Nonetheless, after

testing higher CPU time limits for the second component, we observed that the impact on the results was negligible.

Table 4: Value of the matheuristic parameters.

nmax α Tmin δmax τ τSP

12 0.9 0.67 ¨ Tmax 200 180 s 5 s

We first compare the results obtained by our matheuristic for the four versions of the subproblem used by the

solution assembler. For one or two chargers at each CS and each version of the subproblem, we performed 10 test runs

for each instance. Table 5 reports the best results obtained during our tests. Specifically, given a number of chargers
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per CS and a selected version of the subproblem used in the branch-and-cut algorithm, this table reports the number

of instances with a solution in each of the 10 tests (#F), the number of instances with the best solution (BS) to the

E-VRP-NL-C computed all over our tests (#BS), including those of the path-based formulation, and the average gap

to the BS (Gap BS). Table 6 reports the average CPU time in seconds over 10 runs for the whole algorithm (T ), and

for the first (T1) and second (T2) components. It also reports the average gap with respect to the best average objective

function value obtained using a given version of the subproblem (Gap BA). The gaps are computed as in §5.2. Detailed

results for all the tested instances are reported in Appendix E.3.

Table 5: Comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according to the

version of the subproblem it uses and the number of chargers at each CS.

Cap. |I|
Version N Version D Version DW Version DWR

#F #BS Gap BS #F #BS Gap BS #F #BS Gap BS #F #BS Gap BS

1

10 20 17 0.06% 20 20 0.00% 20 20 0.00% 20 20 0.00%

20 20 15 0.09% 20 20 0.00% 20 20 0.00% 20 20 0.00%

40 19 15 0.17% 19 18 0.01% 19 18 0.01% 19 19 0.00%

80 20 15 0.02% 20 20 0.00% 20 20 0.00% 20 20 0.00%

160 19 5 0.27% 20 13 0.06% 20 13 0.06% 20 15 0.09%

320 10 5 0.32% 20 1 0.28% 20 2 0.27% 20 13 0.10%

All 105 72 0.14% 119 92 0.06% 119 93 0.06% 119 107 0.03%

2

10 20 20 0.00% 20 20 0.00% 20 20 0.00% 20 20 0.00%

20 20 20 0.00% 20 20 0.00% 20 20 0.00% 20 20 0.00%

40 19 19 0.09% 20 20 0.00% 20 20 0.00% 20 20 0.00%

80 20 18 0.01% 20 20 0.00% 20 20 0.00% 20 19 0.01%

160 20 13 0.05% 20 10 0.18% 20 10 0.18% 20 14 0.09%

320 19 4 0.33% 20 9 0.12% 20 9 0.12% 20 8 0.17%

All 118 94 0.08% 120 99 0.05% 120 99 0.05% 120 101 0.05%

Table 6: Comparison of the average results obtained by the matheuristic for the E-VRP-NL-C according to

the version of the subproblem it uses and the number of chargers at each CS.

Cap. |I|
Version N Version D Version DW Version DWR

T T1 T2 Gap BA T T1 T2 Gap BA T T1 T2 Gap BA T T1 T2 Gap BA

1

10 6 5 1 0.06% 6 5 1 0.00% 6 5 1 0.00% 6 5 1 0.00%

20 11 10 1 0.09% 11 10 1 0.00% 11 10 1 0.00% 11 10 1 0.00%

40 24 23 1 0.31% 23 22 1 0.03% 23 22 1 0.03% 87 22 65 0.00%

80 74 73 1 0.10% 74 73 1 0.00% 73 72 1 0.00% 74 73 1 0.04%

160 340 335 5 0.45% 339 335 4 0.10% 340 336 4 0.10% 397 333 64 0.08%

320 1345 1274 71 0.34% 1480 1253 227 0.17% 1487 1259 228 0.15% 1933 1244 689 0.05%

All 300 287 13 0.22% 322 283 39 0.05% 323 284 39 0.05% 418 281 137 0.03%

2

10 5 5 0 0.00% 5 5 0 0.00% 5 5 0 0.00% 5 5 0 0.00%

20 10 10 0 0.00% 10 10 0 0.00% 10 10 0 0.01% 10 10 0 0.00%

40 23 23 0 0.05% 23 23 0 0.11% 23 23 1 0.09% 45 23 22 0.01%

80 73 72 1 0.18% 73 73 1 0.19% 73 73 1 0.25% 73 73 1 0.14%

160 336 334 2 0.24% 336 334 2 0.25% 337 335 2 0.24% 338 336 2 0.28%

320 1340 1279 61 0.21% 1283 1276 7 0.12% 1276 1269 7 0.14% 1327 1269 58 0.08%

All 298 287 11 0.11% 288 287 2 0.11% 287 286 2 0.12% 300 286 14 0.09%

First, it should be noted that our matheuristic returns an optimal solution for the 17 small-size instances for which

the MILP path formulation yields an optimal solution employing on average only around 2% of the computation time

the solver spent to reach the optimal solutions and less than 1% of the computation time the solver spent to prove

optimality. Considering that a single charger exists in each CS, we observe that using version N of the subproblem

prevents the algorithm from finding solutions to the E-VRP-NL-C for 15 instances. In this case, the algorithm finds the
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best solution (computed all over our tests) for only 72 out of 120 instances. Delaying the starting time of the routes

yields better solutions for 20 more instances. In contrast, allowing waiting times in version DW leads to very marginal

improvements, compared with version D. Indeed, making the EVs wait for an available charger can eliminate capacity

violations only if at least two CSs are visited in a route; otherwise it is sufficient to make the EVs leave the depot after

time 0, as is done in version D. Although the same requirement (more than one CS) holds when allowing the revision

of the amount of energy charged at the CSs in version DWR, the latter strategy yields almost all the best solutions to

the E-VRP-NL-C.

When increasing the number of chargers to two per CS, the capacity constraints become less binding and all our

assembly strategies yield very similar results. This was somewhat expected but it should be noted that delaying the

starting time of the routes increases the probability of ending up with a feasible solution.

The first general conclusion is that allowing delays when solving the CS capacity management subproblem is a suitable

and efficient way of to assembling high-quality solutions to the E-VRP-NL-C. Allowing the revision of the amounts of

energy charged at the CSs on top of it significantly improves the results, but it is slightly more computationally expensive

(Table 6). We also note that in general, most of the computation time is spent generating routes as assembling a solution

is usually very fast, especially when a cutoff value is provided to the branch-and-cut algorithm. Not surprisingly the

computation time increases with the number of customers but it remains reasonable since it takes around 30 minutes

to tackle the largest instances.

To assess the relevance of our cuts, we show in Table 7 the distribution of the different type of cuts generated in

the branch-and-cut tree. When the CS capacity constraints are very binding, the energetic reasoning based algorithm

detects infeasible route selections much more frequently than the fixed part based algorithm. We observe that due to

its high degree of flexibility, compared with the other versions, DWR requires solving the MILP formulation more often.

Indeed, the two previously mentioned algorithms are weaker in that case since the mandatory part of each charging

operation may have a very short duration due to the potential revision of the amount of energy charged at the CSs.

When we increase the number of chargers at each CS, the reasoning algorithms lead to the generation of fewer cuts. This

is not surprising since these are based on relaxations of the subproblem. However, they are useful since the generated

cuts are stronger, which avoids computationally expensive calls to the MILP solver. We also see that integer optimality

cuts are seldom generated. Since increases in the total time of the routes are penalized, the algorithm tends to avoid

adding waiting times. This indicates that revising the charging operations does not always lead to an increase in time,

and a trade-off between delay and a revision at no cost is often found. To support this conclusion, we have analyzed

the solutions returned by the matheuristic. Given the number of chargers at each CS, Table 8 reports the percentage

of solutions for which there exists at least one route with a delayed starting time, a waiting time before a charging

operation, and a revision of the amount of energy charged in the EV. We see that for most of the solutions returned by

the algorithm, satisfying the CS capacity constraints can be achieved without increasing the cost.

Table 7: Characteristics of the cuts generating in the solution assembly phase.

Cap.
Version D Version DW Version DWR

FP NRG BF FP NRG BF BO FP NRG BF BO

1 2.3% 94.5% 3.2% 2.3% 95.0% 2.5% 0.2% 0.6% 16.9% 80.5% 2.0%

2 29.0% 28.2% 42.8% 28.9% 27.1% 42.5% 1.5% 1.3% 0.7% 96.2% 1.8%

FP (feasibility cuts generated after calling the fixed part based algorithm), NRG (feasibility cuts generated after calling the energetic

based reasoning algorithm), BF (feasibility cuts of type generated after solving the MILP formulation), BO (optimality cuts of type

generated after solving the MILP formulation)

Since we have imposed a CPU time limit for the branch-and-cut execution and since the maximum route duration

limit may decrease according to the state of the solution method, no version of the subproblem dominates the other

versions. To perform a fair comparison between the different strategies, and to quantify the benefit of allowing the

addition of waiting times and the revision of the amount of energy charged at the CSs, we took the 2,400 long-term

pools of routes obtained at the end of the matheuristic for version DWR of the subproblem. For every pool of routes,

we ran the branch-and-cut algorithm to generate the best E-VRP-NL-C solution. Table 9 reports for each version of

the subproblem the number of pool of routes for which the algorithm obtains a feasible solution (#F), as well as the
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Table 8: Analysis of the solutions retrieved by the matheuristic.

Cap.

Version D Version DW Version DWR

“ “ ą “ “ ą ą ą

D D W D NRG W NRG R

1 42.1% 42.2% 1.7% 42.0% 17.4% 1.3% 6.3% 2.5%

2 11.7% 11.7% 0.0% 11.4% 8.5% 0.0% 0.4% 0.0%

D (delay), W (waiting time), NRG (revision of the amount of energy charged), R (removal), “ (no increase of the total time), ą (increase

of the total time)

best solution (#Best) among those obtained with the other versions on the same pool. It also shows the average gap

between the solution returned and the best solution obtained during these tests under all the assembly strategies. The

conclusions are very similar to those drawn from the results of the matheuristic. Compared to version N, version DWR

makes nearly 400 extra routes feasible when assuming one charger. Not surprisingly, when increasing the number of

chargers, the results tend to be more independent of the selected version of the subproblem.

Table 9: Comparison of the results of the branch-and-cut algorithm according to the different versions of the

subproblem.

Cap.
Version N Version D Version DW Version DWR

#F #Best Gap #F #Best Gap #F #Best Gap #F #Best Gap

1 1916 1361 0.315% 2262 2095 0.096% 2270 2112 0.091% 2307 2307 0.000%

2 2321 2125 0.073% 2390 2371 0.013% 2390 2371 0.013% 2390 2390 0.000%

Lastly, we compare the BKSs for the E-VRP-NL and those for the E-VRP-NL-C obtained for each instance in our

computational experiments. Table 10 reports aggregated results. The second column shows the number of BKSs to

the E-VRP-NL that are not feasible for the EVRP-NL-C. As expected, many BKSs to the E-VRP-NL are also BKSs

to the E-VRP-NL-C. Note that there is no obvious procedure to identify beforehand whether or not the CS capacity

constraints are binding for a given instance. The other columns focus on the case when the BKSs to the E-VRP-NL-

C and the E-VRP-NL are not equal. The third and fourth columns of the table show the number of BKSs that do

not have the same number of routes and the average gap in terms of the objective function between the BKSs to the

E-VRP-NL-C and the E-VRP-NL. We observe that i) the introduction of capacity constraints does not increase the

number of routes in the vast majority of the cases and ii) the increase in the objective function is limited. The fifth and

sixth columns of the table show the percentage of routes that make up the BKSs to both problems with and without

capacity (differentiating the case when the starting time is only delayed). While the CS capacity is not problematic in

many instances, when it is, the solutions differ widely.

Table 10: Comparison between the best known solutions to the E-VRP-NL and the E-VRP-NL-C.

Cap.
#BKSs #BKSs with ‰ Objective function % of routes

‰ number of routes deviation “ delayed ‰

1 53/119˚ 4/53 0.29% 36% 10% 54%

2 12/120 1/12 0.16% 38% 7% 55%

˚ No solution is known for a particular instance.

When a violation of the CS capacity constraints is observed for a BKS to the E-VRP-NL, we tested the use of version

DWR of the capacity management subproblem to resolve it. We observed that 31 out of the 53 solutions and eight out

of the 12 solutions can be repaired into a feasible solution to the E-VRP-NL-C when the capacity is equal to one and

two, respectively. We conclude that a risk is incurred if CS capacity constraints are only considered a posteriori.
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6 Conclusion and perspectives

We have modeled and solved an electric vehicle routing problem that embeds several features such as piecewise linear

charging functions, multiple charging technologies, and multiple stops at CSs. Our methodology explicitly considers

the fact that the number of EVs simultaneously charging at every CS is limited by the number of chargers. We have

proposed a continuous-time path-based formulation of the E-VRP-NL-C. Our results show that optimally solving even

small-size instances of the problem with a commercial MILP solver running this formulation is challenging. To handle

larger instances, we have developed an algorithmic framework which iteratively calls a route generator and a solution

assembler. The first component focuses on generating a pool of high-quality and diversified routes from solutions to

the E-VRP-NL obtained by means of an ILS metaheuristic. Computational experiments have shown that this first

component produces high quality E-VRP-NL solutions. Indeed, we have improved 80 out of 120 best-known E-VRP-NL

solutions. The second component assembles a solution to the E-VRP-NL-C by selecting a subset of routes from the

generated pool. We decomposed this assembly problem into a route selection problem and a CS capacity management

subproblem. We have designed a branch-and-cut algorithm based on this decomposition scheme. We have developed and

compared four versions of the CS capacity management subproblem, including a simple check of the capacity constraints,

the introduction of waiting times, and the revision of the charging amounts. Our results show that there exists a serious

risk of ending up with no solution if the method disregards the CS capacity constraints or if the routes cannot be

modified by the subproblem. Delaying the starting time and revising the amount of energy charged at the visited CSs

lessens this risk. Using more complex strategies to solve capacity violation issues at CSs does not significantly increase

the computation time and yields better solutions. The matheuristic is also able to find all optimal solutions of small-size

instances.

While our work focuses on CSs that are privately operated, it also applies if reserving chargers at CSs is possible

(which is very rare in practice). In this case, there may be time windows when chargers cannot be reserved. We can deal

with these periods of unavailability in our matheuristic by inserting dummy operations (fixed in time) in the capacity

management subproblem, and by slightly adapting the labeling algorithm used to insert charging decisions in the ILS.
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A Experiments on the feasibility of solutions from the literature

when considering capacitated CSs

We verified the feasibility of the 120 best-known solutions (BKSs) for the E-VRP-NL reported in Montoya et al. (2017),

by limiting the number of chargers per CS to one, two, three, and four. Table 11 presents the results of our experiments.

We observe that if there exists only one charger at each CS, then almost half of the solutions are infeasible (i.e., they

violate the capacity constraints). This proportion drops to 11% when allowing two chargers per station, and four

chargers at each CS are needed to ensure the feasibility of all solutions. In practice, however, there are usually only one

or two chargers available at each CS.

Table 11: Results of the feasibility tests performed on the best solutions obtained in (Montoya et al., 2017)

(All CSs have the same number of chargers).

Experiment # Infeasible

solutions

Average duration with

capacity violation

Average #EVs during

capacity violation

C1 55/120 32 min 2.1

C2 23/120 23 min 3.2

C3 3/120 33 min 4.0

C4 0/120 0 min 0.0

B Implementation details for the ILS

Our implementation of the ILS is based on the static move descriptor (SMD) concept. An SMD is static information

that describes a move independently of the current solution. A cost tag is associated with every SMD to store its

evaluation and it is updated throughout the LS. By storing SMDs in special data structures, one can access and update

the moves in an efficient way in order to reduce computation time. Specifically, SMDs are stored in a priority queue

(PQ) and organized according to their dynamic cost tag. The exploration of a neighborhood consists in looping over

the PQ until a feasible SMD can be applied. Then, to avoid unnecessary reevaluations of moves, only the cost tag

of the SMDs impacted by the previously applied SMD is updated. One major difference with the previous use of the

SMD framework lies in the complexity of the evaluation of the moves. To our knowledge, until now there has been

an emphasis on feasibility issues when using the SMD framework. Indeed, since checking the feasibility of each move

can be time consuming, this is only done during the exploration phase of the neighborhood. In our case, not only the

feasibility of a move can be computationally expensive to check, but also its evaluation.

Our SMD implementation is inspired by the one proposed by Beek et al. (2018) who implemented the PQ with a

binary heap1. For every operator, we use a matrix data structure to store all the SMDs. We build these matrices during

the initialization phase of the algorithm and we store them during the entire runtime of the algorithm. To avoid a

computationally expensive initialization phase of the ILS, the cost tag of each SMD is set equal to the value computed

after the first step of the evaluation (see §4.1.1). Since we are only interested in the moves that can potentially improve

the current solution, only those SMDs with a cost tag strictly below 0 need consideration (we refer to them as improving

SMDs). Throughout the algorithm, we use two binary heaps to store potentially improving SMDs: an “exact” binary

heap (EBH) for the SMDs that are exactly evaluated and a “approximate” binary heap (ABH) for the remaining SMDs.

In the initialization of the algorithm, we add to EBH all the improving SMDs that are exactly evaluated using the

first step, and we add to ABH the other improving SMDs. When we start exploring a neighborhood, we apply the

first move in EBH if it is not empty. Otherwise, we iterate over ABH. We apply the second step of the evaluation to

compute the exact cost tag of each SMD in ABH until we find an improving move or we reach the end of the heap.

1A binary heap is a complete binary tree satisfying the heap ordering property: the value of the key stored in each node is less

than or equal to the value of the keys in the node’s children.

26



After selecting a move m, we update the values of the SMDs if they contain at least one node in the routes impacted by

m. Although in some cases the cost tag of a certain number of these SMDs may remain identical, we want to keep the

SMD framework as simple as possible. To avoid a computationally expensive update phase, each cost tag is set equal

to the value computed during the first step evaluation. It can therefore be a lower bound on the exact evaluation of

the move. In contrast with Beek et al. (2018), we keep cross-operator effects, meaning that we update the cost tag of

SMDs associated with other operators. However, we perform this update for the other operators only when the search

moves to them. To this end, we associate with each route the iteration number for which has been lastly updated, and

to each operator the iteration number for which it has last been called (we increment the iteration number each time

the search accepts a move or changes operator).

C Algorithmic details for the ILS

Algorithm 5 describes the general scheme of the VND search phase. Algorithm 6 describes the move evaluation procedure.

Algorithm 5: The VND algorithm

Input : a solution s0 to the E-VRP-NL and a maximum route duration limit T

Output: a solution sR to the E-VRP-NL and a solution sO (possibly equal to NULL) to the E-VRP-NL-C

Procedure VND(s0,T):

/* We denote fpsq the value of the objective function for a solution s and we assume fpNULLq “ `8*/

sR Ð s0, sO Ð NULL, k Ð 0

N Ð r(1-0,2-0 vertex exchanges), (1-1,2-1,2-2 vertex exchanges), (2-opt intra and inter-routes), separates

while k ă |N | do

/* The procedure searchpNrks, s, T q searches an improving solution to s in the neighborhood Nrks respecting the

maximum route duration limit T. It uses Algorithm 6 for move evaluation */

s1 Ð searchpNrks, sR, T q /* s1 “ NULL if no improving solution is found */

if s1 is a solution to the E-VRP-NL-C and fps1q ă fpsOq then sO Ð s1

if fps1q ă fpsRq then sR Ð s1, k Ð 0

else k Ð k ` 1

end

return psR, sOq

D Algorithmic details for the branch-and-cut algorithm

Algorithm 7 describes the procedure to check the CS capacity constraints for version N of the subproblem. Algorithm

8 and Algorithm 9 provide a detailed description of the fixed part and energy reasoning based algorithms.
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Algorithm 6: Evaluation of a move
Input : a move m and a maximum route duration limit T

Output: a couple (c,b) where c is a lower estimation of the move evaluation and b is a boolean equal to true if the move

is exactly evaluated or if it is a non-improving move and it is equal to false otherwise.

Procedure EvaluateMove(m,T):

/* The evaluation of an infeasible move is set to 8 */

bÐ true, cÐ ´CurrentDuration(Rm) /* Rm denotes the routes impacted by move m */

/* Let R1m denotes the newly created or modified routes obtained after applying move m */

for each route r P R1m do
tÐ DurationWithoutCharging(r)

if t ą T then return (8,true) /* The move m is infeasible */ ;

if EnergyConsumptionWithoutCharging(r)ď Q then
(cr,br) Ð (t,true)

else

tÐ t ` DetourAndChargingDurationLB(r) /* The computation of the lower bound

if t ą T then return (8,true) /* The move m is infeasible */ ;

if the duration of r is in the cache memory then (cr,br) Ð (DurationFromMemory(r),true) else (cr,br) Ð

(t,false)

end

cÐ c` cr

if br “ false then bÐ false

end

if c ě 0 then bÐ true /* The move m is non-improving */

return (c,b)

Algorithm 7: Checking the violation of capacity constraints for version N of the subproblem

Input : a list of charging operations L numbered from 1 to n (Lris denotes the operation at position i in the list L) / an

integer number C ě 1 representing the maximum number of operations that can be scheduled simultaneously

Output: a set containing all the maximal subsets of charging operations leading to a violation of the CS capacity

constraint

Procedure CheckCapacityCut(O,C):

Sort the operations in L in non-decreasing order of their starting time /* if two charging operations have the same

starting time, then the charging operation with the minimum duration comes first */

O ÐH /* subsets of charging operations leading to a violation of the CS capacity constraint*/

U Ð tLr1su /* subset of charging operations currently executed */

k Ð 2, excess Ð false

while k ď n do

for every operation o P U do

if SpLrksq ě Spoq ` dpoq then
if excess then O Ð O Y tUu, excess Ð false

else U Ð Uztou

end

end

U Ð U Y tLrksu

if |U | ą C then excess Ð true

end

if excess then O Ð O Y tUu
return U
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Algorithm 8: The fixed part based algorithm

Input : a list of charging operations O numbered from 1 to n (Orks denotes the operation at position k in the list O) /

an integer number C ě 1 representing the maximum number of operations that can be scheduled

simultaneously

Output: a set containing all the maximal subsets of charging operations leading to a violation of the CS capacity

constraint

1 Procedure FixedPartAlgorithm(O,C):

2 Remove from O all the charging operations such that LSpoq ě ESpoq ` dpoq

3 Sort the operations in O in non-decreasing order of starting time /* if two charging operations have the same

starting time, then the charging operation with the minimum duration comes first */

4 O ÐH /* subsets of charging operations leading to a violation of the CS capacity constraint */

5 U Ð tOr1su /* subset of charging operations currently executed */

6 k Ð 2, excess Ð false

7 while k ď n do

8 for every operation o P U do

9 if LSOrks ě ESpoq ` dpoq then

10 if excess then O Ð O Y tUu, excess Ð false

11 else U Ð Uztou

12 end

13 end

14 U Ð U Y tOrksu

15 if |U | ą C then excess Ð true

16 k Ð k ` 1

17 end

18 if excess then O Ð O Y tUu
19 return O

Algorithm 9: The energy reasoning based algorithm

Input : a set of charging operations O / an integer number C ě 1 representing the maximum number of operations

that can be scheduled simultaneously

Output: a set containing all subsets of charging operations leading to a violation of the CS capacity constraint

1 Procedure EnergyAlgorithm(O,C):

2 T1 :“
Ť

oPO ptESpoqu Y tESpoq ` dpoqu Y tLSpoquq

3 T2 :“
Ť

oPO ptLSpoq ` dpoqu Y tESpoq ` dpoqu Y tLSpoquq

4 T ptq :“
Ť

oPOtESpoq ` LSpoq ` dpoq ´ tu

5 T “ tpt1, t2q P T1 ˆ T2u Y tpt1, t2q P T1 ˆ T pt1qu Y tpt1, t2q P T pt2q ˆ T2u

6 O ÐH /* subsets of charging operations leading to a violation of the CS capacity constraint */

7 for pt1, t2q P T do

/* W po, t1, t2q :“ mint0, t2 ´ t1, p
`
o pt1q, p

´
o pt2qu with p`o pt1q :“ maxt0, dpoq ´maxt0, t1 ´ ESpoquu (duration during

which o is executed after time t1 if it is scheduled as soon as possible) and

p´o pt2q :“ maxt0, dpoq ´maxt0, LSpoq ` dpoq ´ t2uu (duration during which o is executed before time t2 if it is

scheduled as late as possible) */

8 if t1 ă t2 ^
ř

oPOW po, t1, t2q ą Cpt2 ´ t1q then

9 O Ð O
Ť

tto P O : W po, t1, t2q ą 0uu

10 end

11 end

12 return O
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E Detailed computational results

Based on notation introduced by Montoya et al. (2017), we write each instance using the symbol tcγ1cγ2sγ3cγ4# where

γ1 is the method used to place the customers (i.e., 0: randomization, 1: mixture of randomization and clustering, 2:

clustering), γ2 is the number of customers, γ3 is the number of the CSs, γ4 is ‘t’ if we use a p-median heuristic to locate

the CSs and ‘f’ otherwise, and # is the number of the instance for each combination of parameters (i.e., # = 0 , 1 , 2 ,

3 , 4).

E.1 Detailed results for the E-VRP-NL-C formulation

Table 12 reports the detailed results obtained by a commercial MILP solver (Gurobi) for solving the E-VRP-NL-C using

the CS path-based formulation.

E.2 Detailed results for the E-VRP-NL

Tables 13 and 14 report the detailed results obtained by our ILS and two methods from the literature on the E-VRP-NL

(Montoya et al., 2017; Koç et al., 2018). The best values (objective function value of the BKS and best average value

of the objective function obtained over 10 runs) are indicated in boldface.

E.3 Detailed results for the E-VRP-NL-C

Tables 15, 16, 17, and 18 report the detailed results obtained by our matheuristic on the E-VRP-NL-C instances. The

best values (objective function value of the BKS and best average value of the objective function obtained over 10 runs)

are indicated in boldface.
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Table 12: Detailed results for the path-based MILP formulation on 10-customer and 20-customer instances.

Instance
Capacity“ 1 Capacity“ 2

Obj Time Obj Time

tc0c10s2cf1 19.75 51 19.75 58

tc0c10s2ct1 12.30 43 12.30 45

tc0c10s3cf1 19.75 4838 19.75 3825

tc0c10s3ct1 10.80 91 10.80 96

tc1c10s2cf2 9.03 18 9.03 19

tc1c10s2cf3 16.37 373 16.37 200

tc1c10s2cf4 16.10 80 16.10 64

tc1c10s2ct2 10.75 3198 10.75 3602

tc1c10s2ct3 13.17 20 13.17 16

tc1c10s2ct4 13.83 24 13.83 17

tc1c10s3cf2 9.03 64 9.03 38

tc1c10s3cf3 16.37 730 16.37 1208

tc1c10s3cf4 14.90 350 14.90 270

tc1c10s3ct2 9.20 2173 9.20 1494

tc1c10s3ct3 13.02 264 13.02 201

tc1c10s3ct4 13.21 116 13.21 107

tc2c10s2cf0 21.77 T.L. 21.77 T.L.

tc2c10s2ct0 12.45 2407 12.45 1932

tc2c10s3cf0 21.77 T.L. 21.77 T.L.

tc2c10s3ct0 11.51 T.L. 11.51 T.L.

tc0c20s3cf2 27.94 T.L. 28.33 T.L.

tc0c20s3ct2 17.37 T.L. 17.60 T.L.

tc0c20s4cf2 * T.L. * T.L.

tc0c20s4ct2 18.39 T.L. 18.23 T.L.

tc1c20s3cf1 22.37 T.L. * T.L.

tc1c20s3cf3 * T.L. * T.L.

tc1c20s3cf4 * T.L. 19.29 T.L.

tc1c20s3ct1 * T.L. * T.L.

tc1c20s3ct3 * T.L. * T.L.

tc1c20s3ct4 * T.L. * T.L.

tc1c20s4cf1 * T.L. * T.L.

tc1c20s4cf3 * T.L. * T.L.

tc1c20s4cf4 * T.L. * T.L.

tc1c20s4ct1 * T.L. * T.L.

tc1c20s4ct3 * T.L. * T.L.

tc1c20s4ct4 * T.L. * T.L.

tc2c20s3cf0 * T.L. * T.L.

tc2c20s3ct0 * T.L. * T.L.

tc2c20s4cf0 * T.L. * T.L.

tc2c20s4ct0 * T.L. * T.L.

T.L.: CPU time limit reached

˚: no feasible solution found within the CPU time limit.
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Table 13: Detailed comparison of the results obtained by ILS with the results of Montoya et al. (2017) and

Koç et al. (2018) for the E-VRP-NL (instances with 10, 20, or 40 customers)

ILS + HC LNS ILS ILS + HC LNS ILS

Instance BKS Best #R Best #R Best #R BA Avg Time Avg Time Avg Time

tc0c10s2cf1 19.75 19.75 3 19.75 3 19.75 3 19.75 20.12 4 19.77 8 19.75 5

tc0c10s2ct1 12.30 12.30 2 12.30 2 12.30 2 12.30 12.34 4 12.31 8 12.30 3

tc0c10s3cf1 19.75 19.75 3 19.75 3 19.75 3 19.75 20.12 4 19.76 7 19.75 5

tc0c10s3ct1 10.80 10.80 2 10.80 2 10.80 2 10.80 10.80 5 10.81 8 10.80 5

tc1c10s2cf2 9.03 9.03 3 9.03 3 9.03 3 9.03 9.07 2 9.04 9 9.03 4

tc1c10s2cf3 16.37 16.37 3 16.37 3 16.37 3 16.37 16.37 6 16.38 9 16.37 5

tc1c10s2cf4 16.10 16.10 3 16.10 3 16.10 3 16.10 16.10 5 16.11 7 16.10 5

tc1c10s2ct2 10.75 10.75 3 10.75 3 10.75 3 10.75 10.75 4 10.76 8 10.75 3

tc1c10s2ct3 13.17 13.17 2 13.17 2 13.17 2 13.17 13.18 8 13.18 9 13.17 6

tc1c10s2ct4 13.83 13.83 2 13.83 2 13.83 2 13.83 13.83 5 13.84 9 13.83 5

tc1c10s3cf2 9.03 9.03 3 9.03 3 9.03 3 9.03 9.06 2 9.04 10 9.03 5

tc1c10s3cf3 16.37 16.37 3 16.37 3 16.37 3 16.37 16.37 6 16.39 8 16.37 3

tc1c10s3cf4 14.90 14.90 3 14.90 3 14.90 3 14.90 14.90 7 14.91 8 14.90 2

tc1c10s3ct2 9.20 9.20 3 9.20 3 9.20 3 9.20 9.34 5 9.21 9 9.20 6

tc1c10s3ct3 13.02 13.02 2 13.02 2 13.02 2 13.02 13.02 10 13.03 7 13.02 5

tc1c10s3ct4 13.21 13.21 2 13.21 2 13.21 2 13.21 13.21 6 13.22 9 13.21 5

tc2c10s2cf0 21.77 21.77 3 21.77 3 21.77 3 21.77 21.77 9 21.78 8 21.77 6

tc2c10s2ct0 12.45 12.45 3 12.45 3 12.45 3 12.45 12.45 5 12.46 8 12.45 6

tc2c10s3cf0 21.77 21.77 3 21.77 3 21.77 3 21.77 21.77 9 21.79 7 21.77 3

tc2c10s3ct0 11.51 11.51 3 11.51 3 11.51 3 11.51 11.54 7 11.52 9 11.51 5

tc0c20s3cf2 27.47 27.60 4 27.47 4 27.47 4 27.47 27.66 12 27.52 12 27.47 10

tc0c20s3ct2 17.08 17.08 3 17.08 3 17.08 3 17.08 17.13 8 17.11 18 17.08 6

tc0c20s4cf2 27.47 27.48 4 27.60 4 27.47 4 27.47 27.61 13 27.65 14 27.47 9

tc0c20s4ct2 16.99 16.99 3 16.99 3 16.99 3 16.99 17.10 9 17.02 16 16.99 9

tc1c20s3cf1 17.49 17.50 3 17.50 3 17.49 3 17.49 17.53 12 17.53 13 17.49 10

tc1c20s3cf3 16.44 16.63 4 16.48 3 16.44 3 16.44 16.78 8 16.50 17 16.44 7

tc1c20s3cf4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 4 17.03 15 17.00 5

tc1c20s3ct1 18.94 18.95 4 18.95 4 18.94 4 18.94 19.38 15 18.97 14 18.94 9

tc1c20s3ct3 12.60 12.65 3 12.60 3 12.60 3 12.60 12.72 9 12.62 17 12.60 9

tc1c20s3ct4 16.21 16.21 4 16.21 4 16.21 4 16.21 16.25 5 16.24 11 16.21 8

tc1c20s4cf1 16.38 16.39 4 16.47 3 16.38 4 16.38 16.40 13 16.49 18 16.38 6

tc1c20s4cf3 16.44 16.56 3 16.48 3 16.44 3 16.44 16.80 9 16.51 11 16.44 11

tc1c20s4cf4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 4 17.03 15 17.00 8

tc1c20s4ct1 17.80 18.25 4 18.25 4 17.80 4 17.80 18.32 16 18.28 18 17.80 11

tc1c20s4ct3 14.43 14.43 3 14.43 3 14.43 3 14.43 14.50 8 14.46 12 14.43 7

tc1c20s4ct4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 6 17.03 11 17.00 6

tc2c20s3cf0 24.68 24.68 4 24.68 4 24.68 4 24.68 24.68 14 24.70 11 24.68 7

tc2c20s3ct0 25.79 25.79 4 25.79 4 25.79 4 25.79 25.79 15 25.83 15 25.79 10

tc2c20s4cf0 24.67 24.67 4 24.67 4 24.67 4 24.67 24.69 15 24.71 13 24.67 11

tc2c20s4ct0 26.02 26.02 4 26.03 4 26.02 4 26.02 26.02 15 26.07 16 26.02 9

tc0c40s5cf0 32.20 32.67 8 32.67 8 32.20 7 32.30 33.25 24 32.75 52 32.30 16

tc0c40s5cf4 30.25 30.77 6 30.60 6 30.25 6 30.25 31.49 33 30.69 49 30.25 22

tc0c40s5ct0 27.91 28.72 7 28.70 7 27.91 6 27.91 29.35 25 28.78 46 27.91 17

tc0c40s5ct4 28.63 28.63 6 29.17 5 28.63 6 28.63 28.72 33 29.25 59 28.63 18

tc0c40s8cf0 30.40 31.28 7 31.23 7 30.40 6 30.40 32.02 34 31.31 63 30.40 18

tc0c40s8cf4 28.11 29.32 6 28.25 5 28.11 5 28.23 29.86 43 28.30 52 28.23 25

tc0c40s8ct0 26.22 26.35 6 26.22 6 26.22 6 26.22 26.89 29 26.27 58 26.22 17

tc0c40s8ct4 29.07 29.20 6 29.22 6 29.07 5 29.07 29.27 47 29.28 48 29.07 22

tc1c40s5cf1 64.51 65.16 10 65.52 10 64.51 10 64.51 66.03 44 65.67 33 64.51 25

tc1c40s5ct1 52.33 52.68 9 52.60 9 52.33 8 52.33 53.36 59 52.72 40 52.33 23

tc1c40s8cf1 40.64 40.75 7 41.63 7 40.64 7 40.64 42.33 70 41.71 34 40.64 21

tc1c40s8ct1 40.18 40.56 7 40.56 7 40.18 7 40.18 41.19 71 40.67 49 40.18 24

tc2c40s5cf2 27.54 27.54 6 27.54 6 27.54 6 27.54 27.67 32 27.62 42 27.54 17

tc2c40s5cf3 19.65 19.74 5 19.65 5 19.65 5 19.65 20.18 17 19.70 50 19.65 21

tc2c40s5ct2 26.91 26.91 6 26.91 6 26.91 6 26.91 27.02 23 26.99 42 26.91 14

tc2c40s5ct3 23.39 23.54 6 23.71 6 23.39 6 23.39 23.77 26 23.75 51 23.39 22

tc2c40s8cf2 27.13 27.15 6 27.14 6 27.13 6 27.13 27.31 29 27.20 35 27.13 16

tc2c40s8cf3 19.65 19.66 5 19.65 5 19.65 5 19.65 20.24 19 19.69 36 19.65 22

tc2c40s8ct2 26.28 26.33 6 26.29 6 26.28 6 26.28 26.71 26 26.34 40 26.28 16

tc2c40s8ct3 22.45 22.71 5 22.45 5 22.45 5 22.45 23.23 25 22.52 30 22.45 24
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Table 14: Detailed comparison of the results obtained by ILS with the results of Montoya et al. (2017) and

Koç et al. (2018) for the E-VRP-NL (instances with 80, 160, or 320 customers)

ILS + HC LNS ILS ILS + HC LNS ILS

Instance BKS Best #R Best #R Best #R BA Avg Time Avg Time Avg Time

tc0c80s12cf0 34.16 34.64 9 35.24 8 34.16 8 34.16 35.59 57 35.40 105 34.16 66

tc0c80s12cf1 40.91 42.90 10 42.30 9 40.91 9 40.94 44.07 75 42.47 85 40.94 68

tc0c80s12ct0 37.51 39.31 9 39.27 9 37.51 8 38.08 39.83 66 39.41 86 38.08 65

tc0c80s12ct1 39.91 41.94 10 41.64 9 39.91 9 40.06 43.03 73 41.83 103 40.06 59

tc0c80s8cf0 39.08 39.43 9 40.64 10 39.08 9 39.16 39.86 56 40.77 88 39.16 48

tc0c80s8cf1 43.38 45.23 10 46.65 9 43.38 9 43.95 45.73 121 46.80 98 43.95 73

tc0c80s8ct0 40.52 41.90 10 41.44 9 40.52 9 41.44 42.76 54 41.59 87 41.44 61

tc0c80s8ct1 43.85 45.27 10 45.25 10 43.85 9 44.07 45.85 130 45.37 100 44.07 73

tc1c80s12cf2 28.65 29.54 8 29.54 8 28.65 7 28.77 30.73 61 29.66 113 28.77 52

tc1c80s12ct2 28.73 29.52 8 29.38 8 28.73 8 29.18 30.66 59 29.47 114 29.18 54

tc1c80s8cf2 29.15 30.81 8 31.38 8 29.15 8 29.15 31.83 51 31.47 94 29.15 51

tc1c80s8ct2 30.45 31.74 8 31.72 8 30.45 8 30.52 32.36 60 31.82 98 30.52 57

tc2c80s12cf3 30.60 31.97 9 31.28 8 30.60 8 30.60 32.70 76 31.37 105 30.60 57

tc2c80s12cf4 42.10 43.89 9 43.69 9 42.10 9 42.14 44.97 131 43.81 86 42.14 83

tc2c80s12ct3 29.90 30.83 9 30.31 8 29.90 8 29.90 31.59 58 30.39 114 29.90 54

tc2c80s12ct4 40.27 42.40 9 42.56 9 40.27 9 40.27 42.82 134 44.68 103 40.27 74

tc2c80s8cf3 31.70 32.44 9 31.94 8 31.70 8 31.93 32.60 64 32.06 87 31.93 55

tc2c80s8cf4 46.03 49.29 10 49.67 10 46.03 9 46.78 49.69 100 49.84 128 46.78 93

tc2c80s8ct3 31.38 32.31 9 32.71 9 31.38 8 31.43 32.55 65 32.82 89 31.43 65

tc2c80s8ct4 43.83 44.83 10 44.16 10 43.83 9 44.00 46.61 111 44.31 103 44.00 75

tc0c160s16cf2 57.91 61.20 16 62.09 15 57.91 15 58.00 62.99 365 62.55 442 58.00 242

tc0c160s16cf4 76.90 82.92 18 82.77 18 76.90 16 77.55 83.84 1213 83.41 709 77.55 367

tc0c160s16ct2 57.64 59.90 15 59.75 15 57.64 15 57.73 62.80 342 60.29 811 57.73 247

tc0c160s16ct4 76.14 82.37 18 82.90 18 76.14 16 76.90 83.08 945 83.85 983 76.90 353

tc0c160s24cf2 56.32 59.27 15 59.26 15 56.32 14 56.76 60.92 403 59.79 732 56.76 253

tc0c160s24cf4 75.53 81.44 18 81.43 18 75.53 16 76.30 82.13 1209 82.33 595 76.30 370

tc0c160s24ct2 55.42 59.25 16 59.67 16 55.42 14 56.47 60.19 410 60.21 915 56.47 253

tc0c160s24ct4 75.05 80.96 18 81.38 18 75.05 16 75.87 82.11 957 82.21 436 75.87 372

tc1c160s16cf0 74.54 79.80 18 79.76 18 74.54 16 75.32 80.75 766 80.52 420 75.32 327

tc1c160s16cf3 66.45 71.76 17 71.98 17 66.45 15 67.20 72.75 462 72.77 729 67.20 307

tc1c160s16ct0 74.20 79.04 17 80.21 17 74.20 16 75.31 79.90 643 80.99 472 75.31 326

tc1c160s16ct3 65.31 73.29 17 73.24 17 65.31 15 66.20 75.11 279 73.82 750 66.20 289

tc1c160s24cf0 73.62 78.60 17 79.48 17 73.62 16 74.05 79.30 741 80.32 460 74.05 331

tc1c160s24cf3 62.90 68.56 17 68.73 17 62.90 15 63.64 69.57 483 69.28 522 63.64 282

tc1c160s24ct0 73.34 78.21 17 78.32 17 73.34 16 74.00 79.35 578 79.05 553 74.00 319

tc1c160s24ct3 63.19 68.72 17 69.17 17 63.19 15 63.66 69.98 358 69.76 889 63.66 280

tc2c160s16cf1 56.65 60.34 16 60.25 15 56.65 14 57.39 61.26 274 60.70 716 57.39 252

tc2c160s16ct1 55.37 60.27 15 59.86 15 55.37 14 55.52 60.62 288 60.40 408 55.52 232

tc2c160s24cf1 56.70 59.82 16 60.01 16 56.70 14 57.27 61.14 305 60.63 564 57.27 260

tc2c160s24ct1 55.03 59.13 16 59.97 15 55.03 14 55.15 59.72 340 60.53 531 55.15 238

tc1c320s24cf2 133.32 152.13 36 153.12 36 133.32 31 133.99 153.99 7106 154.65 4155 133.99 1287

tc1c320s24cf3 106.43 117.48 30 117.39 30 106.43 28 107.00 118.36 3066 118.43 3258 107.00 1060

tc1c320s24ct2 131.63 148.77 36 148.57 36 131.63 30 132.49 154.13 6853 149.89 4727 132.49 1231

tc1c320s24ct3 105.93 116.64 31 117.50 31 105.93 27 106.67 119.17 3274 118.53 5105 106.67 1045

tc1c320s38cf2 129.19 141.63 33 142.25 33 129.19 30 129.76 147.08 7236 144.17 4249 129.76 1178

tc1c320s38cf3 106.01 116.22 30 117.31 30 106.01 28 106.36 117.74 3114 118.78 5978 106.36 1129

tc1c320s38ct2 128.82 140.96 32 142.75 32 128.82 30 129.51 145.09 6974 144.50 6078 129.51 1167

tc1c320s38ct3 105.73 116.07 30 117.91 30 105.73 27 106.74 117.71 3063 119.40 3157 106.74 1186

tc2c320s24cf0 158.80 182.45 38 182.90 38 158.80 33 160.55 186.94 6566 185.27 4014 160.55 1343

tc2c320s24cf1 87.46 95.51 29 95.71 29 87.46 26 87.64 96.42 1456 96.81 5150 87.64 890

tc2c320s24cf4 111.16 122.74 32 122.83 32 111.16 28 111.62 124.68 3681 124.51 3923 111.62 989

tc2c320s24ct0 159.70 181.45 37 182.29 37 159.70 33 160.49 186.23 7204 183.80 6191 160.49 1309

tc2c320s24ct1 87.25 94.73 27 94.97 27 87.25 26 87.83 96.49 1259 95.96 3530 87.83 863

tc2c320s24ct4 111.09 121.94 32 122.09 32 111.09 28 111.62 123.85 4274 123.45 5196 111.62 1041

tc2c320s38cf0 158.70 176.92 37 178.17 37 158.70 33 159.53 182.31 6734 179.81 3350 159.53 1356

tc2c320s38cf1 86.92 94.29 28 95.73 28 86.92 26 87.25 95.07 1602 96.79 5343 87.25 890

tc2c320s38cf4 109.80 122.32 32 122.26 32 109.80 28 110.66 123.47 2661 123.46 3724 110.66 1087

tc2c320s38ct0 158.71 190.97 41 192.23 41 158.71 33 159.35 192.15 7637 194.66 4448 159.35 1374

tc2c320s38ct1 86.59 94.53 28 94.66 28 86.59 26 86.97 95.29 1409 95.87 3973 86.97 894

tc2c320s38ct4 110.05 121.66 32 121.64 32 110.05 28 110.55 123.15 2785 123.06 5554 110.55 1034
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Table 15: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 1 (instances with 10,

20, or 40 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c10s2cf1 5 10 19.75 19.75 5 10 19.75 19.75 6 10 19.75 19.75 5 10 19.75 19.75 19.75 19.75

tc0c10s2ct1 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 12.30 12.30

tc0c10s3cf1 5 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 19.75 19.75

tc0c10s3ct1 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 10.80 10.80

tc1c10s2cf2 5 10 9.03 9.03 5 10 9.03 9.03 6 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s2cf3 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 16.37 16.37

tc1c10s2cf4 5 10 16.10 16.10 6 10 16.10 16.10 5 10 16.10 16.10 6 10 16.10 16.10 16.10 16.10

tc1c10s2ct2 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 10.75 10.75

tc1c10s2ct3 5 10 13.25 13.25 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 13.17 13.17

tc1c10s2ct4 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 13.83 13.83

tc1c10s3cf2 4 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s3cf3 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 16.37 16.37

tc1c10s3cf4 3 10 14.90 14.90 4 10 14.90 14.90 4 10 14.90 14.90 4 10 14.90 14.90 14.90 14.90

tc1c10s3ct2 7 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 9.20 9.20

tc1c10s3ct3 5 10 13.02 13.02 6 10 13.02 13.02 6 10 13.02 13.02 6 10 13.02 13.02 13.02 13.02

tc1c10s3ct4 5 10 13.21 13.21 6 10 13.21 13.21 6 10 13.21 13.21 5 10 13.21 13.21 13.21 13.21

tc2c10s2cf0 5 10 21.83 21.83 5 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 21.77 21.77

tc2c10s2ct0 5 10 12.45 12.45 5 10 12.45 12.45 4 10 12.45 12.45 5 10 12.45 12.45 12.45 12.45

tc2c10s3cf0 4 10 21.83 21.83 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 21.77 21.77

tc2c10s3ct0 6 10 11.51 11.51 6 10 11.51 11.51 6 10 11.51 11.51 6 10 11.51 11.51 11.51 11.51

tc0c20s3cf2 12 10 27.62 27.62 12 10 27.47 27.47 11 10 27.47 27.47 12 10 27.47 27.47 27.47 27.47

tc0c20s3ct2 8 10 17.08 17.08 8 10 17.08 17.08 7 10 17.08 17.08 8 10 17.08 17.08 17.08 17.08

tc0c20s4cf2 10 10 27.62 27.62 10 10 27.47 27.47 10 10 27.47 27.47 9 10 27.47 27.47 27.47 27.47

tc0c20s4ct2 10 10 16.99 16.99 10 10 16.99 16.99 10 10 16.99 16.99 11 10 16.99 16.99 16.99 16.99

tc1c20s3cf1 12 10 17.49 17.49 12 10 17.49 17.49 13 10 17.49 17.49 12 10 17.49 17.49 17.49 17.49

tc1c20s3cf3 9 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 10 10 16.44 16.44 16.44 16.44

tc1c20s3cf4 6 10 17.00 17.00 7 10 17.00 17.00 6 10 17.00 17.00 6 10 17.00 17.00 17.00 17.00

tc1c20s3ct1 11 10 18.94 18.94 10 10 18.94 18.94 11 10 18.94 18.94 11 10 18.94 18.94 18.94 18.94

tc1c20s3ct3 11 10 12.60 12.60 11 10 12.60 12.60 11 10 12.60 12.60 11 10 12.60 12.60 12.60 12.60

tc1c20s3ct4 9 10 16.21 16.21 10 10 16.21 16.21 9 10 16.21 16.21 9 10 16.21 16.21 16.21 16.21

tc1c20s4cf1 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 16.38 16.38

tc1c20s4cf3 13 10 16.44 16.44 12 10 16.44 16.44 12 10 16.44 16.44 13 10 16.44 16.44 16.44 16.44

tc1c20s4cf4 10 10 17.00 17.00 10 10 17.00 17.00 9 10 17.00 17.00 10 10 17.00 17.00 17.00 17.00

tc1c20s4ct1 12 10 17.80 17.80 13 10 17.80 17.80 12 10 17.80 17.80 12 10 17.80 17.80 17.80 17.80

tc1c20s4ct3 7 10 14.43 14.43 7 10 14.43 14.43 7 10 14.43 14.43 8 10 14.43 14.43 14.43 14.43

tc1c20s4ct4 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 17.00 17.00

tc2c20s3cf0 9 10 24.68 24.68 9 10 24.68 24.68 8 10 24.68 24.68 9 10 24.68 24.68 24.68 24.68

tc2c20s3ct0 12 10 25.80 25.80 12 10 25.79 25.79 12 10 25.79 25.79 12 10 25.79 25.79 25.79 25.79

tc2c20s4cf0 12 10 24.68 24.68 12 10 24.67 24.67 12 10 24.67 24.67 12 10 24.67 24.67 24.67 24.67

tc2c20s4ct0 11 10 26.17 26.18 11 10 26.02 26.02 12 10 26.02 26.02 12 10 26.02 26.02 26.02 26.02

tc0c40s5cf0 21 10 32.20 32.23 20 10 32.20 32.23 20 10 32.20 32.23 20 10 32.20 32.23 32.20 32.23

tc0c40s5cf4 26 10 30.25 30.25 25 10 30.25 30.25 25 10 30.25 30.25 26 10 30.25 30.25 30.25 30.25

tc0c40s5ct0 20 10 27.91 27.91 20 10 27.91 27.91 21 10 27.91 27.91 21 10 27.91 27.91 27.91 27.91

tc0c40s5ct4 23 10 28.63 28.63 23 10 28.63 28.63 22 10 28.63 28.63 22 10 28.63 28.63 28.63 28.63

tc0c40s8cf0 22 10 30.46 30.51 21 10 30.40 30.40 21 10 30.40 30.40 21 10 30.40 30.40 30.40 30.40

tc0c40s8cf4 28 10 28.24 28.25 29 10 28.24 28.25 29 10 28.24 28.25 28 10 28.24 28.25 28.24 28.25

tc0c40s8ct0 20 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 26.22 26.22

tc0c40s8ct4 27 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 27 10 29.07 29.07 29.07 29.07

tc1c40s5cf1 27 0 - - 14 0 - - 14 0 - - 1299 0 - - - -

tc1c40s5ct1 26 10 52.42 52.70 28 10 52.42 52.60 26 10 52.42 52.60 27 10 52.33 52.33 52.33 52.33

tc1c40s8cf1 25 10 41.67 42.21 24 10 40.64 40.64 23 10 40.64 40.64 24 10 40.64 40.64 40.64 40.64

tc1c40s8ct1 29 10 40.45 40.73 28 10 40.35 40.36 28 10 40.35 40.36 29 10 40.35 40.35 40.35 40.35

tc2c40s5cf2 20 10 27.54 27.54 19 10 27.54 27.54 20 10 27.54 27.54 21 10 27.54 27.54 27.54 27.54

tc2c40s5cf3 26 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 19.65 19.65

tc2c40s5ct2 20 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 26.91 26.91

tc2c40s5ct3 23 10 23.39 23.39 22 10 23.39 23.39 22 10 23.39 23.39 21 10 23.39 23.39 23.39 23.39

tc2c40s8cf2 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 27.13 27.13

tc2c40s8cf3 26 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 24 10 19.65 19.65 19.65 19.65

tc2c40s8ct2 19 10 26.28 26.28 19 10 26.28 26.28 18 10 26.28 26.28 18 10 26.28 26.28 26.28 26.28

tc2c40s8ct3 27 10 22.45 22.45 28 10 22.45 22.45 28 10 22.45 22.45 28 10 22.45 22.45 22.45 22.45
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Table 16: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of charger at every CS is equal to 1(instances with 80,

160, or 320 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c80s12cf0 74 10 34.06 34.20 75 10 34.06 34.20 78 10 34.06 34.20 77 10 34.06 34.20 34.06 34.20

tc0c80s12cf1 78 10 40.83 40.95 77 10 40.83 40.94 77 10 40.83 40.94 77 10 40.83 40.94 40.83 40.94

tc0c80s12ct0 76 10 37.51 37.95 77 10 37.51 37.89 77 10 37.51 37.89 77 10 37.51 37.98 37.51 37.89

tc0c80s12ct1 72 10 39.72 40.01 73 10 39.72 40.00 71 10 39.72 40.00 72 10 39.72 40.00 39.72 40.00

tc0c80s8cf0 61 10 38.59 38.79 61 10 38.59 38.79 62 10 38.59 38.79 60 10 38.59 38.79 38.59 38.79

tc0c80s8cf1 83 10 43.41 44.28 80 10 43.38 44.05 81 10 43.38 44.05 85 10 43.38 44.13 43.38 44.05

tc0c80s8ct0 71 10 40.53 41.47 71 10 40.53 41.47 69 10 40.53 41.47 69 10 40.53 41.47 40.53 41.47

tc0c80s8ct1 82 10 43.86 43.99 82 10 43.85 43.98 80 10 43.85 43.98 82 10 43.85 43.98 43.85 43.98

tc1c80s12cf2 58 10 28.65 28.77 59 10 28.65 28.77 58 10 28.65 28.77 59 10 28.65 28.77 28.65 28.77

tc1c80s12ct2 60 10 28.73 29.17 60 10 28.73 29.09 59 10 28.73 29.09 62 10 28.73 29.14 28.73 29.09

tc1c80s8cf2 63 10 29.15 29.15 62 10 29.15 29.15 60 10 29.15 29.15 62 10 29.15 29.15 29.15 29.15

tc1c80s8ct2 61 10 29.88 30.42 63 10 29.88 30.42 62 10 29.88 30.42 63 10 29.88 30.42 29.88 30.42

tc2c80s12cf3 63 10 30.61 30.61 62 10 30.60 30.60 63 10 30.60 30.60 62 10 30.60 30.60 30.60 30.60

tc2c80s12cf4 89 10 42.20 42.62 88 10 42.12 42.25 89 10 42.12 42.25 105 10 42.12 42.26 42.12 42.25

tc2c80s12ct3 62 10 29.90 29.90 61 10 29.90 29.90 62 10 29.90 29.90 61 10 29.90 29.90 29.90 29.90

tc2c80s12ct4 87 10 40.28 40.28 86 10 40.27 40.27 85 10 40.27 40.27 86 10 40.27 40.27 40.27 40.27

tc2c80s8cf3 61 10 31.70 31.93 60 10 31.70 31.93 61 10 31.70 31.93 60 10 31.70 31.93 31.70 31.93

tc2c80s8cf4 100 10 46.19 46.85 102 10 46.19 46.84 104 10 46.19 46.84 102 10 46.19 46.94 46.19 46.84

tc2c80s8ct3 75 10 31.38 31.38 76 10 31.38 31.38 76 10 31.38 31.38 74 10 31.38 31.38 31.38 31.38

tc2c80s8ct4 85 10 43.98 44.03 86 10 43.98 44.02 84 10 43.98 44.02 88 10 43.98 44.02 43.98 44.02

tc0c160s16cf2 285 10 57.93 58.04 272 10 57.91 58.02 273 10 57.91 58.02 268 10 57.91 58.01 57.91 58.01

tc0c160s16cf4 428 10 77.56 78.47 429 10 77.30 77.63 425 10 77.30 77.63 862 10 77.30 77.67 77.30 77.63

tc0c160s16ct2 286 10 57.16 57.63 288 10 57.16 57.64 289 10 57.16 57.64 279 10 57.16 57.64 57.16 57.63

tc0c160s16ct4 417 10 76.18 77.25 404 10 76.30 76.97 414 10 76.30 76.98 798 10 76.18 76.97 76.18 76.97

tc0c160s24cf2 291 10 56.86 56.93 284 10 56.86 56.94 285 10 56.86 56.94 286 10 56.86 56.93 56.86 56.93

tc0c160s24cf4 430 10 76.21 77.04 429 10 75.63 76.60 432 10 75.63 76.55 538 10 75.83 76.67 75.63 76.55

tc0c160s24ct2 298 10 55.53 56.30 303 10 55.42 56.23 301 10 55.42 56.23 294 10 55.42 56.17 55.42 56.17

tc0c160s24ct4 420 10 75.13 76.34 432 10 75.09 76.26 430 10 75.09 76.26 577 10 75.36 76.29 75.09 76.26

tc1c160s16cf0 382 8 75.81 77.16 372 10 74.69 76.53 379 10 74.69 76.53 413 10 74.64 75.83 74.64 75.83

tc1c160s16cf3 348 10 66.52 67.80 347 10 66.52 67.17 352 10 66.52 67.18 352 10 66.49 67.26 66.49 67.17

tc1c160s16ct0 369 10 74.30 74.94 367 10 74.24 74.91 360 10 74.24 74.91 382 10 74.20 74.62 74.20 74.62

tc1c160s16ct3 323 10 65.45 66.40 316 10 65.24 66.02 318 10 65.24 66.02 313 10 65.23 66.08 65.23 66.02

tc1c160s24cf0 381 10 73.93 74.60 372 10 73.62 73.96 374 10 73.62 73.90 445 10 73.62 74.03 73.62 73.90

tc1c160s24cf3 328 10 63.22 63.93 323 10 63.06 63.60 331 10 63.06 63.60 331 10 63.05 63.78 63.05 63.60

tc1c160s24ct0 384 10 73.95 74.61 380 10 73.32 73.95 371 10 73.32 73.95 375 10 73.32 73.77 73.32 73.77

tc1c160s24ct3 335 10 62.76 63.22 334 10 62.70 63.30 335 10 62.70 63.30 328 10 62.70 63.26 62.70 63.22

tc2c160s16cf1 284 10 56.71 57.44 286 10 56.59 57.33 285 10 56.59 57.33 284 10 56.66 57.38 56.59 57.33

tc2c160s16ct1 257 10 55.37 55.45 257 10 55.37 55.43 255 10 55.37 55.43 261 10 55.37 55.44 55.37 55.43

tc2c160s24cf1 289 10 56.00 57.24 298 10 56.47 57.20 299 10 56.47 04:48 297 10 56.47 57.36 56.00 57.20

tc2c160s24ct1 276 10 55.03 55.07 286 10 54.96 55.10 281 10 54.96 55.10 270 10 55.03 55.15 54.96 55.07

tc1c320s24cf2 1600 0 - - 1582 10 133.89 135.14 1570 10 133.91 135.16 3219 10 133.66 135.37 133.66 135.14

tc1c320s24cf3 1250 10 105.88 106.73 1252 10 105.70 106.70 1268 10 105.70 106.70 1262 10 105.47 106.77 105.47 106.70

tc1c320s24ct2 1480 0 - - 2337 10 133.46 135.57 2366 10 133.46 135.23 3461 9 132.50 134.69 132.50 134.69

tc1c320s24ct3 1166 10 105.40 106.31 1162 10 105.68 106.29 1156 10 105.68 106.29 1186 10 105.89 106.47 105.40 106.29

tc1c320s38cf2 1417 0 - - 1370 10 129.09 129.61 1375 10 129.09 129.68 1561 10 128.96 129.40 128.96 129.40

tc1c320s38cf3 1286 10 105.60 106.21 1276 10 105.71 106.47 1265 10 105.71 106.47 1232 10 105.41 106.23 105.41 106.21

tc1c320s38ct2 1422 0 - - 1397 10 128.86 129.80 1399 10 128.86 129.79 2603 10 128.69 129.65 128.69 129.65

tc1c320s38ct3 1342 10 106.42 106.82 1356 10 105.93 106.60 1377 10 105.93 106.60 1395 10 105.44 106.66 105.44 106.60

tc2c320s24cf0 1840 0 - - 2534 10 163.39 165.89 2587 10 163.39 165.94 3472 10 162.15 165.15 162.15 165.15

tc2c320s24cf1 1014 10 87.19 87.59 1004 10 87.27 87.65 1021 10 87.27 87.65 1028 10 87.26 87.68 87.19 87.59

tc2c320s24cf4 1113 4 112.46 114.09 1095 10 111.74 112.45 1083 10 111.74 112.39 1433 10 111.59 112.19 111.59 112.19

tc2c320s24ct0 1683 0 - - 2482 10 164.81 166.51 2498 10 164.81 166.46 3413 10 164.18 166.59 164.18 166.46

tc2c320s24ct1 1016 10 86.86 87.57 1026 10 87.26 87.64 1043 10 87.26 87.64 1017 10 87.01 87.51 86.86 87.51

tc2c320s24ct4 1214 5 111.66 113.18 1191 10 111.00 111.90 1182 10 111.00 111.76 1231 10 110.95 111.82 110.95 111.76

tc2c320s38cf0 1697 0 - - 1875 10 160.69 162.51 1886 10 160.69 162.51 3388 10 160.59 161.69 160.59 161.69

tc2c320s38cf1 1016 10 86.65 87.17 1013 10 86.97 87.25 1029 10 86.97 87.25 999 10 86.69 87.21 86.65 87.17

tc2c320s38cf4 1274 10 109.48 110.62 1226 10 110.19 110.63 1224 10 110.19 110.63 1253 10 109.91 110.46 109.48 110.46

tc2c320s38ct0 1825 0 - - 2169 10 160.54 162.97 2166 10 160.36 162.94 3252 10 161.25 162.34 160.36 162.34

tc2c320s38ct1 1076 10 86.59 86.97 1075 10 86.23 86.72 1068 10 86.23 86.72 1061 10 86.53 86.88 86.23 86.72

tc2c320s38ct4 1182 10 109.97 110.73 1201 10 109.60 110.29 1189 10 109.60 110.29 1210 10 109.44 110.27 109.44 110.27
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Table 17: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 2 (instances with 10,

20, or 40 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c10s2cf1 6 10 19.75 19.75 6 10 19.75 19.75 5 10 19.75 19.75 5 10 19.75 19.75 19.75 19.75

tc0c10s2ct1 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 12.30 12.30

tc0c10s3cf1 6 10 19.75 19.75 5 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 19.75 19.75

tc0c10s3ct1 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 10.80 10.80

tc1c10s2cf2 6 10 9.03 9.03 6 10 9.03 9.03 5 10 9.03 9.03 6 10 9.03 9.03 9.03 9.03

tc1c10s2cf3 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 16.37 16.37

tc1c10s2cf4 6 10 16.10 16.10 5 10 16.10 16.10 5 10 16.10 16.10 6 10 16.10 16.10 16.10 16.10

tc1c10s2ct2 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 10.75 10.75

tc1c10s2ct3 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 13.17 13.17

tc1c10s2ct4 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 13.83 13.83

tc1c10s3cf2 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s3cf3 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 16.37 16.37

tc1c10s3cf4 3 10 14.90 14.90 4 10 14.90 14.90 3 10 14.90 14.90 3 10 14.90 14.90 14.90 14.90

tc1c10s3ct2 6 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 6 10 9.20 9.20 9.20 9.20

tc1c10s3ct3 6 10 13.02 13.02 5 10 13.02 13.02 5 10 13.02 13.02 5 10 13.02 13.02 13.02 13.02

tc1c10s3ct4 5 10 13.21 13.21 6 10 13.21 13.21 5 10 13.21 13.21 5 10 13.21 13.21 13.21 13.21

tc2c10s2cf0 6 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 21.77 21.77

tc2c10s2ct0 5 10 12.45 12.45 5 10 12.45 12.45 5 10 12.45 12.45 5 10 12.45 12.45 12.45 12.45

tc2c10s3cf0 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 21.77 21.77

tc2c10s3ct0 6 10 11.51 11.51 6 10 11.51 11.51 7 10 11.51 11.51 6 10 11.51 11.51 11.51 11.51

tc0c20s3cf2 11 10 27.47 27.47 11 10 27.47 27.47 12 10 27.47 27.47 12 10 27.47 27.47 27.47 27.47

tc0c20s3ct2 8 10 17.08 17.08 8 10 17.08 17.08 8 10 17.08 17.08 7 10 17.08 17.08 17.08 17.08

tc0c20s4cf2 9 10 27.47 27.47 10 10 27.47 27.47 10 10 27.47 27.47 9 10 27.47 27.47 27.47 27.47

tc0c20s4ct2 11 10 16.99 16.99 11 10 16.99 16.99 11 10 16.99 16.99 10 10 16.99 16.99 16.99 16.99

tc1c20s3cf1 12 10 17.49 17.49 12 10 17.49 17.49 12 10 17.49 17.49 12 10 17.49 17.49 17.49 17.49

tc1c20s3cf3 10 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 16.44 16.44

tc1c20s3cf4 7 10 17.00 17.00 7 10 17.00 17.00 6 10 17.00 17.00 7 10 17.00 17.00 17.00 17.00

tc1c20s3ct1 11 10 18.94 18.94 11 10 18.94 18.94 11 10 18.94 18.94 10 10 18.94 18.94 18.94 18.94

tc1c20s3ct3 11 10 12.60 12.60 11 10 12.60 12.60 10 10 12.60 12.60 10 10 12.60 12.60 12.60 12.60

tc1c20s3ct4 9 10 16.21 16.21 9 10 16.21 16.21 10 10 16.21 16.21 10 10 16.21 16.21 16.21 16.21

tc1c20s4cf1 9 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 16.38 16.38

tc1c20s4cf3 13 10 16.44 16.44 13 10 16.44 16.44 13 10 16.44 16.44 13 10 16.44 16.44 16.44 16.44

tc1c20s4cf4 10 10 17.00 17.00 9 10 17.00 17.00 10 10 17.00 17.00 9 10 17.00 17.00 17.00 17.00

tc1c20s4ct1 12 10 17.80 17.80 13 10 17.80 17.80 13 10 17.80 17.80 13 10 17.80 17.80 17.80 17.80

tc1c20s4ct3 7 10 14.43 14.43 8 10 14.43 14.43 7 10 14.43 14.43 8 10 14.43 14.43 14.43 14.43

tc1c20s4ct4 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 17.00 17.00

tc2c20s3cf0 9 10 24.68 24.68 9 10 24.68 24.68 8 10 24.68 24.68 8 10 24.68 24.68 24.68 24.68

tc2c20s3ct0 12 10 25.79 25.79 12 10 25.79 25.79 12 10 25.79 25.79 11 10 25.79 25.79 25.79 25.79

tc2c20s4cf0 12 10 24.67 24.67 12 10 24.67 24.67 11 10 24.67 24.67 11 10 24.67 24.67 24.67 24.67

tc2c20s4ct0 12 10 26.02 26.02 12 10 26.02 26.02 11 10 26.02 26.02 11 10 26.02 26.02 26.02 26.02

tc0c40s5cf0 20 10 32.20 32.23 20 10 32.20 32.23 21 10 32.20 32.23 20 10 32.20 32.23 32.20 32.23

tc0c40s5cf4 26 10 30.25 30.25 26 10 30.25 30.25 25 10 30.25 30.25 26 10 30.25 30.25 30.25 30.25

tc0c40s5ct0 20 10 27.91 27.91 20 10 27.91 27.91 19 10 27.91 27.91 19 10 27.91 27.91 27.91 27.91

tc0c40s5ct4 23 10 28.63 28.63 23 10 28.63 28.63 23 10 28.63 28.63 22 10 28.63 28.63 28.63 28.63

tc0c40s8cf0 20 10 30.40 30.40 21 10 30.40 30.40 21 10 30.40 30.40 20 10 30.40 30.40 30.40 30.40

tc0c40s8cf4 28 10 28.24 28.25 28 10 28.24 28.25 29 10 28.24 28.25 29 10 28.24 28.25 28.24 28.25

tc0c40s8ct0 21 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 21 10 26.22 26.22 26.22 26.22

tc0c40s8ct4 26 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 29.07 29.07

tc1c40s5cf1 28 2 66.55 66.55 28 10 65.38 67.50 28 10 65.38 67.50 454 10 65.38 66.51 65.38 66.51

tc1c40s5ct1 27 10 52.33 52.33 27 10 52.33 52.33 26 10 52.33 52.33 26 10 52.33 52.33 52.33 52.33

tc1c40s8cf1 23 10 40.64 40.64 24 10 40.64 40.64 24 10 40.64 40.64 23 10 40.64 40.64 40.64 40.64

tc1c40s8ct1 28 10 40.18 40.18 27 10 40.18 40.18 27 10 40.18 40.18 28 10 40.18 40.18 40.18 40.18

tc2c40s5cf2 19 10 27.54 27.54 19 10 27.54 27.54 20 10 27.54 27.54 20 10 27.54 27.54 27.54 27.54

tc2c40s5cf3 25 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 19.65 19.65

tc2c40s5ct2 18 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 26.91 26.91

tc2c40s5ct3 22 10 23.39 23.39 22 10 23.39 23.39 23 10 23.39 23.39 22 10 23.39 23.39 23.39 23.39

tc2c40s8cf2 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 19 10 27.13 27.13 27.13 27.13

tc2c40s8cf3 25 10 19.65 19.65 26 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 19.65 19.65

tc2c40s8ct2 19 10 26.28 26.28 19 10 26.28 26.28 18 10 26.28 26.28 19 10 26.28 26.28 26.28 26.28

tc2c40s8ct3 29 10 22.45 22.45 28 10 22.45 22.45 29 10 22.45 22.45 29 10 22.45 22.45 22.45 22.45
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Table 18: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 2 (instances with 80,

160, or 320 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c80s12cf0 76 10 34.06 34.20 74 10 34.06 34.20 75 10 34.06 34.20 77 10 34.06 34.20 34.06 34.20

tc0c80s12cf1 77 10 40.83 40.94 77 10 40.83 40.94 77 10 40.83 40.94 76 10 40.83 40.94 40.83 40.94

tc0c80s12ct0 75 10 37.51 37.95 76 10 37.51 37.89 74 10 37.51 37.89 75 10 37.51 37.98 37.51 37.89

tc0c80s12ct1 71 10 39.72 40.00 70 10 39.72 40.00 72 10 39.72 40.00 71 10 39.72 40.00 39.72 40.00

tc0c80s8cf0 61 10 38.59 38.84 62 10 38.59 38.84 62 10 38.59 38.84 61 10 38.59 38.84 38.59 38.84

tc0c80s8cf1 83 10 43.38 44.09 82 10 43.38 44.12 85 10 43.38 44.12 87 10 43.38 44.10 43.38 44.09

tc0c80s8ct0 67 10 40.53 41.47 69 10 40.53 41.47 70 10 40.53 41.47 71 10 40.53 41.47 40.53 41.47

tc0c80s8ct1 78 10 43.85 43.98 80 10 43.85 43.98 79 10 43.85 43.98 81 10 43.85 43.98 43.85 43.98

tc1c80s12cf2 59 10 28.65 28.77 57 10 28.65 28.77 60 10 28.65 28.77 59 10 28.65 28.77 28.65 28.77

tc1c80s12ct2 60 10 28.73 29.17 62 10 28.73 29.09 63 10 28.73 29.09 62 10 28.73 29.14 28.73 29.09

tc1c80s8cf2 62 10 29.15 29.15 63 10 29.15 29.15 62 10 29.15 29.15 62 10 29.15 29.15 29.15 29.15

tc1c80s8ct2 64 10 29.88 30.42 64 10 29.88 30.42 64 10 29.88 30.42 62 10 29.88 30.42 29.88 30.42

tc2c80s12cf3 63 10 30.60 30.60 62 10 30.60 30.60 61 10 30.60 30.60 62 10 30.60 30.60 30.60 30.60

tc2c80s12cf4 87 10 42.12 42.20 89 10 42.11 42.18 88 10 42.11 42.18 88 10 42.11 42.18 42.11 42.18

tc2c80s12ct3 63 10 29.90 29.90 64 10 29.90 29.90 64 10 29.90 29.90 62 10 29.90 29.90 29.90 29.90

tc2c80s12ct4 88 10 40.27 40.27 86 10 40.27 40.27 88 10 40.27 40.27 85 10 40.27 40.27 40.27 40.27

tc2c80s8cf3 59 10 31.70 31.93 60 10 31.70 31.93 59 10 31.70 31.93 59 10 31.70 31.93 31.70 31.93

tc2c80s8cf4 101 10 46.18 46.65 101 10 46.06 46.64 103 10 46.06 46.64 102 10 46.18 46.65 46.06 46.64

tc2c80s8ct3 75 10 31.38 31.38 78 10 31.38 31.38 76 10 31.38 31.38 76 10 31.38 31.38 31.38 31.38

tc2c80s8ct4 87 10 43.72 43.97 85 10 43.72 43.97 84 10 43.72 43.97 87 10 43.72 43.97 43.72 43.97

tc0c160s16cf2 277 10 57.91 58.01 279 10 57.91 58.01 276 10 57.91 58.01 279 10 57.91 58.01 57.91 58.01

tc0c160s16cf4 416 10 77.04 77.59 418 10 77.04 77.62 424 10 77.04 77.62 427 10 77.03 77.60 77.03 77.59

tc0c160s16ct2 286 10 57.16 57.63 280 10 57.16 57.63 285 10 57.16 57.63 286 10 57.16 57.64 57.16 57.63

tc0c160s16ct4 403 10 76.66 76.93 395 10 76.37 76.86 408 10 76.37 76.86 399 10 76.14 76.87 76.14 76.86

tc0c160s24cf2 284 10 56.86 56.93 283 10 56.86 56.92 283 10 56.86 56.92 285 10 56.86 56.92 56.86 56.92

tc0c160s24cf4 432 10 75.50 76.46 415 10 76.00 76.61 410 10 76.00 76.61 430 10 75.59 76.48 75.50 76.46

tc0c160s24ct2 289 10 55.43 56.18 291 10 55.42 56.16 302 10 55.42 56.16 296 10 55.42 56.17 55.42 56.16

tc0c160s24ct4 418 10 74.99 76.16 428 10 75.06 76.01 429 10 75.06 76.01 436 10 74.99 76.19 74.99 76.01

tc1c160s16cf0 365 10 74.55 75.63 370 10 74.55 75.51 368 10 74.55 75.51 374 10 74.55 75.51 74.55 75.51

tc1c160s16cf3 348 10 66.14 66.92 352 10 66.32 67.02 351 10 66.32 67.02 344 10 66.32 66.98 66.14 66.92

tc1c160s16ct0 372 10 74.19 74.70 372 10 74.20 75.16 368 10 74.20 75.16 379 10 74.19 74.66 74.19 74.66

tc1c160s16ct3 307 10 65.22 66.08 309 10 66.03 66.42 311 10 66.03 66.42 319 10 65.26 66.27 65.22 66.08

tc1c160s24cf0 377 10 73.67 74.05 367 10 73.62 73.85 371 10 73.62 73.85 372 10 73.62 74.06 73.62 73.85

tc1c160s24cf3 323 10 63.17 63.86 334 10 63.22 63.83 325 10 63.22 63.83 333 10 63.17 63.74 63.17 63.74

tc1c160s24ct0 371 10 73.34 73.81 367 10 73.32 73.81 361 10 73.32 73.81 366 10 73.34 74.12 73.32 73.81

tc1c160s24ct3 330 10 62.70 63.28 326 10 62.70 63.27 337 10 62.70 63.27 336 10 62.70 63.32 62.70 63.27

tc2c160s16cf1 285 10 57.04 57.65 279 10 57.01 57.62 284 10 57.01 57.62 280 10 57.04 57.65 57.01 57.62

tc2c160s16ct1 260 10 55.37 55.44 258 10 55.37 55.44 262 10 55.37 55.44 258 10 55.37 55.46 55.37 55.44

tc2c160s24cf1 298 10 56.00 57.27 300 10 56.47 57.18 294 10 56.47 57.18 288 10 56.67 57.38 56.00 57.18

tc2c160s24ct1 281 10 55.03 55.16 291 10 55.03 55.14 283 10 55.03 55.14 274 10 54.96 55.10 54.96 55.10

tc1c320s24cf2 1561 10 133.66 134.28 1464 10 132.45 133.57 1458 10 132.45 133.57 1461 10 132.82 133.75 132.45 133.57

tc1c320s24cf3 1237 10 105.29 106.53 1233 10 105.47 106.60 1224 10 105.47 106.60 1264 10 106.21 106.98 105.29 106.53

tc1c320s24ct2 1601 10 132.16 133.09 1380 10 131.73 132.30 1379 10 131.73 132.30 1386 10 131.69 132.28 131.69 132.28

tc1c320s24ct3 1199 10 105.92 106.40 1142 10 105.25 106.06 1150 10 105.25 106.06 1156 10 105.37 106.27 105.25 106.06

tc1c320s38cf2 1359 10 129.01 129.40 1360 10 128.87 129.21 1375 10 128.87 129.21 1371 10 128.87 129.28 128.87 129.21

tc1c320s38cf3 1231 10 105.55 106.24 1243 10 104.90 105.88 1227 10 104.90 105.88 1253 10 105.72 106.24 104.90 105.88

tc1c320s38ct2 1395 10 128.84 129.44 1366 10 128.71 129.43 1349 10 128.71 129.43 1418 10 128.79 129.34 128.71 129.34

tc1c320s38ct3 1350 10 105.83 106.50 1385 10 105.39 106.64 1379 10 105.39 106.64 1339 10 105.23 106.42 105.23 106.42

tc2c320s24cf0 1880 10 160.36 161.73 1539 10 159.66 160.55 1555 10 159.66 160.55 1703 10 158.96 160.60 158.96 160.55

tc2c320s24cf1 1012 10 87.26 87.73 1032 10 87.35 87.71 1047 10 87.35 87.71 1039 10 87.31 87.66 87.26 87.66

tc2c320s24cf4 1065 10 110.98 111.52 1088 10 110.58 111.12 1074 10 110.58 111.12 1085 10 110.73 111.37 110.58 111.12

tc2c320s24ct0 1826 10 160.19 161.36 1505 10 159.58 160.22 1485 10 159.58 160.30 2184 10 159.62 160.01 159.58 160.01

tc2c320s24ct1 996 10 87.26 87.68 1030 10 87.02 87.52 1024 10 87.02 87.52 1014 10 87.28 87.70 87.02 87.52

tc2c320s24ct4 1175 10 111.07 111.63 1177 10 111.04 111.54 1155 10 111.04 111.54 1171 10 110.99 111.63 110.99 111.54

tc2c320s38cf0 1571 10 159.35 159.93 1588 10 158.29 159.33 1580 10 158.29 159.33 1589 10 158.44 159.48 158.29 159.33

tc2c320s38cf1 1008 10 86.88 87.22 1024 10 86.78 87.19 1015 10 86.78 87.19 1021 10 86.77 87.30 86.77 87.19

tc2c320s38cf4 1264 10 109.93 110.56 1264 10 109.94 110.39 1255 10 109.94 110.39 1246 10 109.80 110.57 109.80 110.39

tc2c320s38ct0 1782 9 158.59 159.53 1617 10 158.30 159.06 1580 10 158.30 159.06 1586 10 157.81 158.88 157.81 158.88

tc2c320s38ct1 1093 10 85.90 86.81 1038 10 86.52 86.95 1049 10 86.52 86.95 1074 10 86.26 86.85 85.90 86.81

tc2c320s38ct4 1204 10 109.50 110.12 1191 10 109.75 110.13 1164 10 109.75 110.13 1187 10 109.85 110.18 109.50 110.12
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Grangier, P., Gendreau, M., Lehuédé, F., and Rousseau, L.-M. (2017). A matheuristic based on large neighborhood

search for the vehicle routing problem with cross-docking. Computers & Operations Research, 84:116–126.
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Koç, Ç., Jabali, O., Mendoza, J. E., and Laporte, G. (2018). The electric vehicle routing problem with shared charging

stations. International Transactions in Operational Research, 26(4):1211–1243.

Kullman, N., Goodson, J., and Mendoza, J. E. (2020). Electric Vehicle Routing with Public Charging Stations. Working

paper available at https://hal.archives-ouvertes.fr/hal-01928730 (accepted for publication in Transportation

Science).

Lam, E. and Van Hentenryck, P. (2016). A branch-and-price-and-check model for the vehicle routing problem with

location congestion. Constraints, 21(3):1–19.

Lee, C. (2020). An exact algorithm for the electric-vehicle routing problem with nonlinear charging time. Journal of

the Operational Research Society, page doi: 10.1080/01605682.2020.1730250.

Leggieri, V. and Haouari, M. (2017). A practical solution approach for the green vehicle routing problem. Transportation

Research Part E: Logistics and Transportation Review, 104:97–112.
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Villegas, J. G., Guéret, C., Mendoza, J. E., and Montoya, A. (2018). The technician routing and scheduling problem with

conventional and electric vehicle. Working paper available at https://hal.archives-ouvertes.fr/hal-01813887.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N. (2013). A matheuristic for the truck and trailer

routing problem. European Journal of Operational Research, 230(2):231–244.

Zachariadis, E. E. and Kiranoudis, C. T. (2010). A strategy for reducing the computational complexity of local search-

based methods for the vehicle routing problem. Computers & Operations Research, 37(12):2089–2105.

40

https://hal. archives-ouvertes.fr/hal-01813887

	Introduction
	Problem description
	A mixed-integer linear programming formulation
	Solution method
	Route generator: an iterated local search algorithm for the E-VRP-NL
	The VND search phase
	The perturbation phase

	Solution assembler: a branch-and-cut method
	N and D subproblem versions
	DW and DWR subproblem versions
	Cut generation procedure


	Computational results
	Results for the E-VRP-NL-C formulation
	Results for the E-VRP-NL
	Results for the E-VRP-NL-C

	Conclusion and perspectives
	Experiments on the feasibility of solutions from the literature when considering capacitated CSs
	Implementation details for the ILS
	Algorithmic details for the ILS
	Algorithmic details for the branch-and-cut algorithm
	Detailed computational results
	Detailed results for the E-VRP-NL-C formulation
	Detailed results for the E-VRP-NL
	Detailed results for the E-VRP-NL-C


