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Abstract

Much of the existing research on electric vehicle routing problems (E-VRPs) assumes that the charging

stations (CSs) can simultaneously charge an unlimited number of electric vehicles, but this is not the case. In

this research, we investigate how to model and solve E-VRPs taking into account these capacity restrictions.

In particular, we study an E-VRP with non-linear charging functions, multiple charging technologies, en

route charging, and variable charging quantities, while explicitly accounting for the capacity of CSs expressed

in the number of chargers. We refer to this problem as the E-VRP with non-linear charging functions

and capacitated stations (E-VRP-NL-C). This problem advances the E-VRP literature by considering the

scheduling of charging operations at each CS. We first introduce two mixed integer linear programming

formulations showing how CS capacity constraints can be incorporated into E-VRP models. We then

introduce an algorithmic framework to the E-VRP-NL-C, that iterates between two main components: a

route generator and a solution assembler. The route generator uses an iterated local search algorithm to

build a pool of high-quality routes. The solution assembler applies a branch-and-cut algorithm to select a

subset of routes from the pool. We report on computational experiments comparing four different assembly

strategies on a large and diverse set of instances. Our results show that our algorithm deals with the

CS capacity constraints effectively. Furthermore, considering the well-known uncapacitated version of the

E-VRP-NL-C, our solution method identifies new best-known solutions for 80 out of 120 instances.

Keywords— Electric vehicle routing; non-linear charging function; synchronization constraints; mixed integer linear

programming; matheuristic; iterated local search; branch-and-cut

1 Introduction

In recent years, competitive prices and technological advances have made electric vehicles (EVs) an attractive alterna-

tive to internal combustion engine-powered vehicles for logistics operations (Juan et al., 2016; Pelletier et al., 2016).

Consequently, the operations research community has started paying attention to the study of electric vehicle routing

problems (E-VRPs), which consist of designing routes to serve a set of customers using a fleet of EVs. Due to their

relatively short driving range, EVs may need to detour to charging stations (CSs) to replenish their battery, especially

in the context of mid-haul or long-haul routing (Schiffer et al., 2018; Villegas et al., 2018). Therefore, key decisions in

E-VRPs concern not only the sequence in which the customers are served, but also where and by how much to charge

the vehicles.

One of the main modeling elements in E-VRPs is the charging process of batteries. Some studies assume that EVs

are fully recharged whenever they detour to a CS. In the green vehicle routing problem (G-VRP) tackled by Erdoğan

and Miller-Hooks (2012), Koç and Karaoglan (2016), Montoya et al. (2016), and Bartolini and Andelmin (2017), the

charging time is assumed to be constant, while in the works of Schneider et al. (2014), Hiermann et al. (2016), Keskin
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and Çatay (2016), and Desaulniers et al. (2016) the charging time linearly depends on the state of charge (SoC) of the

EV upon arrival at the CS. A full charging policy may be too restrictive, especially when considering en route charging.

As Montoya et al. (2017) pointed out, this policy may lead to unnecessary out-of-the-depot charging, which translates

into expensive driver idling time and overpriced energy purchases. To overcome this drawback, several researchers have

studied problem variants in which the charging time is a decision variable (Desaulniers et al. (2016), Froger et al. (2019),

Felipe et al. (2014), and Montoya et al. (2017)). The latter three papers examine the case in which the CSs may have

different charging speeds. In reality, however, the battery charging process follows a non-linear function with respect

to time (Pelletier et al. (2017)). To account for this, Montoya et al. (2017), Koç et al. (2018), and Froger et al. (2019)

have modeled the charging process through concave piecewise linear functions. In the resulting problem, known as the

electric vehicle routing problem with non-linear charging function (E-VRP-NL), the charging times are estimated more

precisely than in the variants that assume a linear charging process.

All papers just reviewed assume that charging stations are always available, meaning that EVs do not need to wait

to start charging. This implicitly means that the E-VRP research has mainly focused on problem variants where the

charging infrastructure is privately owned by the route planner. In some contexts, this is a plausible assumption, since

large companies may decide to invest in their own infrastructure to avoid dealing with the uncertainty in the availability

of public CSs (Villegas et al., 2018). To the best of our knowledge, there exist only on a handful of references dealing

with public charging stations for E-VRPs (see Sweda et al. (2017) and Kullman et al. (2018) for further details). Keskin

et al. (2019) considered deterministic time-dependent queueing times at the stations.

Another common assumption in most, if not all, E-VRP publications is that CSs are always readily available to

charge a vehicle when it arrives. Thus, implicitly assuming that CSs are uncapacitated and can simultaneously charge an

unlimited number of EVs. In practice, however, each CS has a fixed and often small number of chargers. The intuition

behind neglecting the CS capacity constraints is that accounting for the detour and charging times (or costs) while

planning the routes is enough to capture the impact of the charging decisions on the cost and feasibility of solutions.

Nonetheless, the long charging times (from tens of minutes to several hours) and the small number of chargers typically

available at private CSs may generate congestion. To illustrate this point, we ran a feasibility test on the 120 best-known

solutions (BKSs) for the E-VRP-NL reported in Montoya et al. (2017) limiting the number of chargers per CS to one,

two, three, and four. According to our results, 55 of the BKS become infeasible if there is only one charger per CS. This

figure drops to 23 and three for the cases with two and three chargers. The only scenario where all BKSs are feasible

is when CSs have four chargers (see Appendix A for details). Intuitively, one may think that by merely shifting the

starting time of the charging operations marginally, the feasibility problem will be solved. However, our experiments

show that this is not only unnecessarily expensive, but it may also be infeasible. Another option to mitigate the effects

of congestion is to increase the number of chargers installed at each CS, but this may not be a viable solution in practice.

Indeed, Gnann et al. (2018) predict that in 2020, the purchase and installation costs of a fast charging point (i.e., power

rates above 22 kW) will be around 40,000e and its annual operation cost will reach 4,000e. Thus, if a company decides

to invest in out-of-the-depot charging infrastructure, there is little chance that it will decide to install more than a couple

of chargers at each CS. In conclusion, we argue that in most practical situations, the congestion at the CSs should be

taken into account when planning the routes by explicitly modeling the CS capacity constraints.

We are aware of only one study taking into account CS capacity constraints when optimizing routing decisions.

Bruglieri et al. (2019) explicitly limited the number of vehicles simultaneously refueling at each alternative fuelling

station according to its number of fueling pumps. Some researchers have studied related but different problems. For

instance, Sassi and Oulamara (2014) and Pelletier et al. (2018) considered the problem of scheduling charging operations

at the depot, assuming that the routes are given as an input. Both papers considered not only constraints on the number

of available chargers, but also electricity grid constraints limiting the amount of power that can be drawn from the electric

grid at any given time. The latter is typically a binding constraint for central depots with a large number of available

chargers, but is usually not a concern for CSs since they are designed to operate at full capacity.

In this paper we introduce the E-VRP-NL with capacitated CSs (E-VRP-NL-C). The problem extends classical E-

VRPs to account for the fixed number of chargers available at each CS. The E-VRP-NL-C is a complex combined routing-

scheduling problem belonging to the family of VRPs with synchronization constraints. More specifically, according to

the taxonomy introduced by Drexl (2012), the E-VRP-NL-C belongs to the class of VRPs with resource synchronization,

where vehicles compete to access scarce resources (i.e., the chargers at every CS). The E-VRP-NL-C shares similarities
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with problems where vehicles need to wait while the loading equipment is busy. Examples of problems in this class include

the log truck scheduling problem (El Hachemi et al., 2013; Rix et al., 2015) and routing and scheduling problems arising

in public works (Grimault et al., 2017). The E-VRP-NL-C also relates to VRPs with inter-tour resource constraints. In

these problems, the scarce resources are located only at the terminal node of the routes (i.e., the depot). An example of a

problem in this category is the VRP introduced by Hempsch and Irnich (2008), where there is a limited number of ramps

at the depot, and therefore only a fixed number of vehicles can be served simultaneously. The problem that is most

closely related to the E-VRP-NL-C is the VRP with location congestion introduced by Lam and Van Hentenryck (2016).

In this problem, each customer has a given number of requests and a limited number of resources (e.g., conveyors). When

a vehicle arrives at a customer location, it must wait until at least one resource becomes available to handle the shipping.

However, there exist two fundamental differences between their problem and our E-VRP-NL-C. The first is that in our

problem, visiting nodes with limited resources (the CSs) is needed for feasibility reasons. As a consequence, not only

the number, but also the location and duration of the charging operations depend on the configuration of the routes.

In other words, the tasks that must be synchronized are not known a priori. The second difference is that in contrast

to their problem, in our E-VRP-NL-C, the task synchronization has a direct impact on the solution cost. Dealing with

these two features adds a thick layer of complexity to the models and solution methods.

The contribution of this paper is twofold. First, we propose two mixed integer linear programming (MILP) formula-

tions for the E-VRP-NL-C, showing how capacity constraints can be integrated into standard E-VRP models. Second,

we introduce a framework to solve E-VRPs with CS capacity constraints in general, and the E-VRP-NL-C in particular.

It is made up of two interacting components: a route generator and a solution assembler. The first component builds a

set of high-quality solutions, while relaxing the CS capacity constraints. The routes making up these solutions are stored

in a pool which is sent to the assembler every few iterations. The latter combines routes from the pool in an attempt to

build a solution meeting the CS capacity constraints. If such a solution does not exist or cannot be found within a given

computing time, the assembler sends a signal to the generator to modify the search space in order to favor feasibility.

For the particular case of the E-VRP-NL-C, we have developed a route generator based on a new, powerful, and efficient

iterated local search (ILS) metaheuristic for the E-VRP-NL, and a solution assembler based on branch-and-cut. We

present four assembly strategies allowing for different tradeoffs between efficiency and effectiveness. We have carried

out extensive computational experiments on a large set of instances with different characteristics adapted from available

benchmarks. The results demonstrate that our approach can handle the CS capacity constraints effectively. In addition,

we report new BKS for 80 out of the 120 instances of a well-established benchmark set for the closely related E-VRP-NL.

The remainder of this paper is organized as follows. Section 2 formally introduces the E-VRP-NL-C. Section 3

describes MILP formulations of the problem. Section 4 presents the proposed solution method. Section 5 shows the

computational results. Finally, Section 6 concludes and outlines research perspectives.

2 Problem description

We define the E-VRP-NL-C as follows. Let I be the set of customers that need to be served and let F be the set of

charging stations (CSs) at which recharging can take place. Each customer i P I has a service time gi. The customers are

served using a homogeneous fleet of EVs. Each EV has a battery of capacity Q (expressed in kWh). At the beginning

of the planning horizon, the EVs are located in a single depot, from which they leave fully charged. The depot is

continuously open for Tmax hours. Traveling from one location i (the depot, a customer, or a CS) to another location j

incurs a driving time tij ě 0 and an energy consumption eij ě 0. Driving times and energy consumption both satisfy

the triangular inequality. Due to their limited battery capacity, EVs may need to stop en route at CSs. Charging

operations can occur at any CS, they are non-preemptive, and EVs can be partially recharged. The CS j P F has a

concave piecewise linear charging function φjp∆q that maps for an empty battery the time ∆ spent charging at j and

the SoC of the vehicle upon departing from j. If q is the SoC of the EV upon arrival at j and ∆ is the charging time,

then the SoC of the EV upon departure from j is given by φjp∆ ` φ´1
j pqqq (Figure 1). We denote by Bj “ t0, . . . , bju

the ordered set of breakpoints of the charging function at j, sorted in non-decreasing order. We also introduce ajk and

qjk to denote the charging time and the SoC for breakpoint k P Bj of CS j.

Each CS j P F also has a capacity, given by the number of available chargers Cj . Due to the limited capacity of

CSs, vehicles may incur waiting times while they queue for a charger. We therefore note that optimal solutions are not
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φ´1
j pqq φ´1
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C

Figure 1: Piecewise linear charging function of a CS.

necessarily left-shifted schedules, as is the case for the E-VRP-NL and other E-VRP variants assuming uncapacitated

CSs.

Feasible solutions to the E-VRP-NL-C must satisfy the following conditions: 1) each customer is visited exactly

once by a single vehicle, 2) each route starts at the depot not before time 0 and ends at the depot not later than time

Tmax, 3) each route is energy-feasible, i.e., the SoC of an EV when it enters and leaves from any location lies between

0 and Q, and 4) no more than Cj EVs simultaneously charge at each CS j P F . The objective of the E-VRP-NL-C is

to minimize the total time needed to serve all customers, including driving, service, charging, and waiting times. Note

that to avoid congestion at CSs, the starting times of the routes can be delayed at no cost. Moreover, an E-VRP-NL-C

instance may have no feasible solution.

3 Two mixed-integer linear programming formulations

In this section we extend the formulations of Froger et al. (2019) for the closely related E-VRP-NL in order to deal with

CS capacity constraints. These formulations belong to two families: CS replication-based formulations and path-based

formulations. The former are akin to the MILP formulations which are typically used in the E-VRP literature. The

latter correspond to a more intricate modeling strategy similar to the one proposed by Bartolini and Andelmin (2017) for

the G-VRP. According to the results obtained by Froger et al. (2019) on small-size instances, path-based formulations

outperform CS replication-based formulations. Nonetheless, we decided to explore both types of formulations to provide

insights into how CS capacity constraints can be modeled under both families of formulations.

3.1 CS replication-based formulation

The E-VRP-NL-C can be defined on a digraph G “ pV,Aq, where V “ t0u Y I Y F 1 is the set of nodes and A is the

set of arcs connecting the nodes of V . Node 0 represents the depot. The set F 1 is equal to YiPFF
1
i where for each CS

i P F F 1i denotes the set containing βi copies of i (i.e., |F 1i | “ βi). The value of βi corresponds to an upper bound on

the number of visits to CS i. Note that we must have βi " Ci; otherwise, the capacity constraints are conservatively

respected (the maximum number of charging operations at a CS being smaller than its capacity). We denote by F 1i Ď F 1

the set containing the βi copies of CS i (i.e., |F 1i | “ βi and F 1 “
Ť

iPF F
1
i ). We assume that F 1i is an ordered set whose

elements are numbered from 1 to βi. In the remainder of this paper, depending on the context, we refer to an element

of F 1 or F 1i as a CS copy or as a potential charging operation. We use the preprocessing procedure presented in Froger

et al. (2019) to reduce the number of arcs in A. This technique primarily removes arcs that cannot feasibly be used due

to the capacity of the battery.

According to the experiments carried out by Froger et al. (2019), the best CS replication-based formulation for the

E-VRP-NL uses an arc-based tracking of the time and of the SoC. We therefore decided to use arc-based tracking in

our first formulation. The binary variable xij is equal to 1 if and only if an EV travels on arc pi, jq P A. The continuous

variables τij and yij represent the time and SoC of an EV when it departs from vertex i P V to travel on arc pi, jq. If no

vehicle travels on this arc, then both variables are equal to 0. The continuous variables q
j

and qj specify the SoC of an
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EV when it enters and leaves the CS copy j P F 1. The variables aj and aj are the scaled arrival and departure times,

according to the charging function of CS copy j. The continuous variable ∆j represents the duration of the charging

operation performed at j. For k P Bjzt0u, the binary variables wjk and wjk are equal to 1 if and only if the SoC lies

between qj,k´1 and qjk when the EV enters and leaves CS copy j, respectively. Finally, the continuous variables λjk and

λjk are the coefficients associated with the breakpoints pajk, qjkq of the piecewise linear charging function φj when the

EV enters and leaves CS copy j, respectively. Without loss of generality, we restrict waiting times to occur only before

charging operations. We introduce a continuous variable ∇j representing the waiting time of an EV before the start of

its charging operation at j P F 1.

To model the CS capacity constraints, we rely on concepts borrowed from the Resource Constrained Scheduling

Problem (RCPSP) literature. More precisely, we propose a flow-based formulation inspired from Artigues et al. (2003).

There are, however, differences between our CS scheduling problem and the RCPSP. In our problem: i) the duration of

each task (i.e., the charging operation), and ii) the number of tasks executed by each resource (i.e., a CS) are decision

variables, whereas these are given parameters in the RCPSP. To the best of our knowledge this particular case has not

yet been considered. In our flow-based formulation (hereafter referred to as FB), we consider Ci resources (represented

by the chargers) for each CS i P F . Each resource can execute at most one operation at any given time. Let i P F be

a CS and 0i and βi ` 1 be two dummy operations acting as the source and the sink of the flow. We denote by ĂF 1i the

ordered set t0iu Y F 1i Y tβi ` 1u of potential charging operations (CS copies are considered here as potential charging

operations). A visit to a CS copy requires the scheduling of the corresponding charging operation on one of the chargers

of its associated CS. To break symmetries created by the introduction of copies of a CS i, without loss of generality, if

γi ď βi visits to a CS are needed, we enforce the visit of the CS copies numbered from 1 to γi. Moreover, among the CS

copies of i that are visited, we force them to be visited in the reverse order in which they appear in Fi (i.e, a charging

operation j P F 1i must start after a charging operation l P F 1i if l ą j). The reverse order is used since the departure

time and charging duration variables are equal to zero when a CS copy is not visited. The sequential binary variable

ujl is equal to 1 only if (potential) operation l starts later than the completion of (potential) operation j with j, l P F 1i

and j ą l. Let now j, l P ĂF 1i be two operations (potentially dummy) such that j ą l. The continuous flow variable fjl

denotes the number of chargers that are transferred from operation j to operation l. This number is naturally equal to

one if j and l are not both dummy. Specifically, if both j and l are not dummy, fjl is equal to one if and only if the

operations j and l are scheduled on the same charger, l is scheduled after j, and no other operation uses the charger

between the completion of j and the beginning of l. For notational convenience, we define rCj :“ 1 for all j P F 1i and

rC0i :“ rCβi`1 :“ Ci.

To illustrate our flow-based formulation, consider an example in which a CS i has two chargers (i.e., Ci “ 2) and set

F 1i contains five copies of this CS (βi “ 5). Figure 2 depicts the structure of the flow network. Assume that the model

decides to schedule four charging operations at i. Figure 3 illustrates the structure of the flow network derived from

the schedule (by eliminating the flow variables associated to sequential variables equal to zero) and describes a feasible

flow.

6 5 4 3 2 1 0

Figure 2: Structure of the flow network for CS i.
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4

5

Copies of CS i

Time

charging operation

Schedule of the charging operations at CS i

6 4 3 2 1 0

6 4 3 2 1 0
f64 “ 1

f63 “ 1 f41 “ 1

f32 “ 1

f20 “ 1

f10 “ 1

Structure of the flow network for CS i derived from the schedule (top) and a feasible flow (bottom)

Figure 3: Illustration of the flow-based formulation modeling approach for a given schedule at CS i

Building on this concept, the CS replication-based formulation for the E-VRP-NL, denoted as rFCSrep s, is as follows:

rFCSrep s minimize
ÿ

pi,jqPA

tijxij `
ÿ

iPF 1

p∆i `∇iq (1)

subject to
ÿ

pi,lqPA

xil “ 1 i P I (2)

ÿ

pj,lqPA

xjl ď 1 j P F 1 (3)

ÿ

pl,iqPA

xli ´
ÿ

pi,lqPA

xil “ 0 i P V (4)

y0l “ Qx0l p0, lq P A (5)
ÿ

pl,iqPA

yli ´
ÿ

pl,iqPA

eljxli “
ÿ

pi,lqPA

yil i P I (6)

ÿ

pl,jqPA

ylj ´
ÿ

pl,jqPA

eljxlj “ q
j

j P F 1 (7)

ÿ

pj,lqPA

yjl “ qj j P F 1 (8)

yij ď

ˆ

Q´ min
lPFYt0u

teliu

˙

xij pi, jq P A (9)

yij ě

ˆ

eij ` min
lPFYt0u

tejlu

˙

xij pi, jq P A (10)

q
j
ď qj j P F 1 (11)

q
j
“

ÿ

kPBj

λjkqjk j P F 1 (12)

aj “
ÿ

kPBj

λjkajk j P F 1 (13)

ÿ

kPBj

λjk “
ÿ

kPBjzt0u

wjk j P F 1 (14)

ÿ

kPBjzt0u

wjk “
ÿ

pj,lqPA

xjl j P F 1 (15)

λj0 ď wj1 j P F 1 (16)
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λjk ď wjk ` wj,k`1 j P F 1, k P Bjzt0, bju (17)

λjbj ď wjbj j P F 1 (18)

qj “
ÿ

kPBj

λjkqjk j P F 1 (19)

aj “
ÿ

kPBj

λjkajk j P F 1 (20)

ÿ

kPBj

λjk “
ÿ

kPBjzt0u

wjk j P F 1 (21)

ÿ

kPBjzt0u

wjk “
ÿ

pj,lqPA

xjl j P F 1 (22)

λj0 ď wj1 j P F 1 (23)

λjk ď wjk ` wj,k`1 j P F 1, k P Bjzt0, bju (24)

λjbj ď wjbj j P F 1 (25)

∆j “ aj ´ aj j P F 1 (26)
ÿ

pl,iqPA

pτli ` ptli ` giqxliq “
ÿ

pi,lqPA

τil i P I (27)

ÿ

pl,jqPA

pτlj ` tljxljq `∆j `∇j “
ÿ

pj,lqPA

τjl j P F 1 (28)

τli ď pTmax ´ tli ´ gi ´ ti0qxli pl, iq P A, i P I (29)

τlj ď
´

Tmax ´ tlj ´∆min
j ´ tj0

¯

xlj pl, jq P A, j P F 1 (30)

ÿ

ph,jqPA

xhj ď
ÿ

ph,lqPA

xhl, i P F, j, l P F 1i , j ă l (31)

ÿ

pj,hqPA

τjh ´∆j ě
ÿ

pl,hqPA

τlh ´∆l i P F, j, l P F 1i : j ă l (32)

ÿ

lPĂF 1i,ląj

flj “
ÿ

pl,jqPA

xlj i P F, j P F 1i (33)

ÿ

lPĂF 1i,ląj

flj ´
ÿ

lPĂF 1i,lăj

fjl “ 0 i P F, j P F 1i (34)

Ci ´
ÿ

lPĂF 1i,lą0i

fl,0i “ 0 i P F (35)

ÿ

lPĂF 1i,lăβi`1

fβi`1,l ´ Ci “ 0 i P F (36)

ujh ě ujl ` ulh ´ 1 i P F, j, l, h P F 1i : j ą l ą h (37)
ÿ

pl,hqPA

τlh ´∆l ´
ÿ

pj,hqPA

τjh ě pTmax ´ ti0q pujl ´ 1q i P F, j, l P F 1i , j ą l (38)

fjl ď minp rCj , rClqujl i P F, pj, lq P F 1i , j ą l (39)

xij P t0, 1u, τij ě 0, yij ě 0 pi, jq P A (40)

wjk P t0, 1u, wjk P t0, 1u j P F 1, k P Bjzt0u (41)

λjk ě 0, λjk ě 0 j P F 1, k P Bj (42)

aj ě 0, aj ě 0, q
j
ě 0, qj ě 0,∆j ě 0,∇j ě 0 j P F 1 (43)

ujl P t0, 1u i P F, j, l P F 1i , j ą l (44)

fjl ě 0 i P F, j, l P ĂF 1i, j ą l. (45)

The objective function (1) includes the driving, charging, and waiting times. Constraints (2) ensure that each customer

is visited exactly once, while constraints (3) ensure that each CS copy is visited at most once. Constraints (4) impose

the flow conservation. Constraints (5) state that the EVs leave the depot fully charged. Constraints (6) track the SoC

at each customer. Constraints (7) track the SoC of the EV when it arrives at a CS copy. Constraints (8) track the SoC

of the EV when it leaves a CS copy. Constraints (9) couple the yij and xij variables. Constraints (10) state that if an
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EV traverses the arc pi, jq its SoC when leaving i must be enough to traverse the arc and then to reach the closest CS

or the depot. Constraints (11) couple the SoC of an EV upon arrival at a CS with its SoC at departure. Constraints

(12)–(18) define the SoC and the corresponding charging time with respect to φj of an EV upon arrival at CS copy

j. Specifically, we express paj , qjq as a convex combination of the breakpoints pajk, qjkq using the λjk variables, where

k P Bj . Similarly, constraints (19)–(25) define the SoC and the corresponding charging time with respect to φj of an EV

upon departure from CS copy j. Specifically, we express paj , qjq as a convex combination of the breakpoints pajk, qjkq

using the λjk variables, where k P Bj . Constraints (26) define the time spent at a CS copy. Constraints (27) track the

departure time at each customer. Constraints (28) track the departure time at CS copies. Constraints (29) and (30)

couple the τij and xij variables. Specifically, if an EV traverses an arc pi, jq, then its departure time must guarantee that

the EV returns to the depot before the closing time. The parameter ∆min
j is a lower bound on the time spent charging

to recover the energy consumed to make the detour to j P F 1. It is equal to the time needed to charge the energy

quantity min
l,l1PV ztju:pl,jqPA^pj,l1qPA

telj ` ejl1 ´ ell1u if the EV has an empty battery. Constraints (31) and (32) break the

symmetries created by the introduction of the CS copies. Constraints (33) state that a resource has to be allocated to a

charging operation in F 1i if an EV reaches the corresponding CS. Constraints (34)–(36) ensure the flow conservation for

the chargers. Constraints (37) express the transitivity of the precedence relations. Constraints (38) are the disjunctive

constraints coupling the start time of charging operations j and l to ujl. For a pair pj, lq, the constraint is active when

ujl “ 1 and, in this case, it enforces the precedence relation between the charging operations j and l (i.e., l cannot

start before the completion of j). Constraints (39) couple the flow variables for the chargers to the charging operation

sequence variables. Finally, constraints (40)–(45) define the domains of the decision variables.

3.2 Path-based formulation

One drawback of the previous formulation is the need to replicate the CSs. To ensure that no optimal solution is cut

off, the number of needed copies is very large (Froger et al. (2019) provide an example where this value is equal to 4|I|),

which yields intractable MILPs. To overcome this difficulty, Froger et al. (2019) proposed an alternative model of for

the E-VRP-NL based on the concept of CS paths between each couple of nodes (either customers or the depot). Given

two nodes (customer or depot) i and j, we call a CS path (CSP) a simple path starting from i visiting a sequence of

CSs or none and ending at j.

The concept of CSPs leads to a redefinition of the problem on a directed multigraph rG “ prV , rAq, where rV “ t0uY I,

and rA is the set of arcs connecting the nodes of rV . More specifically, an arc in Ã represents a CSP p, starting in

orgppq P Ṽ and ending in destppq P Ṽ . We denote np the number of CSs in p and Lp “ t0, ¨ ¨ ¨ , np ´ 1u as the ordered

set of CS positions in p. We note that Lp “ H indicates that p does not visit any CS between orgppq and destppq.

When Lp ‰ H, we denote µpplq the CS at position l P Lp. We define ep and tp as the energy consumption and the

driving time associated with CSP p P P . Given two nodes i, j P rV , we define Pij as the set of CSPs connecting i to j,

and we define P “
Ť

i,jP rV ,i‰j Pij as the set of all CSPs.

Our path-based formulation of the E-VRP-NL-C involves the following decisions variables. The binary variable xp

is 1 if and only if an EV travels CSP p P P . The continuous variables τp and yp track the time and SoC of an EV when

it departs from node orgppq to destppq using CSP p. We associate with each CS in a CSP of set P a unique potential

charging operation (a CSP can at most be traveled by a single EV). The continuous variables q
pl

and qpl specify the

SoC of an EV when it enters and leaves µpplq (i.e., the CS at position l P Lp). The continuous variable ∆pl represents

the duration of the charging operation performed at µpplq. The variables apl and apl are the scaled arrival and departure

times, according to the charging function of CS µpplq. For k P Bizt0u, the binary variables wplk and wplk are equal to

1 if and only if the SoC is between qµpplq,k´1 and qµpplq,k when the EV enters and leaves CS µpplq, respectively. The

continuous variables λplk and λplk represent the coefficients associated with the breakpoints paµpplq,k, qµpplq,kq of the

piecewise linear charging function, when the EV enters and leaves CS µpplq, respectively. Let ep and tp be the energy

consumption and the driving time associated with CSP p P P . The continuous variable ∇pl is the waiting time at the

CS at position l in CSP p before charging. We also need to track the starting and completion time of every charging

operation. The continuous variables spl and spl represent the starting and completion time of the charging operation

performed at µpplq.

The modeling of the capacity constraints follows the same idea as the one described in §3.1. For convenience, we

introduce the set Oi of potential charging operations at CS i P F . Every operation o P Oi represents the visit of a
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specific CS of a CSP of P . We denote by ppoq P P the corresponding CSP and by lpoq P Lppoq the position of the

visited CS. Specifically, an operation o is associated with CS µppoqplpoqq. Binary variable uoo1 is equal to 1 if and only

if operation o1 starts after the completion of operation o ‰ o1. For every CS i P F , we introduce two dummy operations

ε`i and ε´i , which act as the source and the sink of the flow. Let po, o1q P
`

Oi Y tε
`
i u

˘

ˆ
`

Oi Y tε
´
i u

˘

be a couple of

charging operations; then the continuous flow variable foo1 denotes the number of chargers that are transferred from

operation o to operation o1. When both these operations are not dummy, foo1 is equal to one if and only if these

operations are scheduled on the same charger, o1 is scheduled after o, and no other operation is scheduled on the charger

between the completion of o and the beginning of o1. For notational convenience, we define rCo :“ 1 for all o P Oi and

rC
ε`i

:“ rC
ε´i

:“ Ci. The second model for the E-VRP-NL-C, denoted as rP paths, is as follows:

rF paths minimize
ÿ

pPP

¨

˝tpxp `
ÿ

lPLp

p∆pl `∇plq

˛

‚ (46)

subject to
ÿ

jP rV ,i‰j

ÿ

pPPij

xp “ 1 i P I (47)

ÿ

jP rV ,i‰j

ÿ

pPPji

xp ´
ÿ

jP rV ,i‰j

ÿ

pPPij

xp “ 0 i P rV (48)

ÿ

lP rV ,l‰j

ÿ

pPPlj

¨

˝yp ´ e
pxp `

ÿ

lPLp

pqpl ´ qplq

˛

‚“
ÿ

lP rV ,l‰j

ÿ

pPPjl

yp j P I (49)

yp ´ eorgppq,µpp0qxp “ q
p0

p P P (50)

qp,l´1 ´ eµppl´1q,µpplqxp “ q
pl

p P P, l P Lpzt0u (51)

yp ´ e
pxp ´

ÿ

lPLp

popl ´ qplq ě 0 i P I, p P Pi0 (52)

yp “ Qxp i P rV zt0u, p P P0i (53)

yp ď Qxp p P P (54)

q
pl
“

ÿ

kPBµpplq

λplkqµpplqk p P P, l P Lp (55)

apl “
ÿ

kPBµpplq

λplkaµpplqk p P P, l P Lp (56)

ÿ

kPBµpplq

λplk “
ÿ

kPBµpplqzt0u

wplk p P P, l P Lp (57)

ÿ

kPBµpplqzt0u

wplk “ xp p P P, l P Lp (58)

λpl0 ď wpl1 p P P, l P Lp (59)

λplk ď wplk ` wpl,k`1 p P P, l P Lp, k P Bµpplqzt0, bµpplqu (60)

λplbµpplq
ď wplbµpplq

p P P, l P Lp (61)

qpl “
ÿ

kPBµpplq

λplkqµpplqk p P P, l P Lp (62)

apl “
ÿ

kPBµpplq

λplkaµpplqk p P P, l P Lp (63)

ÿ

kPBµpplq

λplk “
ÿ

kPBµpplqzt0u

wplk p P P, l P Lp (64)

ÿ

kPBµpplqzt0u

wplk “ xp p P P, l P Lp (65)

λi0 ď wpl1 p P P, l P Lp (66)

λplk ď wplk ` wpl,k`1 p P P, l P Lp, k P Bµpplqzt0, bµpplqu (67)

λplbµpplq ď wplbµpplq p P P, l P Lp (68)

∆pl “ apl ´ apl p P P, l P Lp (69)
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ÿ

iPV,i‰j

ÿ

pPPij

¨

˝τp ` t
pxp `

ÿ

lPLp

p∆pl `∇plq

˛

‚` gj “
ÿ

lP rV ,l‰j

ÿ

pPPjl

τp j P I (70)

τp `
ÿ

lPLp

p∆pl `∇plq ď
`

Tmax ´ t
p
´ pdestppq ´ tdestppq,0

˘

xp p P P (71)

τp ` torgppq,µpp0qxp `∇p0 “ sp0 p P P (72)

sp,l´1 ` tµppl´1q,µpplqxp `∇pl “ spl p P P, l P Lp, l ‰ 0 (73)

∆pl “ spl ´ spl p P P, l P Lp (74)
ÿ

o1POiYtε
`
i u

fo1o “ xppoq i P F, o P Oi (75)

ÿ

o1POiYtε
`
i u

fo1o ´
ÿ

o1POiYtε
´
i u

foo1 “ 0 i P F, o P Oi (76)

Ci ´
ÿ

oPOiYtε
´
i u

f
ε`i ,o

“ 0 i P F (77)

ÿ

oPOiYtε
`
i u

f
o,ε´i

´ Ci “ 0 i P F (78)

sppoq,lpoq ´ sppo1q,lpo1q ě Tmax puo1o ´ 1q i P F, o, o1 P Oi (79)

foo1 ď minp rCo, rCo1quoo1 i P F, po, o1q P
`

Oi Y tε
`
i u

˘

ˆ
`

Oi Y tε
´
i u

˘

(80)

xp P t0, 1u p P P (81)

τp ě 0, yp ě 0 p P P (82)

q
pl
, qpl, apl, apl, spl, spl,∆pl,∇pl ě 0 p P P, l P Lp (83)

λplk ě 0, λplk ě 0 p P P, l P Lp, k P Bµpplqzt0u (84)

wplk P t0, 1u, wplk P t0, 1u p P P, l P Lp, k P Bipp,lqzt0u (85)

uoo1 P t0, 1u i P F, o, o1 P Oi (86)

foo1 ě 0 i P F, po, o1q P
`

Oi Y tε
`
i u

˘

ˆ
`

Oi Y tε
´
i u

˘

. (87)

The objective function (46) minimizes the total driving, charging, and waiting time. Constraints (47) ensure that each

customer is visited exactly once. Constraints (48) impose flow conservation. Constraints (49) track the SoC of EVs

at each customer location. Constraints (50) track the SoC at the arrival at the first CS of each CSP. Constraints (51)

couple the SoC of an EV that leaves a CS to go to another CS. Constraints (52) ensure that if the EV travels between

a vertex and the depot, it has sufficient energy to reach its destination. Constraints (53) state that every EV leaves

the depot with a fully charged battery. Constraints (54) couple the SoC tracking variable with the arc travel variables.

Constraints (55)–(69) model the relationship between the SoC of an EV upon arrival at a CS, the charging time, and

its SoC upon departing from this CS. Constraints (70) track the departure time at each vertex. Constraints (71) couple

the time tracking variable with the arc travel variables, and impose the route duration limit. Constraints (72) and

(73) define the starting and completion times of every charging operation, as well as the potential waiting time before

the start of the operation. Constraints (74) define the duration of the charging operations based on their starting and

completion times. Constraints (75) state that a charger has to be allocated to every charging operation of each selected

CSP. Constraints (76) ensure flow conservation. Constraints (77) and (78) compute the flow value at the beginning

and at the end of the time horizon. Constraints (79) couple the sequencing variables with the starting time of the

corresponding charging operations. Constraints (80) couple the flow variables with the sequence variables. Specifically,

a charger can be sent from a charging operation o1 to another charging operation o if o starts after the completion of o1.

Finally, constraints (81)–(87) define the domains of the decision variables.

Without preprocessing, the number of CSPs explodes with the number of CSs and the number of customers. However,

a large number of these arcs cannot be part of an optimal solution. Froger et al. (2019) presented a filtering procedure

to reduce the number of CSPs in the path-based formulation based on the definition of a dominance rule between two

CSPs having the same origin and destination. Due to the potential waiting times that can occur at CSs, we cannot apply

the dominance rule described in the work of Froger et al. (2019) between CSPs with the same origin and destination

if they both contain CSs. However, in our computational experiments we apply the dominance rule in the special case
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between the unique CSP with no CS and every other CSP of Pij , with i and j in rV .

4 Solution method

The results obtained by Froger et al. (2019) suggest that the models introduced in §3.1 are only applicable to small-size

instances (around 20 customers). In this section, we introduce a matheuristic to solve the E-VRP-NL-C. The method

relies on two interacting components: a route generator and a solution assembler. The first component builds a pool of

high-quality solutions by relaxing the CS capacity constraints, while the latter component recombines routes from the

pool trying to build a solution satisfying the CS capacity constraints. Algorithm 1 outlines the general structure of the

method. The algorithms starts by generating an initial solution without taking into account the capacity constraints (line

1). In our implementation, this step is carried out using a modified version of the classical Clarke and Wright heuristic.

Next, the algorithm enters the main loop (lines 3–28). During nmax iterations the algorithm alternates between the route

generation and solution assembly phases. In particular, the algorithm uses procedure generateRoutes(¨) to retrieve a

triplet pΦO,ΦR,Ω
1
q, where ΦO,ΦR are sets of high-quality solutions for the original and relaxed problems (i.e., with

and without CS capacity constraints), and Ω1 is a set of independent, feasible, and high-quality routes for the original

problem. The latter will be referred to as the short-term pool. Next (lines 4–12) the algorithm adds the routes making

up the solutions in ΦO and ΦR to a long-term pool Ω while keeping track of the best solutions for both the original (s˚O)

and the relaxed problem (s˚R). The intuition behind adding routes coming from potentially infeasible solutions to the

original problem (i.e., solutions to the relaxed problem) to the long-term pool is to foster diversity. Indeed, these routes

tend to be of high quality (in terms of the objective function) and might be recombined efficiently with others later.

The algorithm then enters the assembly phase (lines 13–14). In the first step of this phase, the algorithm merges

the short- and long-term pools. Thus, seeking to combine the past and recent history of the search into a single set of

routes that has a size that is manageable for the solution assembler. The algorithm then calls procedure assemble(¨) to

retrieve a tuple ps1, S1q, where s1 is the best solution and S1 is the set of all improving solutions (with respect to s˚O) for

the original problem found during the call. If the assembler retrieves a solution, the algorithm adds its routes in S1 to

the long-term pool Ω and updates the incumbent s˚O (lines 15–18). If after the call to the assembler, the algorithm still

has not found a feasible solution (i.e., s˚O is still equal to null), it implements two actions. First, it slightly modifies

the search space to favor feasibility. In our implementation, we modify the solution space by artificially reducing the

opening hours of the depot (line 21). The underlying idea, is that the reduction of the depot’s operating hours would

lead to shorter routes with more slack to accommodate waiting times at charging stations during the assembly phase.

Second, it tries to repair the best-known solution for the relaxed problem (i.e., s˚R) by making it comply with the new

solution space. In our implementation, if a route visiting n customers has a duration strictly greater than the new value

T of the depot hours, the algorithm creates two new routes by adding a return to the depot after the tn{2u
th customer

and reoptimizes the charging decisions within these routes. To avoid feasibility issues, the new route maximum duration

limit is not considered when a route visits only one customer. The same procedure is performed on the newly created

routes as long as the routes contain more than one customer and their duration exceeds T . On the other hand, if after

the call to the assembler a feasible solution is available (i.e., s˚O is different than null), the algorithm then reestablishes

(if needed) the original solution space (i.e., resets the value of the depot opening hours to Tmax) and moves to a new

iteration.

Both the route generation and solution assembly phases consist in solving complex combinatorial optimisation

problems. In our framework, we develop an iterative local search algorithm as the route generator and a branch-and-cut

procedure as the solution assembler. The remainder of this section describes these two components.

4.1 Route generator: an iterated local search algorithm for the E-VRP-NL

Local search (LS) techniques have been commonly used to solve E-VRPs. In this respect, researchers have devoted

substantial effort in finding move evaluation strategies that offer the best trade-off between accuracy and efficiency. A

first approach relies on LS operators that focus on customers or CSs, more or less indistinctively, while other approaches

focus on one type of node (i.e., either customers or CSs) while not modifying the positioning of the others ones.

Typically, given the resulting sequence of customers and CSs, the quantity to be charged at each CS is determined.

The feasibility and the evaluation of a move is therefore a result of this process. While this has the advantage of
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Algorithm 1: Solution method - general structure

/* fpsq denotes the value of the objective function for a solution s and we assume that fpNULLq “ `8*/

1 s0R ÐgenerateInitialSolution()

2 nÐ 0, T Ð Tmax, Ω ÐH, s˚R Ð s0R, sR Ð s0R, s˚FO Ð NULL, sO Ð NULL

3 while n ă nmax do

4 pΦO,ΦR,Ω
1q ÐgenerateRoutes(sR,sO,δ,T ) (see Algorithm 2)

5 for each s1R P ΦR do

6 addRoutesToPool(Ω,s1R)

7 if fps1Rq ă fps˚Rq then s˚R Ð s1R

8 end

9 for each s1O P ΦO do

10 addRoutesToPool(Ω,s1O)

11 if fps1Oq ă fps˚Oq then s˚O Ð s1O

12 end

13 Ω1 Ð mergepΩ,Ω1q

14 ps1, S1q Ð assemblepΩ1, s˚Oq (see Algorithm 4) /* s1 “ NULL if no improving solution is found */

15 if s1 ‰ NULL then

16 s˚O Ð s1

17 if fps1q ă fps˚Rq then s˚R Ð s1

18 for each s P S1 do addRoutesToPool(Ω,s)

19 end

20 if s˚O “ NULL then

21 T Ð maxtTmin, α ¨ T u /* Tmin : minimum possible value for T, α ă 1 a tuning parameter */

22 sR Ð repair(s˚R), sO Ð NULL

23 else

24 if T ă Tmax then T Ð Tmax

25 sO Ð s˚O, sR Ð s˚R

26 end

27 nÐ n` 1

28 end

29 return s˚O

requiring a low computational effort, it can have undesired effects. For example, a move may be deemed infeasible

or non-improving, while the resulting sequence(s) of customer visits can lead to an excellent solution if the charging

decisions are reoptimized, in terms of which CSs to visit, when to visit them and how much to charge the EV during

these visits.

Most of the LS-based algorithms designed for E-VRPs use the aforementioned approaches (e.g., Felipe et al. (2014);

Schneider et al. (2014); Goeke and Schneider (2015); Koç and Karaoglan (2016)). In some cases, more advanced

strategies are also called periodically to improve the charging decisions inside the routes, by means of heuristic or exact

procedures, or a combination of both (Hiermann et al. (2016); Montoya et al. (2017)). Another approach couples the

charging decisions (in terms of which CSs to visit, when to visit them and how much to charge the EV during these visits)

with the evaluation of the customer sequencing moves. Specifically, it relies on LS operators that solely function on

customers, while the charging decisions are only made to check the feasibility of a move and to evaluate it. This coupling

approach comes with a computational burden. To avoid the need to explicitly model CSs, Andelmin and Bartolini (2019)

designed for the Green VRP a multi-start local search heuristic that works on a multigraph (where each arc represents a

CSP). Nonetheless, their solution method is only halfway between the previously described approaches for two reasons.

First, vehicles are fully charged when visiting a CS, and thus no optimisation of the recharging quantities is performed.

Second, they do not necessarily guarantee that the charging decisions inside the routes are optimal. To our knowledge,

only Hiermann et al. (2019) designed an LS-based algorithm based on the coupling approach. Specifically, they used

a dynamic programming procedure to determine for each single route the CS visits and greedy policies to decide the

propulsion mode for a plug-in hybrid electric vehicle. They call this procedure every time they evaluate a move.

The previous discussion shows that charging decisions should be handled with care in LS-based algorithms for E-

VRPs. In the E-VRP-NL-C, given a set of routes without CSs, making optimal charging decisions consists in defining
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for every route where, when and how much to charge in order to minimize the total time to visit the customers while

meeting the CS capacity constraints. Therefore, the charging decisions of the routes need to be coupled, thus adding

another complicating decisional layer. As a consequence, solving this charging problem whenever an LS-based algorithm

evaluates a move is computationally demanding for the E-VRP-NL-C. However, for the vast majority of E-VRPs this

computational burden can be reduced since charging decisions can be independently optimized for each route (defined

here as a sequence of customer visits). This optimisation problem was explicitly handled by Montoya et al. (2017) and

Froger et al. (2019) in the context of the E-VRP-NL. The authors referred to this problem as the fixed route vehicle

charging problem (FRVCP).

We have developed a novel route generator, which is based on an ILS algorithm that solves the E-VRP-NL, while

populating a pool of routes to be used in constructing solutions to the E-VRP-NL-C. In particular, we considered only

customer nodes in the local search, and we used the labeling algorithm of Froger et al. (2019) to tackle the FRVCP, as

their results suggest that it can be embedded within heuristics.

Introduced by Lourenço et al. (2003), ILS is a metaheuristic that iteratively applies an LS phase to produce local

optima, and perturbation mechanisms to escape from them. It is initialized with a solution generally provided by a

constructive heuristic. In our implementation, we combine ILS with a variable neighborhood descent (VND) search

strategy for the LS phase. Algorithm 2 outlines the general structure of our method. First, the current best solution s˚R

is set equal to the initial solution s0
R provided as input. The algorithm then enters an iterative process. Except during

the first iteration, it perturbs the current best solution s˚R to escape from the current local optimum and potentially

explore a new region of the search space (see §4.1.2). This produces a new start point s1R for the VND which computes

a new local optimum sR to the E-VRP-NL (see §4.1.1) and also returns the best solution sO to the E-VRP-NL-C it

has encountered. Note that we only check the capacity constraints after accepting a move (i.e., when building a new

solution to the E-VRP-NL). If appropriate, the algorithm updates the best-known solutions s˚R and s˚O, as well as the

sets ΦR and ΦO of improving solutions. It also populates a pool of routes Ω. Note that we only add a route to Ω if it

does not already contains a route visiting the same sequence of nodes. This procedure is reiterated until the targeted

number of iterations has been reached. The optimization returns the sets of improving solutions to the E-VRP-NL and

E-VRP-NL-C and the generated pool of routes Ω. To speed up the ILS algorithm, its implementation is based on the

static move descriptor (SMD) concept introduced by Zachariadis and Kiranoudis (2010) which prevents unnecessary

reevaluations of moves and provides an efficient way of exploring neighborhoods (see Appendix B).

Algorithm 2: The ILS algorithm

Input : a solution s0R to the E-VRP-NL, a solution s0O to the E-VRP-NL-C (possibly equal to NULL), a maximum

number of iterations δmax, and a maximum route duration limit T

Output: a set ΦR and a set ΦO of improving solutions to the E-VRP-NL and to the E-VRP-NL-C, a pool of routes Ω

1 Procedure generateRoutes(s0R,s
0
O,δmax,T):

/* We denote fpsq the value of the objective function for a solution s and we assume fpNULLq “ `8*/

2 δ Ð 0, ΦR ÐH, ΦO ÐH, Ω ÐH

3 s˚R Ð s0R, s˚O Ð s0O
4 while δ ă δmax do

5 if δ “ 0 then s1R Ð s0R
6 else s1R Ðperturb(s˚R,T) (see §4.1.2)

7 psR, sOq Ð VND(s1R,T) (see Algorithm 5)

8 addRoutesToPool(Ω,sR)

9 if fpsRq ă fps˚Rq then ΦR Ð ΦR Y tsRu, s
˚
R Ð sR

10 if fpsOq ă fps˚Oq then ΦO Ð ΦO Y tsOu, s
˚
O Ð sO

11 δ Ð δ ` 1

12 end

13 return pΦR,ΦO,Ωq

4.1.1 The VND search phase

The VND relies on an ordered list of LS operators. A single operator is considered at a time. If an improving move

is found, the search restarts with the first operator of the list. Otherwise, it moves to the next operator. The search
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reaches a local optimum when the last operator fails to improve the current solution.

Our VND employs several classical VRP operators focusing on sequencing decisions. These operators are defined

for solutions represented as sequences of customer visits without CSs. We use five vertex exchanges operators that work

by relocating or exchanging customer visits : 1-0, 2-0, 1-1, 2-1, and 2-2 vertex exchanges. We also use the inter-route

and intra-route versions of 2-opt. We also define a specific operator for the E-VRP-NL, referred to as separate. This

operator creates two routes from a single route by inserting a return to the depot after a customer visit. It may improve

the cost of a solution if at least one CS is part of the split route. Indeed, creating two routes rather than one may

decrease the total time when an expensive detour to a CS is avoided. We stop applying an operator as soon as it has

found an improving move. We refer to Algorithm 5 in Appendix C for a description of the general scheme of the VND

search phase.

We only consider CSs when evaluating LS moves. In order to make charging decisions in such a way that every

route involved in a move has the lowest possible duration, we solve one (inter-route moves) or more (intra-route moves)

FRVCPs. To this end, we use the labeling algorithm described by Froger et al. (2019). After each call, the duration of

the route is stored in a cache memory to avoid recomputing it. Moreover, since only improving solutions are accepted

in the VND framework, we only solve FRVCPs for potentially improving moves. Therefore, we rely on a procedure that

filters unpromising or infeasible moves. Such moves are determined by establishing a lower bound on the duration of

the routes resulting from a move. The value of this lower bound is computed as the sum of two terms: the minimum

increase in time to detour to a CS between two successive nodes in the route, and a lower bound on the charging time.

The latter term is computed by dividing the sum of the energy consumption of the route and the minimum increase in

energy consumption to detour to a CS between two successive nodes in the route, by the steepest slope for a segment

of the piecewise linear charging functions. We note that this lower bound corresponds to the true duration of a route in

the case where its energy consumption does not exceed Q. If the lower bound on the route duration exceeds the limit,

then the route is infeasible. Otherwise, the procedure checks whether the route duration is stored in a cache memory

and modifies the lower bound value accordingly. We use the lower bound on the duration of the routes to determine

whether the move is strictly non-improving. We refer to Algorithm 6 in Appendix C for a detailed explanation on this

procedure. If a move is not discarded by the lower bound on the basis that it is infeasible or non-improving, we evaluate

it exactly when necessary (i.e., before accepting it). To this end, we solve FRVCPs for all the routes that have not been

evaluated exactly, as long as the move remains feasible and potentially improving.

4.1.2 The perturbation phase

Whenever we reach a local optimum, we perturb the current solution by removing geographically close customers and

by reinserting them at different positions. First, we randomly select a customer i P I. We then remove the κ closest cus-

tomers to i from their respective routes, with κ randomly selected in the interval rmint|I|, 5u,maxtmint|I|, 5u, r
a

|I|sus.

We set the distance between two customers i1 and i2 as equal to 0.5
`

ti1,i2 ` ti2,i1 ` pei1,i2 ` ei2,i1q{ρ
˚
˘

. The value of

ρ˚ corresponds to the steepest slope for a segment of the piecewise linear charging functions. Finally, customers are

reinserted in the solution one at a time and in a random order by applying the following rules. A removed customer

cannot be reinserted in the same route from which it was removed. We evaluate the increase in time of every feasible

insertion of the customer. This is done by reoptimizing the charging decisions. The probability of selecting a given fea-

sible insertion is set inversely proportional to the time increase due to the insertion. If there exists no feasible insertion,

we simply create a new route with the customer.

4.2 Solution assembler: a branch-and-cut method

The objective of the second component of the matheuristic is to construct the best possible solution to the E-VRP-NL-C

from a pool of routes Ω, obtained from the route generator component. We recall that the charging decisions made for

a route are such that its total duration is minimized. The main challenge of the second component of the heuristic is to

combine the routes in a solution while satisfying the capacity constraints.

Deriving the best possible solution by solving a set partitioning (SP) model over a pool of routes is a strategy that

has been successfully applied to several hard VRPs (Alvarenga et al., 2007; Subramanian et al., 2013; Villegas et al.,

2013; Montoya et al., 2017; Andelmin and Bartolini, 2019). It is used either as a post-optimization phase or as an
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intensification phase within a methaheuritic. An example of the latter is the matheuristic proposed by Subramanian

et al. (2013) to solve a class of VRPs. This approach has been mostly applied to problems without route coupling

constraints (i.e., the feasibility of one route is independent of the feasibility of other routes). Due to the CS capacity

constraints, the route coupling constraints need to be accounted for in the E-VRP-NL-C. To the best of our knowledge,

only two studies have dealt with route coupling constraints in the assembly phase of a solution from a pool of routes:

Morais et al. (2014) and Grangier et al. (2017), both in the context of cross-dock VRPs.

We propose assembling the solutions using a decomposition of the problem into a route selection master problem

and a CS capacity management subproblem. The master problem consists in selecting a set of routes such that every

customer is covered by exactly one route. The charging decisions within the selected routes (as imported from the first

component) may lead to a violation of the capacity constraints. In such cases, the subproblem checks whether the CS

capacity constraints can be met by revising some of the charging decisions.

We propose four versions of the subproblem, which primarily depend on the degree of allowed modifications on the

selected routes by the master problem. In the first version (denoted by N), we do not revise the charging decisions in

the selected routes and we only check whether the CS capacity constraints are satisfied. In the second version (denoted

by D), we allow delaying the starting time of each route (i.e., we postpone their starting time) to satisfy the CS capacity

constraints. We note that in versions N and D no increase in the total time of the solution is incurred. In the third

version (denoted by DW), we allow delaying the starting time of each route, and we also allow vehicles to wait for a

charger if a CS is overcrowded by EVs. In DW, waiting times can only occur when multiple CSs are visited within a

route, since, when only on CS is visited within a route, delaying the starting time of the route is preferable, as this

does not penalize the objective function. In the fourth version (denoted by DWR), we also revise the amount of energy

charged at the CSs. If a route contains at least two CSs, we may decide to charge more at the first CS in order to avoid

waiting before charging the EV at the second CS. We note that this strategy may sometimes avoid detouring to one of

the CSs visited in the original route.

We designed a branch-and-cut method to efficiently solve the problem while exploiting the above discussed decom-

position. While solving the route selection problem, we dynamically solve the CS capacity management subproblem.

More specifically, at each node, we solve the subproblem for the current selection of routes. Depending on the version

of the subproblem, we generate different cuts to discard infeasible route selections. For versions DW and DWR, we also

add cuts to account for the underestimation of the increase in the total time to visit the customers.

In the following subsections, we provide a detailed description of our four versions of the CS capacity management

subproblem. We use the following notation. The binary parameter ari is equal to one if and only if route r P Ω

serves customer i P I. We define parameter tr as the duration of a route r P Ω, obtained from the route generation

component. We denote by OpΩq the set containing all the charging operations occurring in the routes belonging to Ω,

and by OjpΩq Ď OpΩq all the charging operations occurring at CS j P F in these routes. We denote by Optruq the list of

charging operations occurring in route r. Let rpoq and jpoq be the route and the CS associated with a charging operation

o. Let S̄poq and ∆̄poq be the starting time and duration of charging operation o in the route rpoq P Ω. For each route

r P Ω, we assume that the operations in Optruq are sorted in non-decreasing order of their starting times. We denote

by πpoq the charging operation following o in route rpoq. If there does not exist any charging operation after o, we set

πpoq “ ´1. We also denote by Π`poq the charging operations occurring after o in rpoq. For every route r P Ω and for

each charging operation o P Optruq we denote by t`poq the total time spent by the EV in r between the CS associated

with o and the CS associated with π`poq or the depot. For each operation o, we also introduce two parameters ESpoq

and LSpoq representing its earliest and latest possible starting times. The values of these parameters depend on the

different versions of the subproblem and they are specified in the following subsections.

4.2.1 Version N and version D of the subproblem

To model the route selection problem, we introduce a binary variable xr equal to 1 if and only if route r P Ω is selected.

A MILP formulation of this problem is then the following classical SP model:

rHC1s minimize
ÿ

rPΩ

trxr (88)

subject to
ÿ

rPΩ

arixr “ 1 i P I (89)
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xr P t0, 1u r P Ω. (90)

The objective (88) is to select a subset of routes from Ω that minimizes the total duration. Constraints (89) ensure

that each customer is visited exactly once. Constraints (90) set the domains of the decision variables.

Let Ω1`px̄q denote the set of routes with at least one charging operation resulting from a feasible solution x̄ to the

above problem, i.e., Ω1`px̄q “ tr P Ω : x̄r “ 1 ^ Optruq ‰ Hu. Note that the routes without mid-route charging need

not be considered when checking the capacity constraints. We also define Ω1`px̄, jq Ď Ω1`px̄q as the set of routes with

a charging operation at j P F .

Version N In this version of the subproblem, the CS capacity management subproblem does not revise the charging

operations scheduled in the selected routes. It only checks the feasibility of the charging operations with respect to the

capacity constraints. We therefore set ESpoq “ LSpoq “ S̄poq. Let CMP1px̄q be this subproblem defined for the routes

that belong to Ω1`px̄q. It can be decomposed into |F | independent problems, one for every CS. To solve CMP1px̄q,

for every CS j P F we apply a polynomial algorithm to check the existence of subsets of operations overloading the

CS. Specifically, we call procedure CheckCapacityCut(OjpΩ1`px̄qq, Cj) to check whether the capacity constraints are

satisfied according to the scheduled charging operations in OjpΩ1`px̄qq. We refer the reader to Algorithm 7 in Appendix

D for the details of this procedure.

Version D The main drawback of version N is that it may discard promising routes. Indeed, in some cases simply

delaying the starting time of the routes renders them feasible. Note that shifting the start time of a route does not

increase the objective function. In version D, we seek to resolve capacity conflicts by shifting starting times of the routes.

Let CMP2px̄q be this subproblem. In contrast to CMP1px̄q, CMP2px̄q does not decompose into an independent problem

for each CS. Let o be a charging operation. Its earliest starting time ESpoq is equal to S̄poq since by construction the

operations are left shifted in each route of the pool. The parameter LSpoq is computed by subtracting from Tmax the

time needed to complete the route (considering the duration of the next charging operations, the driving times, and no

waiting times). Specifically, LSpoq “ Tmax ´
ř

o1PtouYΠ`poqpt
`
po1q ` ∆̄po1qq.

We now define a continuous-time MILP formulation of CMP2px̄q. Let the variable So define the starting time

of operation o. We model the capacity constraints using a flow-based formulation. For each CS j P F , we consider

two dummy operations ε`j and ε´j , and we define rCo :“ 1 for all o P OjpΩ1`px̄qq and rC
ε`j

:“ rC
ε´j

:“ Cj . We then

introduce the continuous variable foo1 representing the quantity of resource (i.e., chargers) that is transferred from

charging operation o to charging operation o1. We also define the sequential binary variable uoo1 taking the value of 1

if operation o is processed before operation o1. The MILP formulation of CMP2px̄q is as follows:

rCMP2px̄qs minimize 0 (91)

subject to uoo1 ` uo1o ď 1 j P F, o, o1 P OjpΩ1`px̄qq : o ă o1 (92)

uoo2 ě uoo1 ` uo1o2 ´ 1 j P F, o, o1, o2 P OjpΩ1`px̄qq (93)

So1 ě So ` ∆̄poquoo1 ` pLSpoq ´ ESo1qpuoo1 ´ 1q j P F, o, o1 P OjpΩ1`px̄qq (94)

Sπpoq “ So ` ∆̄poq ` t`poq o P OpΩ1`px̄qq : πpoq ‰ ´1 (95)
ÿ

o1POjpΩ1`
px̄qqYtε`j u

fo1o “ 1 j P F, o P OjpΩ1`px̄qq (96)

ÿ

o1POjpΩ1`
px̄qqYtε`j u

fo1o ´
ÿ

o1POjpΩ1`
px̄qqYtε´j u

foo1 “ 0 j P F, o P OjpΩ1`px̄qq (97)

ÿ

oPOjpΩ1`
px̄qqYtε´j u

f
ε`j ,o

“ Cj j P F (98)

ÿ

oPOjpΩ1`
px̄qqYtε`j u

f
o,ε´j

“ Cj j P F (99)

foo1 ď max
´

ĂCo,ĄCo1
¯

uoo1 j P F, o, o1 P OjpΩ1`px̄qq (100)

ESpoq ď So ď LSpoq o P OpΩ1`px̄qq (101)
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foo1 ě 0 j P F,

po, o1q P
`

OjpΩ1`px̄qq Y tε
`
j u

˘

Y
`

OjpΩ1`px̄qq Y tε
´
j u

˘

(102)

uoo1 P t0, 1u j P F, o, o1 P OjpΩ1`px̄qq. (103)

rCMP2px̄qs is a feasibility problem. Constraints (92) state that for two distinct operations o and o1, either o precedes o1,

o1 precedes o, or o and o1 are processed in parallel (if there is more than one charger at the CS). Constraints (93) express

the transitivity of the precedence relations. Constraints (94) are the disjunctive constraints on the operations related

to the same CS. Each such constraint is active when uoo1 “ 1 and, in which case, it enforces the precedence relation

between charging operations o and o1. Note that no waiting times can occur before a charging operation. Constraints

(95) enforce the precedence relation and the time lag between the charging operations occurring in the same route.

Constraints (96) state that a charger has to be allocated to each charging operation. Constraints (97) ensure flow

conservation. Constraints (98) and (99) define the value of the flow leaving the source and the flow entering the sink.

Constraints (100) couple the flow variables with the sequence variables. Constraints (101) and (103) define the domains

of the decision variables.

4.2.2 Version DW and version DWR of the subproblem

In these versions of the subproblem, we allow a possible increase in the total duration of the routes. Indeed, introducing

waiting times at CSs or revising the amount of charged energy may help resolve capacity violations, but such modifica-

tions may extend routes due to the non-linearity of the charging functions and the consideration of multiple charging

technologies. Let θ be a non-negative variable estimating the added delay when solving the CS capacity management

subproblem. A MILP formulation of the route selection problem (derived directly from rHC1s) follows:

rHC2s minimize
ÿ

rPΩ

trxr ` θ (104)

subject to (89), (90)

θ ě 0. (105)

Thereafter, we assume that we have a fixed selection Ω1`px̄q of routes given by fixing the variables txrurPΩ to values

respecting the current constraints of the route selection problem.

Version DW In this version of the subproblem, we assume that EVs can wait at CSs if delaying the starting times

of the routes is not sufficient to avoid capacity violations. Let CMP3px̄q be the scheduling subproblem of the routes

Ω1`px̄q, which has the objective of minimising the addition of waiting times. The MILP formulation of CMP3px̄q uses

the decision variables So, foo1 , uoo1 defined in CMP2px̄q. We also introduce variable ∇o that represents the waiting time

incurred before the start of charging operation o P OpΩ1`px̄qq. For every charging operation o, its earliest starting time

ESpoq is equal to S̄poq and its latest starting time LSpoq is equal to Tmax ´
ř

o1PtouYΠ`poqpt
`
po1q ` ∆̄po1qq. The MILP

formulation of CMP3px̄q is as follows:

rCMP3px̄qs minimize
ÿ

oPOpΩ
1`
px̄qq

∇o (106)

subject to (92)´ (94), (96)´ (103)

Sπpoq “ So ` ∆̄poq ` t`poq `∇πpoq o P OpΩ1`px̄qq : πpoq ‰ ´1 (107)

∇o ě 0, o P OpΩ1`px̄qq. (108)

The objective (106) is to minimize the waiting time inserted in each route. Constraints (107) define the minimum time

lag between the charging operations occurring in the same route. Constraints (108) define the domains of the waiting

decision variables.

Version DWR In this version of the subproblem, in addition to the introduction of waiting times, resolving conflicts

at CSs can also be achieved by revising the amounts of energy charged at each CS in every route. We denote by CMP4px̄q

the subproblem in which we want to minimize the increase in the duration of the selected routes. Indeed, revising the
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charging operations leads to an increase in time when the CSs in a route have different charging technologies or when

the charging functions are non-linear. Note that if we substantially increase the charging amounts at a CS we may not

need to visit the subsequent CS in the route. We therefore need to account for the potential removal of visits to CSs.

We denote by e´poq the energy consumption of the EV between its departure from io and its arrival at jπ`poq if

πpoq ‰ ´1. This takes into account the energy consumed to visit all the customers scheduled in the route between

charging operations o and π`poq or the depot. Similarly, we denote by e`poq the energy consumption of the EV from

its departure from jπ´poq, if o is not the first charging operation of the route or from the depot to its arrival at jpoq.

Since a charging operation can be skipped by charging more energy during the previous or next charging operations of

the same route, we define rtpoq and repoq as the time and energy saved if the EV does not detour to perform the charging

operation o. We define Ω2`px̄q as the subset of Ω1`px̄q that contains only the routes including at least two charging

operations (i.e., Ω2`px̄q “ tr P Ω1`px̄q : |Optruq| ě 2u).

Our formulation of CMP4px̄q draws upon formulation rCMP3px̄qs. Aside from using decision variables defined in

the latter, rCMP4px̄qs also uses the following decision variables for the operations in OpΩ2`px̄qq. The variables tj and

tj are the scaled arrival and departure times, according to the charging function of CS jpoq. The binary variables

wok and wok are equal to 1 if and only if the SoC lies between qjpoq,k´1 and qjpoq,k, with k P Bjpoqzt0u, upon starting

and finishing operation o, respectively. The continuous variables λok and λjk are the coefficients associated with the

breakpoints pajpoq,k, qjpoq,kq of φjpoq upon starting and finishing operation o, respectively. The continuous variables y
o

and yo represent the SoC of the EV upon starting and finishing charging operation o. The continuous variable ∆o

represents the duration of charging operation o. For each route, we check whether it might be possible for a charging

operation o to be skipped by considering that the EV leaves the previous CS (or depot) with a fully replenished battery.

If this allows the EV to reach the next CS or to return to the depot without performing o, then we allow the EV

not to detour to the corresponding CS. To this end, we introduce the binary variable zo equal to 1 if and only if the

charging operation o is executed. We also compute for every charging operation the time windows during which it must

be scheduled. The earliest starting time ESpoq of a charging operation o is computed assuming that the EV skips (if

the previous computation has shown it is possible) the previous charging operations (if any), and charges the maximum

between the energy needed to recover the detour to the CS and the energy required to reach the next CS. To compute

the latter, we consider that the SoC of the EV upon arriving at the CS is maximal (a full charge occurs at the previous

CS). Then, we estimate the charging times assuming that the EV arrives with an empty battery. The latest starting

time LSpoq of operation o is computed assuming that the EV returns to the depot at time Tmax and assuming that the

EV skips the next charging operations (if possible). The MILP formulation of CMP4px̄q is as follows:

rCMP4px̄qs minimize
ÿ

oPOpΩ
1`
px̄qq

∇o `
ÿ

oPOpΩ
2`
px̄qq

`

∆o ´ ∆̄poq ´ p1´ zoqrtpoq
˘

(109)

subject to (92)´ (93), (97)´ (103)

y
o
“

ÿ

kPBjpoq

λjkqjpoqk o P OpΩ2`px̄qq (110)

to “
ÿ

kPBjpoq

λjkajpoqk o P OpΩ2`px̄qq (111)

ÿ

kPBjpoq

λjk “
ÿ

kPBjpoqzt0u

wok o P OpΩ2`px̄qq (112)

ÿ

kPBjpoqzt0u

wok “ zo o P OpΩ2`px̄qq (113)

λj0 ď wo1 o P OpΩ2`px̄qq (114)

λjk ď wok ` wo,k`1 o P OpΩ2`px̄qq, k P Bjpoqzt0, bjpoqu (115)

λjbj ď wobjpoq o P OpΩ2`px̄qq (116)

yo “
ÿ

kPBjpoq

λoqjpoqk o P OpΩ2`px̄qq (117)

to “
ÿ

kPBjpoq

λoajpoqk o P OpΩ2`px̄qq (118)
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ÿ

kPBjpoq

λok “
ÿ

kPBjpoqzt0u

wok o P OpΩ2`px̄qq (119)

ÿ

kPBjpoqzt0u

wok “ 1 o P OpΩ2`px̄qq (120)

λo0 ď wo1 o P OpΩ2`px̄qq (121)

λok ď wok ` wo,k`1 o P OpΩ2`px̄qq, k P Bjpoqzt0, bjpoqu (122)

λobjpoq ď wobj0 o P OpΩ2`px̄qq (123)

∆o “ to ´ to o P OpΩ2`px̄qq (124)

∆o ď ajpoq,bjpoqzo o P OpΩ2`px̄qq (125)

y
opr,1q

“ q̄first
prq r P Ω2`px̄q (126)

y
πpoq

“ yo ´ e
`
poq ` repoqp1´ zoq o P OpΩ2`px̄qq : πpoq ‰ ´1 (127)

yo ´ e
`
poq ` repoqp1´ zoq ě 0 o P OpΩ2`px̄qq : πpoq “ ´1 (128)

So1 ě So ` ∆̄poquoo1 ` pLSpoq ´ ESo1qpuoo1 ´ 1q j P F, o, o1 P OjpΩ1`px̄qzΩ2`px̄qq (129)

So1 ě So `∆o ` pLSpoq ´ ESo1qpuoo1 ´ 1q j P F, o, o1 P OjpΩ2`px̄qq (130)

Sπpoq “ So ` ∆̄poq ` t`poq `∇πpoq o P OpΩ1`px̄qzΩ2`px̄qq : πpoq ‰ ´1 (131)

Sπpoq “ So `∆o ` t
`
poq ´ rtpoqp1´ zoq `∇πpoq o P OpΩ2`px̄qq : πpoq ‰ ´1 (132)

So `∆o ` t
`
poq ´ rtpoqp1´ zoq ď Tmax o P OpΩ2`px̄qq : πpoq “ ´1 (133)

ÿ

o1POjpoqpΩ1`
px̄qqYtε`

jpoq
u

fo1o “ 1 o P OpΩ1`px̄qzΩ2`px̄qq (134)

ÿ

o1POjpoqpΩ1`
px̄qqYtε`

jpoq
u

fo1o “ zo o P OpΩ2`px̄qq (135)

ESpoq ď So ď LSpoq o P OpΩ1`px̄qq (136)

zo P t0, 1u,∆o ě 0, 0 ď y
o
ď Q, 0 ď yo ď Q o P OpΩ2`px̄qq (137)

wok, wok P t0, 1u, o P OpΩ2`px̄qq, k P Bjpoqzt0u (138)

λok, λok P t0, 1u o P OpΩ2`px̄qq, k P Bjpoq. (139)

The objective (109) is to minimize the total additional time inserted in each route. Constraints (110)–(124) model the

piecewise linear charging functions. Constraints (125) impose a duration equal to 0 for each charging operation that is

not executed anymore. For each route r P Ω2`px̄q, constraints (126) define the SoC q̄first
prq of the EV upon starting

its first charging operation. Constraints (127) couple the SoC of the EV after finishing a charging operation with its

SoC when starting the next charging operation occurring in the route. Note that if zo is equal to 0, then the SoC

y
o
“ yo still takes into account the energy consumed to detour to CS jpoq. The energy saved by not visiting this CS is

subtracted when computing the SoC at the beginning of the next operation of the route or at the arrival at the depot (see

(128)). For each route, constraints (128) force the corresponding EV to have enough SoC at the end of the last charging

operation to reach the depot. Constraints (129) and (130) are the disjunctive constraints on the operations related to

the same CS. Constraints (131) and (132) define a minimum time lag between the charging operations occurring in the

same route. Note that if zo is equal to 0, then the starting time So still takes into account the detour to CS jpoq. The

time saved by not visiting this CS is subtracted during the computation of the departure time for the next operation of

the route. Constraints (133) limit the route duration. Constraints (134) and (135) assign a charger to each operation

that is executed. Constraints (136)–(139) define the domains of the new decision variables.

4.2.3 Cut generation procedure

To couple the route selection problem with the CS capacity management subproblem, we generate constraints to cut

off infeasible selections of routes in Ω1`px̄q and to bound the variable θ (for versions DW and DWR). The efficiency

of our branch-and-cut method is based on the strength of these cuts. Rather than only cutting the current solution,

we investigate a strategy that generates cuts for a large portion of the solution space of the route selection problem.

Moreover, we try to add several cuts at a time to speed up the convergence of the algorithm.
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We first focus on the cuts that are applicable only to version N. Given a CS j, let Oj be a set containing subsets

of operations with a cardinality strictly larger than Cj , which overlap in time. To discard the current solution x̄ in the

route selection problem, we add to rHC1s the following cuts:

ÿ

rPΩ
1`
px̄q:OptruqXO‰H

xr ď Cj j P F,O P Oj . (140)

For the other versions of the subproblem, Algorithm 3 summarizes the procedure used to solve the capacity management

subproblem and potentially generating cuts. We first try to detect, before solving CMP.px̄q, the potential infeasibility

of the subproblem. To this end, we apply two algorithms (frequently used in scheduling problems) to detect capacity

violations that cannot be solved by the CS capacity management subproblem. These algorithms focus on a single CS

and are based on a reasoning rooted in the time windows (derived from the opening hours of the depot) in which every

charging operation can be scheduled. The first algorithm focuses on the fixed part of the charging operations (line 3).

We call a fixed part of a charging operation o the time interval (if it exists) between the latest starting time LSpoq

and earliest completion time ESpoq ` ∆̄poq. Based on the fixed part of the charging operations, we detect subsets of

operations that will necessarily lead to a violation of the capacity constraints and we add cuts to forbid the underlying

subset of routes (line 6). Hereafter, we refer to this algorithm as the fixed part based algorithm. The details of this

procedure are provided in Algorithm 8 (Appendix D). The second algorithm is based on an energy reasoning (line 8).

The required energy consumption of a charging operation o during a time interval rt1, t2q is equal to the minimum

duration (possibly equal to 0) for which o is surely executed within the interval. For a CS j, the total required energy

consumption by the charging operation o scheduled at j over time interval rt1, t2q cannot exceed Cjpt2 ´ t1q. The

difference between the last term and the total required energy consumption is called the slack over rt1, t2q. The slack

over any time interval must always be non-negative. The number of intervals that needs consideration is bounded (see

Baptiste et al. (2001) for more details). When there exists an interval for which a slack is strictly negative, the subset

of operations having a non-zero energy consumption on this interval cannot be performed without leading to a violation

of the capacity constraints. We add a no-good cut to discard it (line 10). Hereafter, we refer to this algorithm as the

energy reasoning based algorithm. The details of this procedure are provided in Algorithm 9 (Appendix D).

To limit the computation time, if the two previous algorithms prove the infeasibility of the subproblem, we add

to the route selection problem the generated cuts and we do not solve the subproblem. Otherwise, since the absence

of capacity violation detection from these latter algorithms does not ensure the feasibility of the subproblem, we solve

the latter exactly. We observe that the subproblem (CMP2px̄q, CMP3px̄q, or CMP4px̄q) may often be decomposed

into several independents smaller subproblems. This allows us to potentially formulate cuts for each of these small

subproblems. We introduce a graph Gpx̄q in which each node represents a CS and there exists an edge between two CSs

if there exists a route in Ω1`px̄q with charging operations at these two CSs. We can then decompose the subproblem

into as many independent subproblems as the number of connected components of Gpx̄q. Let CpGpx̄qq be the connected

components of Gpx̄q. For every connected component C P CpGpx̄qq, only the charging operations scheduled at the

CSs in C need consideration. We denote CMPpx̄, Cq the subproblem restricted to the CSs in connected component

C. When CMPpx̄, Cq is infeasible, we generate an integer Benders cut, also called combinatorial Benders cut (Codato

and Fischetti, 2006), to invalidate the current solution to the route selection problem (line 18). When it is feasible,

we compare the current value θ̄ of θ with the subproblem objective function value. This only holds for versions DW

and DWR of the subproblem. To build strong cuts, we consider the set Cfeas of connected components for which the

corresponding subproblem is feasible. For each subset C of Cfeas, we generate an integer Benders optimality cut if the

route selection problem underestimates the increase in time needed to resolve conflict(s) at CS(s) (line 25).

4.2.4 The branch-and-cut algorithm

We now outline the general structure of the solution assembler component in Algorithm 4. When provided as an input,

we give to the solver the objective function value of a solution to the E-VRP-NL-C as a cutoff value (i.e., an upper

bound on the value of the objective function of the master problem). Therefore, the solver only considers the solutions

with an objective function value strictly less than this cutoff value. The solver returns the best solution assembled

from a given pool of routes by the branch-and-cut method. The component also returns a set L of improving solutions

(compared to the initial solution s) computed throughout the algorithm.
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Algorithm 3: Solving the CS capacity management subproblem and generating cuts for version D,

DW, or DWR
Input: a solution x̄ to the current master problem

1 Procedure SolveSubProblem(x̄):

2 Compute ESpoq and LSpoq for each charging operation o P OpΩ1` px̄qq

3 for j P F do

4 U ÐFixedPartsAlgorithm(Ojpx̄q, Cj) (see Algorithm 8)

5 if U ‰ H then

6 for U P U do Generate the following cut and add it to rHC.s:
ř

rPΩ
1`
px̄,jq:OptruqXU‰H

xr ď Cj

7 else

8 U ÐEnergeticAlgorithm(Ojpx̄q, Cj) (see Algorithm 9)

9 if U ‰ H then

10 for U P U do Generate the following cut and add it to rHC.s:
ř

rPΩ
1`
px̄,jq:OptruqXU‰H

xr ď |tr P Ω1` px̄, jq : Optruq X U ‰ Hu| ´ 1

11 end

12 end

13 end

14 if no cuts have been generated and x̄ is integer then

15 Cfeas ÐH

16 for each C P CpGpx̄qq do
/* Let CMPpx̄, Cq be the subproblem restricted to the CSs in connected component C and z pCMPpx̄, Cqq denotes

the value of the objective function (when a solution is found) */

17 Solve the MILP formulation of CMPpx̄, Cq that corresponds to the selected version of the subproblem

18 if no solution is found then

19 Generate the following cut and add it to rHC.s:
ř

jPC

ř

rPΩ
1`
px̄,jq

xr ď
ř

jPC
|Ω1` px̄, jq| ´ 1

20 else

/* Only for versions DW and DWR

21 Cfeas Ð Cfeas Y tCu

22 end

23 end

/* Only for versions DW and DWR

24 for every subset C of connected components of Cfeas do

25 if
ř

CPC
z pCMPpx̄, Cqq ą θ̄ then Generate the following cut and add it to rHC.s:

ˆ

ř

CPC
z pCMPpx̄, Cqq

˙

¨

˝1`
ř

CPC

ř

jPC

ř

rPΩ
1`
px̄,jq

xr ´
ř

CPC,jPC
|Ω1` px̄, jq|

˛

‚ď θ

26 end

27 end

28 if no cuts have been generated then

29 Save the solution result of calling the subproblem on the routes of Ω1` px̄q

30 end
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Algorithm 4: The branch-and-cut algorithm

Input : a pool Ω of routes / a solution s (possibly equal to NULL) to the E-VRP-NL-C / a CPU time limit τ for the

algorithm / a CPU time limit for each call to the subproblem τSP

Output: the best solution s˚ computed by the branch-and-cut method / a set L of improving solutions to the

E-VRP-NL-C (in comparison with s)

1 Procedure assemble(Ω,s,τ ,τSP ):

2 Build the route selection problem rHC.s from pool Ω

3 Define the callback function (function called at every node of the branch-and-bound tree) as procedure

SolveSubProblem(x̄) (see Algorithm 3) and associate to it a CPU time limit of τSP per call

4 Define the cutoff value fpsq (objective function value of s) and the CPU time limit τ of the solver

5 Give the model rHC.s and the callback function to the solver and launch it

6 Retrieve the best solution s˚ computed within the CPU time limit and the set Φ of improving solutions (compared

to s)

7 return ps˚,Φq

5 Computational results

We used Gurobi 7.5.0 (through its Java API) to solve the MILP models. Each instance was executed on a single thread

with 12 GB and on a cluster of 27 computers, each having 12 cores and two Intel(R) Xeon R© X5675 3.07 GHz processors.

We implemented all the algorithms using Java 8. In all the tables, the CPU time is given in seconds and rounded to

the nearest integer.

We considered the 120-instance testbed of Montoya et al. (2017)1. In this testbed, there are six sets of 20 instances,

each with 10, 20, 40, 80, 160, or 320 customers. The EVs are Peugeot iOns which have a consumption rate of 0.125

kWh/km and a battery of 16 kWh. When dealing with the E-VRP-NL-C, we adapted each instance by fixing a number

of chargers for each CS. We decided to consider instances in which all the CSs have one or two chargers.

The first aim of our computational experiments is to assess and compare the performance of the CS replication-based

and the path-based models (Section 3) for solving small-size instances of the E-VRP-NL-C. These results are presented

in §5.1. The second aim of our computational experiments is to assess the quality of the ILS presented in §4.1 as a

solution method for the E-VRP-NL. A comparison with results from the literature is presented in §5.2. The third aim

of our experiments is to assess the effectiveness of our algorithmic framework to build high-quality solutions to the

E-VRP-NL-C. We compare the results given by our matheuristic according to the version of the subproblem selected

during the assembly phase. These results are presented in §5.3.

5.1 Results for E-VRP-NL-C formulations

For the E-VRP-NL-C we considered the twenty 10-customer and the twenty 20-customer instances. We ran the MILP

models with a three-hour CPU time limit. In the CS replication-based models rFCS rep
s, the number of copies of each

CS was set to β ě 1. Since there does not yet exist a procedure for fixing β while guaranteeing optimality, we tested

β “ 4 and β “ 5.

Table 1 reports for the CS replication-based and path-based formulations the number of instances with a solution

proven to be optimal (#Opt), the average CPU time in seconds (Time) for these latter instances, and the average gap

(Gap) for the remaining instances. We compute the gap as pz ´ zLBq{z, where z is the objective function value of the

best integer solution returned by the solver, and zLB is the best lower bound retrieved by the solver. The detailed

results for all the tested instances are reported in Appendix E.1.

Our results show that the path-based model outperforms the CS replication-based models on the 10-customer

instances. Indeed, the MILP solver can optimally solve all the 10-customer instances within an average computation

time of roughly 10 minutes for the former model, whereas four instances cannot be solved to optimality within the CPU

time limit for the latter model. We also observe that the 20-customer instances are already challenging for the models

since very few instances were solved. The introduction of the capacity constraints weakens the dominance rules between

CSPs in the path-based model. This is due to the waiting times which are difficult to estimate and embed within

the filtering technique. The number of paths therefore grows very quickly. Regarding the CS replication-based model,

1available from http://www.vrp-rep.org/ (Retrieved October 25, 2019)
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increasing the value of β increases computation times. As expected, since the linear relaxation of each of these models is

weak, we conclude that solving the MILP formulations with a commercial solver does not constitute an efficient solution

method for the E-VRP-NL-C. Still, 22 out of the 40 tested instances were optimally solved when considering one or two

chargers per CS.

Table 1: Computational results for the CS replication-based and path-based formulations on the 10-customer

and 20-customer instances.

Capacity |I|
rFCSrep s (β “ 4) rFCSrep s (β “ 5) rFpaths

#Opt Time Gap #Opt Time Gap #Opt Time Gap

1
10 16 372 14.4% 16 503 14.7% 20 572 -

20 5 1464 12.7% 5 708 12.8% 2 543 20.5%

2
10 16 431 13.6% 16 581 16.3% 20 621

20 5 597 ˚13.2% 5 1387 ˚14.2% 2 656 21.0%
˚: There are 4 instances for which the solver reaches the CPU time limit without finding any solution. They are not considered when

computing the gap.

5.2 Results for the E-VRP-NL

Since the route generator of our matheuristic essentially solves the E-VRP-NL, we wanted to assess its quality on this

problem. We considered the 120 instances of the original Montoya et al. (2017) testbed. We performed 10 test runs for

each instance using Algorithm 2 and compared the results with those obtained in the E-VRP-NL literature through two

solutions methods: the metaheuristic of Montoya et al. (2017) which combines an ILS with a heuristic concentration

(HC), and the large neighborhood search (LNS) of Koç et al. (2018). Table 2 shows the results of this comparison.

Given a number of customers in the instances, it reports for each solution method the number of BKS to the E-VRP-NL

(#BKS), the average gap to the BKS (Gap), and the average number of routes in the best computed solution. We

compute the gap as pz ´ z˚q{z, where z is the objective function value of the best solution returned by the solution

method, and z˚ is the objective function value of the BKS. Table 2 also reports the average gap to the best average

objective function value (Gap BA) as pzavg´z
˚
avgq{zavg, where zavg is the average objective function value of the solutions

obtained in 10 runs by the solution method, and z˚avg is the best average (BA) objective function value obtained in 10

runs by one of the existing solution method for the E-VRP-NL. The detailed results for all the tested instances are

reported in Appendix E.2.

Table 2: Comparison of the results obtained by ILS with the results of Montoya et al. (2017) and Koç et al.

(2018) for the E-VRP-NL.

ILS + HC LNS ILS

2.33 GHz processor - 16GB of RAM 3.6 GHz processor - 32 GB of RAM 3.07 GHz processor - 12 GB of RAM

|I| #BKS Gap BKS #R Gap BA Time #BKS Gap BKS #R Gap BA Time #BKS Gap BKS #R Gap BA Time

10 20 0.0% 2.7 0.3% 6 20 0.0% 2.7 0.1% 8 20 0.0% 2.7 0.0% 5

20 11 0.3% 3.7 0.7% 11 12 0.2% 3.6 0.4% 14 20 0.0% 3.6 0.0% 8

40 3 1.0% 6.5 2.6% 35 6 0.9% 6.4 1.1% 45 20 0.0% 6.2 0.0% 20

80 0 3.8% 9.2 5.4% 80 0 3.8% 8.8 3.8% 99 20 0.0% 8.6 0.0% 64

160 0 7.3% 16.7 8.1% 568 0 7.7% 16.6 7.8% 632 20 0.0% 15.3 0.0% 295

320 0 11.2% 32.6 12.6% 4398 0 11.7% 32.6 12.4% 4555 20 0.0% 29.0 0.0% 1118

All 34 3.9% 11.9 4.9% 850 38 4.1% 11.8 4.3% 892 120 0.0% 10.9 0.0% 252

ILS + HC: (Montoya et al., 2017), LNS: (Koç et al., 2018).

The results presented in Table 2 clearly show that our ILS outperforms all existing methods for the E-VRP-NL. We

have identified 80 new BKS and matched the existing BKS for the remaining instances. We have improved the previous

solutions by about 4.0%. The improvement increases with the number of customers. The algorithm is also stable as

the average results on 10 test runs for each instance are better than those reported for previous methods. While it is
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difficult to draw definitive conclusions on the computation times since these tests were run on different machines, it

seems that the ILS is at least as fast as the other methods, if not the fastest one. The major difference between our

method and the existing ones comes from the reoptimization of the charging decisions when evaluating a move.

5.3 Results for the E-VRP-NL-C

We have performed several tests to assess the effectiveness of our matheuristic in obtaining high-quality solutions for the

E-VRP-NL-C. After some preliminary experiments, we set the values of the parameters of the matheuristic as presented

in Table 3. Setting the stopping criterion to 12 iterations and the number of ILS iterations to 200 proved to be a good

compromise between solution quality and computation time. In some rare cases we were not able to optimally solve

the assembly phase using version DWR of the subproblem. Indeed, when it is difficult to find a solution satisfying the

capacity constraints or when such a solution does not exist, the MILP formulation becomes computationally expensive.

Nonetheless, after testing higher CPU time limits for the second component, we observed that the impact on the results

was negligible.

Table 3: Value of the matheuristic parameters.

nmax δ τ τSP α Tmin

12 200 180 s 5 s 0.9 0.67 ¨ Tmax

We first compare the results obtained by our matheuristic for the four versions of the subproblem used by the

solution assembler. For one or two chargers at each CS and each version of the subproblem, we performed 10 test runs

for each instance. Table 4 reports the best results obtained during our tests. Specifically, given a number of chargers

per CS and a selected version of the subproblem used in the branch-and-cut method, this table reports the number

of instances with a solution in each of the 10 tests (#F), the number of instances with the best solution (BS) to the

E-VRP-NL-C computed all over our tests (#BS), including those of the path-based formulation, and the average gap

to the BS (Gap BS). Table 5 reports the average CPU time in seconds over 10 runs for the whole algorithm (T ), and

for the first (T1) and second (T2) components. It also reports the average gap with respect to the best average objective

function value obtained using a given version of the subproblem (Gap BA). The gaps are computed as in §5.2. Detailed

results for all the tested instances are reported in Appendix E.3.

Table 4: Comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according to the

version of the subproblem it uses and the number of chargers at each CS.

Cap. |I|
Version N Version D Version DW Version DWR

#F #BS Gap BS #F #BS Gap BS #F #BS Gap BS #F #BS Gap BS

1

10 20 17 0.06% 20 20 0.00% 20 20 0.00% 20 20 0.00%

20 20 15 0.09% 20 20 0.00% 20 20 0.00% 20 20 0.00%

40 19 15 0.17% 19 18 0.01% 19 18 0.01% 19 19 0.00%

80 20 15 0.02% 20 20 0.00% 20 20 0.00% 20 20 0.00%

160 19 5 0.27% 20 13 0.06% 20 13 0.06% 20 15 0.09%

320 10 5 0.32% 20 1 0.28% 20 2 0.27% 20 13 0.10%

All 105 72 0.14% 119 92 0.06% 119 93 0.06% 119 107 0.03%

2

10 20 20 0.00% 20 20 0.00% 20 20 0.00% 20 20 0.00%

20 20 20 0.00% 20 20 0.00% 20 20 0.00% 20 20 0.00%

40 19 19 0.09% 20 20 0.00% 20 20 0.00% 20 20 0.00%

80 20 18 0.01% 20 20 0.00% 20 20 0.00% 20 19 0.01%

160 20 13 0.05% 20 10 0.18% 20 10 0.18% 20 14 0.09%

320 19 4 0.33% 20 9 0.12% 20 9 0.12% 20 8 0.17%

All 118 94 0.08% 120 99 0.05% 120 99 0.05% 120 101 0.05%
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Table 5: Comparison of the average results obtained by the matheuristic for the E-VRP-NL-C according to

the version of the subproblem it uses and the number of chargers at each CS.

Cap. |I|
Version N Version D Version DW Version DWR

T T1 T2 Gap BA T T1 T2 Gap BA T T1 T2 Gap BA T T1 T2 Gap BA

1

10 6 5 1 0.06% 6 5 1 0.00% 6 5 1 0.00% 6 5 1 0.00%

20 11 10 1 0.09% 11 10 1 0.00% 11 10 1 0.00% 11 10 1 0.00%

40 24 23 1 0.31% 23 22 1 0.03% 23 22 1 0.03% 87 22 65 0.00%

80 74 73 1 0.10% 74 73 1 0.00% 73 72 1 0.00% 74 73 1 0.04%

160 340 335 5 0.45% 339 335 4 0.10% 340 336 4 0.10% 397 333 64 0.08%

320 1345 1274 71 0.34% 1480 1253 227 0.17% 1487 1259 228 0.15% 1933 1244 689 0.05%

All 300 287 13 0.22% 322 283 39 0.05% 323 284 39 0.05% 418 281 137 0.03%

2

10 5 5 0 0.00% 5 5 0 0.00% 5 5 0 0.00% 5 5 0 0.00%

20 10 10 0 0.00% 10 10 0 0.00% 10 10 0 0.01% 10 10 0 0.00%

40 23 23 0 0.05% 23 23 0 0.11% 23 23 1 0.09% 45 23 22 0.01%

80 73 72 1 0.18% 73 73 1 0.19% 73 73 1 0.25% 73 73 1 0.14%

160 336 334 2 0.24% 336 334 2 0.25% 337 335 2 0.24% 338 336 2 0.28%

320 1340 1279 61 0.21% 1283 1276 7 0.12% 1276 1269 7 0.14% 1327 1269 58 0.08%

All 298 287 11 0.11% 288 287 2 0.11% 287 286 2 0.12% 300 286 14 0.09%

First, it should be noted that our matheuristic returns an optimal solution for the 22 small-size instances for which

the MILP path formulation yields an optimal solution in about 10% of the computation time. Considering that a

single charger exists in each CS, we observe that using version N of the subproblem prevents the algorithm from finding

solutions to the E-VRP-NL-C for 15 instances. In this case, the algorithm finds the best solution (computed all over

our tests) for only 72 out of 120 instances. Delaying the starting time of the routes yields better solutions for 20 more

instances. In contrast, allowing waiting times in version DW leads to very marginal improvements, compared with

version D. Indeed, making the EVs wait for an available charger can eliminate capacity violations only if at least two

CSs are visited in a route; otherwise it is sufficient to make the EVs leave the depot after time 0, as is done in version D.

Although the same requirement (more than one CS) holds when allowing the revision of the amount of energy charged

at the CSs in version DWR, the latter strategy yields almost all the best solutions to the E-VRP-NL-C.

When increasing the number of chargers to two per CS, the capacity constraints become less binding and all our

assembly strategies yield very similar results. This was somewhat expected but it should be noted that delaying the

starting time of the routes increases the probability of ending up with a feasible solution.

The first general conclusion is that allowing delays when solving the CS capacity management subproblem is a suitable

and efficient way of to assembling high-quality solutions to the E-VRP-NL-C. Allowing the revision of the amounts of

energy charged at the CSs on top of it significantly improves the results, but it is slightly more computationally expensive

(Table 5). We also note that in general, most of the computation time is spent generating routes as assembling a solution

is usually very fast, especially when a cutoff value is provided to the branch-and-cut method. Not surprisingly the

computation time increases with the number of customers but it remains reasonable since it takes around 30 minutes

to tackle the largest instances.

To assess the relevance of our cuts, we show in Table 6 the distribution of the different type of cuts generated in the

branch-and-cut tree. When the capacity constraints are very binding, the energetic reasoning based algorithm detects

infeasible route selections much more frequently than the fixed part reasoning based algorithm. We observe that due to

its high degree of flexibility, compared with the other versions, DWR requires solving the MILP formulation more often.

Indeed, the two previously mentioned algorithms are weaker in that case since the mandatory part of each charging

operation may have a very short duration due to the potential revision of the amount of energy charged at the CSs.

When we increase the number of chargers at each CS, the reasoning algorithms lead to the generation of fewer cuts. This

is not surprising since these are based on relaxations of the subproblem. However, they are useful since the generated

cuts are stronger, which avoids computationally expensive calls to the MILP solver. We also see that integer optimality

cuts are seldom generated. Since increases in the total time of the routes are penalized, the algorithm tends to avoid

adding waiting times. This indicates that revising the charging operations does not always lead to an increase in time,

25



and a trade-off between delay and a revision at no cost is often found. To support this conclusion, we have analyzed

the solutions returned by the matheuristic. Given the number of chargers at each CS, Table 7 reports the percentage

of solutions for which there exists at least one route with a delayed starting time, a waiting time before a charging

operation, and a revision of the amount of energy charged in the EV. We see that for most of the solutions returned by

the algorithm, satisfying the capacity constraints can be achieved without increasing the cost.

Table 6: Characteristics of the cuts generating in the solution assembly phase.

Cap.
Version D Version DW Version DWR

FP NRG BF FP NRG BF BO FP NRG BF BO

1 2.3% 94.5% 3.2% 2.3% 95.0% 2.5% 0.2% 0.6% 16.9% 80.5% 2.0%

2 29.0% 28.2% 42.8% 28.9% 27.1% 42.5% 1.5% 1.3% 0.7% 96.2% 1.8%

FP (feasibility cuts generated after calling the fixed part reasoning based algorithm), NRG (feasibility cuts generated after calling the

energetic based reasoning algorithm), BF (feasibility cuts of type generated after solving the MILP formulation), BO (optimality cuts of

type generated after solving the MILP formulation)

Table 7: Analysis of the solutions retrieved by the matheuristic.

Capacity

Version D Version DW Version DWR

“ “ ą “ “ ą ą ą

D D W D NRG W NRG R

1 42.1% 42.2% 1.7% 42.0% 17.4% 1.3% 6.3% 2.5%

2 11.7% 11.7% 0.0% 11.4% 8.5% 0.0% 0.4% 0.0%

D (delay), W (waiting time), NRG (revision of the amount of energy charged), R (removal), “ (no increase of the total time), ą (increase

of the total time)

Since we have imposed a CPU time limit for the branch-and-cut execution and since the maximum route duration

limit may decrease according to the state of the solution method, no version of the subproblem dominates the other

versions. To perform a fair comparison between the different strategies, and to quantify the benefit of allowing the

addition of waiting times and the revision of the amount of energy charged at the CSs, we took the 2,400 long-term

pools of routes obtained at the end of the matheuristic for version DWR of the subproblem. For every pool of routes,

we ran the branch-and-cut algorithm to generate the best E-VRP-NL-C solution. Table 8 reports for each version of

the subproblem the number of pool of routes for which the algorithm obtains a feasible solution (#F), as well as the

best solution (#Best) among those obtained with the other versions on the same pool. It also shows the average gap

between the solution returned and the best solution obtained during these tests under all the assembly strategies. The

conclusions are very similar to those drawn from the results of the matheuristic. Compared to version N, version DWR

makes nearly 400 extra routes feasible when assuming one charger. Not surprisingly, when increasing the number of

chargers, the results tend to be more independent of the selected version of the subproblem.

Table 8: Comparison of the results of the branch-and-cut method according to the different versions of the

subproblem.

Cap.
Version N Version D Version DW Version DWR

#F #Best Gap #F #Best Gap #F #Best Gap #F #Best Gap

1 1916 1361 0.315% 2262 2095 0.096% 2270 2112 0.091% 2307 2307 0.000%

2 2321 2125 0.073% 2390 2371 0.013% 2390 2371 0.013% 2390 2390 0.000%
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6 Conclusion and perspectives

We have modeled and solved an electric vehicle routing problem that embeds several features such as piecewise linear

charging functions, multiple charging technologies, and multiple visits to CSs. Our methodology explicitly considers the

fact that the number of EVs simultaneously charging at every CS is limited by the number of chargers. We have proposed

two continuous-time formulations of the E-VRP-NL-C: a CS replication-based and a path-based formulation. Our results

show that optimally solving even small-size instances is challenging. To handle larger instances, we have developed an

algorithmic framework which iteratively calls a route generator and a solution assembler. The first component focuses

on generating a pool of high-quality and diversified routes from solutions to the E-VRP-NL obtained by means of an

ILS metaheuristic. Computational experiments have shown that this first component produces high quality E-VRP-NL

solutions. Indeed, we have improved 80 out of 120 best-known E-VRP-NL solutions. The second component assembles

a solution to the E-VRP-NL-C by selecting a subset of routes from the generated pool. We decomposed this assembly

problem into a route selection problem and a CS capacity management subproblem. We have designed a branch-and-

cut method based on this decomposition scheme. We have developed and compared four versions of the CS capacity

management subproblem, including a simple check of the capacity constraints, the introduction of waiting times, and

the revision of the charging amounts. Our results show that there exists a serious risk of ending up with no solution

if the method disregards the capacity constraints or if the routes cannot be modified by the subproblem. Delaying

the starting time and revising the amount of energy charged at the visited CSs lessens this risk. Using more complex

strategies to solve capacity violation issues at CSs does not significantly increase the computation time and yields better

solutions. The matheuristic is also able to find all optimal solutions of small-size instances.
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A Experiments on the feasibility of solutions from the literature

when considering capacitated CSs

We verified the feasibility of the 120 best-known solutions (BKSs) for the E-VRP-NL reported in Montoya et al. (2017),

by limiting the number of chargers per CS to one, two, three, and four. Table 9 presents the results of our experiments.

We observe that if there exists only one charger at each CS, then almost half of the solutions are infeasible (i.e., they

violate the capacity constraints). This proportion drops to 11% when allowing two chargers per station, and four

chargers at each CS are needed to ensure the feasibility of all solutions. In practice, however, there are usually only one

or two chargers available at each CS.

Table 9: Results of the feasibility tests performed on the best solutions obtained in (Montoya et al., 2017) (All

CSs have the same number of chargers).

Experiment # Infeasible

solutions

Average duration with

capacity violation

Average #EVs during

capacity violation

C1 55/120 32 min 2.1

C2 23/120 23 min 3.2

C3 3/120 33 min 4.0

C4 0/120 0 min 0.0

B Implementation details for the ILS

Our implementation of the ILS is based on the static move descriptor (SMD) concept. An SMD is static information

that describes a move independently of the current solution. A cost tag is associated with every SMD to store its

evaluation and it is updated throughout the LS. By storing SMDs in special data structures, one can access and update

the moves in an efficient way in order to reduce computation time. Specifically, SMDs are stored in a priority queue

(PQ) and organized according to their dynamic cost tag. The exploration of a neighborhood consists in looping over

the PQ until a feasible SMD can be applied. Then, to avoid unnecessary reevaluations of moves, only the cost tag

of the SMDs impacted by the previously applied SMD is updated. One major difference with the previous use of the

SMD framework lies in the complexity of the evaluation of the moves. To our knowledge, until now there has been

an emphasis on feasibility issues when using the SMD framework. Indeed, since checking the feasibility of each move

can be time consuming, this is only done during the exploration phase of the neighborhood. In our case, not only the

feasibility of a move can be computationally expensive to check, but also its evaluation.

Our SMD implementation is inspired from the one proposed by Beek et al. (2018) who implemented the PQ with

a binary heap2. For every operator, we use a matrix data structure to store all the SMDs. We build these matrices

during the initialization phase of the algorithm and we store them during the entire runtime of the algorithm. To avoid

a computationally expensive initialization phase of the ILS, the cost tag of each SMD is set equal to the value computed

after the first step of the evaluation (see §4.1.1). Since we are only interested in the moves that can potentially improve

the current solution, only those SMDs with a cost tag strictly below 0 need consideration (we refer to them as improving

SMDs). Throughout the algorithm, we use two binary heaps to store potentially improving SMDs: an “exact” binary

heap (EBH) for the SMDs that are exactly evaluated and a “approximate” binary heap (ABH) for the remaining SMDs.

In the initialization of the algorithm, we add to EBH all the improving SMDs that are exactly evaluated using the

first step, and we add to ABH the other improving SMDs. When we start exploring a neighborhood, we apply the

first move in EBH if it is not empty. Otherwise, we iterate over ABH. We apply the second step of the evaluation to

compute the exact cost tag of each SMD in ABH until we find an improving move or we reach the end of the heap.

After selecting a move m, we update the values of the SMDs if they contain at least one node in the routes impacted by

2A binary heap is a complete binary tree satisfying the heap ordering property: the value of the key stored in each node is less

than or equal to the value of the keys in the node’s children.
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m. Although in some cases the cost tag of a certain number of these SMDs may remain identical, we want to keep the

SMD framework as simple as possible. To avoid a computationally expensive update phase, each cost tag is set equal

to the value computed during the first step evaluation. It can therefore be a lower bound on the exact evaluation of

the move. In contrast with Beek et al. (2018), we keep cross-operator effects, meaning that we update the cost tag of

SMDs associated with other operators. However, we perform this update for the other operators only when the search

moves to them. To this end, we associate with each route the iteration number for which has been lastly updated, and

to each operator the iteration number for which it has last been called (we increment the iteration number each time

the search accepts a move or changes operator).

C Algorithmic details for the ILS

Algorithm 5 describes the general scheme of the VND search phase. Algorithm 6 describes the move evaluation procedure.

Algorithm 5: The VND algorithm

Input : a solution s0 to the E-VRP-NL and a maximum route duration limit T

Output: a solution sR to the E-VRP-NL and a solution sO (possibly equal to NULL) to the E-VRP-NL-C

1 Procedure VND(s0,T):

/* We denote fpsq the value of the objective function for a solution s and we assume fpNULLq “ `8*/

2 sR Ð s0, sO Ð NULL, k Ð 0

3 N Ð r(1-0,2-0 vertex exchanges), (1-1,2-1,2-2 vertex exchanges), (2-opt intra and inter-routes), separates

4 while k ă |N | do

/* The procedure searchpNrks, s, T q searches an improving solution to s in the neighborhood Nrks respecting the

maximum route duration limit T. It uses Algorithm 6 for move evaluation */

5 s1 Ð searchpNrks, sR, T q /* s1 “ NULL if no improving solution is found */

6 if s1 is a solution to the E-VRP-NL-C and fps1q ă fpsOq then sO Ð s1

7 if fps1q ă fpsRq then sR Ð s1, k Ð 0

8 else k Ð k ` 1

9 end

10 return psR, sOq

D Algorithmic details for the branch-and-cut method

Algorithm 7 describes the procedure to check the capacity constraints for version N of the subproblem. Algorithm 8

and Algorithm 9 provide a detailed description of the fixed part and energy based reasoning algorithms.

29



Algorithm 6: Evaluation of a move
Input : a move m and a maximum route duration limit T

Output: a couple (c,b) where c is a lower estimation of the move evaluation and b is a boolean equal to true if the move

is exactly evaluated or if it is a non-improving move and it is equal to false otherwise.

1 Procedure EvaluateMove(m,T):

/* The evaluation of an infeasible move is set to 8 */

2 bÐ true, cÐ ´CurrentDuration(Rm) /* Rm denotes the routes impacted by move m */

/* Let R1m denotes the newly created or modified routes obtained after applying move m */

3 for each route r P R1m do

4 t Ð DurationWithoutDetourToCS(r)

5 if t ą T then return (8,true) /* The move m is infeasible */ ;

6 eLB Ð EnergyWithoutDetourToCS(r)

7 if eLB ď Q then

8 (cr,br) Ð (t,true)

9 else

10 tÐ t ` MinDurationToDetourToCS(r) /* The computation of the lower bound

11 if t ą T then return (8,true) /* The move m is infeasible */ ;

12 if the duration of r is in the cache memory then (cr,br) Ð (DurationFromMemory(r),true) else (cr,br) Ð

(t,false)

13 end

14 cÐ c` cr

15 if br “ false then bÐ false

16 end

17 if c ě 0 then bÐ true /* The move m is non-improving */

18 return (c,b)

Algorithm 7: Checking the violation of capacity constraints for version N of the subproblem

Input : a list of charging operations L numbered from 1 to n (Lpiq denotes the operation at position i in the list L) / an

integer number C ě 1 representing the maximum number of operations that can be scheduled simultaneously

Output: a set containing all the maximal subsets of charging operations leading to a violation of the CS capacity

constraint

1 Procedure CheckCapacityCut(O,C):

2 Sort the operations in L in non-decreasing order of their starting time /* if two charging operations have the same

starting time, then the charging operation with the minimum duration comes first */

3 U ÐH /* subsets of charging operations leading to a violation of the CS capacity constraint*/

4 U Ð tLp1qu /* subset of charging operations currently executed */

5 k Ð 2, excess Ð false

6 while k ď n do

7 for every operation o P U do

8 if S̄pLpkqq ě S̄poq ` ∆̄poq then

9 if excess then U Ð U Y tUu, excess Ð false

10 else U Ð Uztou

11 end

12 end

13 U Ð U Y tLpkqu

14 if |U | ą C then excess Ð true

15 end

16 if excess then U Ð U Y tUu
17 return U
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Algorithm 8: The fixed part based reasoning algorithm

Input : a list of charging operations O numbered from 1 to n (Opkq denotes the operation at position k in the list O) /

an integer number C ě 1 representing the maximum number of operations that can be scheduled

simultaneously

Output: a set containing all the maximal subsets of charging operations leading to a violation of the CS capacity

constraint

1 Procedure FixedPartsAlgorithm(O,C):

2 Remove from O all the charging operations such that LSpoq ě ESpoq ` ∆̄poq

3 Sort the operations in O in non-decreasing order of starting time /* if two charging operations have the same

starting time, then the charging operation with the minimum duration comes first */

4 U ÐH /* subsets of charging operations leading to a violation of the CS capacity constraint */

5 U Ð tOp1qu /* subset of charging operations currently executed */

6 k Ð 2, excess Ð false

7 while k ď n do

8 for every operation o P U do

9 if LSOpkq ě ESpoq ` ∆̄poq then

10 if excess then U Ð U Y tUu, excess Ð false

11 else U Ð Uztou

12 end

13 end

14 U Ð U Y tOpkqu

15 if |U | ą C then excess Ð true

16 end

17 if excess then U Ð U Y tUu
18 return U

Algorithm 9: The energy reasoning based algorithm

Input : a set of charging operations O / an integer number C ě 1 representing the maximum number of operations

that can be scheduled simultaneously

Output: a set containing all subsets of charging operations leading to a violation of the CS capacity constraint

1 Procedure EnergeticAlgorithm(O,C):

2 T1 :“
Ť

oPO

`

tESpoqu Y tESpoq ` ∆̄poqu Y tLSpoqu
˘

3 T2 :“
Ť

oPO

`

tLSpoq ` ∆̄poqu Y tESpoq ` ∆̄poqu Y tLSpoqu
˘

4 T ptq :“
Ť

oPOtESpoq ` LSpoq ` ∆̄poq ´ tu

5 T “ tpt1, t2q P T1 ˆ T2u Y tpt1, t2q P T1 ˆ T pt1q : t1 P O1u Y tpt1, t2q P T pt2q ˆ T2 : t2 P O2u

6 p`o pt1q “ maxt0, ∆̄poq ´maxt0, t1 ´ ESpoquu /* duration during which o is executed after time t1 if it is scheduled

as soon as possible */

7 p´o pt2q “ maxt0, ∆̄poq ´maxt0, LSpoq ` ∆̄poq ´ t2uu /* duration during which o is executed before time t2 if it is

scheduled as late as possible */

8 W po, t1, t2q “ mint0, t2 ´ t1, p
`
o pt1q, p

´
o pt2qu

9 for pt1, t2q P T1 ˆ T2 do

10 if t1 ă t2 ^
ř

oPOW po, t1, t2q ą Cpt2 ´ t1q then U Ð U
Ť

tto P O : W po, t1, t2q ą 0uu

11 end

12 return U
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E Detailed computational results

Based on notation introduced by Montoya et al. (2017), we write each instance using the symbol tcγ1cγ2sγ3cγ4# where

γ1 is the method used to place the customers (i.e., 0: randomization, 1: mixture of randomization and clustering, 2:

clustering), γ2 is the number of customers, γ3 is the number of the CSs, γ4 is ‘t’ if we use a p-median heuristic to locate

the CSs and ‘f’ otherwise, and # is the number of the instance for each combination of parameters (i.e., # = 0 , 1 , 2 ,

3 , 4).

E.1 Detailed results for the E-VRP-NL-C formulations

Tables 10 and 11 report the detailed results obtained by the CS replication-based and path-based formulations on the

E-VRP-NL-C. The symbol “-” means that no feasible solution has been found by the solver.

E.2 Detailed results for the E-VRP-NL

Tables 12 and 13 report the detailed results obtained by our ILS and two methods from the literature on the E-VRP-NL

(Montoya et al., 2017; Koç et al., 2018). The best values (objective function value of the BKS and best average value

of the objective function obtained over 10 runs) are indicated in boldface.

E.3 Detailed results for the E-VRP-NL-C

Tables 14, 15, 16, and 17 report the detailed results obtained by our matheuristic on the E-VRP-NL-C instances. The

best values (objective function value of the BKS and best average value of the objective function obtained over 10 runs)

are indicated in boldface.

32



Table 10: Detailed results for the CS replication-based and path-based MILP formulations on the 10-customer

and 20-customer instances if the number of chargers at each CS is equal to 1.

Instance
rF
CSrep s (β “ 4) rF

CSrep s (β “ 5) rFpaths

Obj Time Obj Time Obj Time

tc0c10s2cf1 19.75 112 19.75 123 19.75 9

tc0c10s2ct1 12.30 76 12.30 115 12.30 21

tc0c10s3cf1 19.75 10800 19.75 10800 19.76 832

tc0c10s3ct1 10.80 11 10.80 37 10.80 25

tc1c10s2cf2 9.03 7 9.03 10 9.03 8

tc1c10s2cf3 16.37 49 16.37 77 16.37 46

tc1c10s2cf4 16.10 30 16.10 60 16.10 12

tc1c10s2ct2 10.75 127 10.75 159 10.75 446

tc1c10s2ct3 13.17 41 13.17 54 13.17 6

tc1c10s2ct4 13.83 32 13.83 23 13.83 5

tc1c10s3cf2 9.03 6 9.03 11 9.03 14

tc1c10s3cf3 16.37 1558 16.37 1433 16.37 299

tc1c10s3cf4 14.90 65 14.90 252 14.90 36

tc1c10s3ct2 9.20 243 9.20 956 9.20 272

tc1c10s3ct3 13.02 1105 13.02 515 13.02 156

tc1c10s3ct4 13.21 90 13.21 466 13.21 36

tc2c10s2cf0 21.77 10800 21.83 10800 21.77 988

tc2c10s2ct0 12.45 2391 12.45 3750 12.45 482

tc2c10s3cf0 21.83 10800 21.77 10800 21.77 3444

tc2c10s3ct0 11.51 10800 11.51 10800 11.51 4309

tc0c20s3cf2 - 10800 27.47 10800 27.49 10800

tc0c20s3ct2 17.08 10800 17.45 10800 17.08 10800

tc0c20s4cf2 - 10800 - 10800 27.51 10800

tc0c20s4ct2 17.22 10800 17.35 10800 17.24 10800

tc1c20s3cf1 17.49 10800 17.49 10800 17.49 10800

tc1c20s3cf3 16.80 10800 16.81 10800 16.83 10800

tc1c20s3cf4 17.00 179 17.00 197 17.00 573

tc1c20s3ct1 18.94 10800 18.94 10800 19.39 10800

tc1c20s3ct3 12.60 4315 12.60 1181 12.60 10800

tc1c20s3ct4 16.21 277 16.21 341 16.21 513

tc1c20s4cf1 16.38 10800 16.38 10800 16.38 10800

tc1c20s4cf3 16.80 10800 16.80 10800 16.86 10800

tc1c20s4cf4 17.00 1309 17.00 640 - 10800

tc1c20s4ct1 17.81 10800 17.81 10800 19.12 10800

tc1c20s4ct3 14.43 10800 14.43 10800 14.43 10800

tc1c20s4ct4 17.00 1241 17.00 1184 - 10800

tc2c20s3cf0 25.05 10800 - 10800 24.85 10800

tc2c20s3ct0 25.79 10800 25.80 10800 25.82 10800

tc2c20s4cf0 - 10800 - 10800 24.73 10800

tc2c20s4ct0 - 10800 - 10800 26.36 10800
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Table 11: Detailed results for the CS replication-based and path-based MILP formulations on the 10-customer

and 20-customer instances if the number of chargers at each CS is equal to 2.

Instance
rF
CSrep s (β “ 4) rF

CSrep s (β “ 5) rFpaths

Obj Time Obj Time Obj Time

tc0c10s2cf1 19.75 46 19.75 195 19.75 9

tc0c10s2ct1 12.30 105 12.30 172 12.30 22

tc0c10s3cf1 19.75 10800 19.75 10800 19.75 829

tc0c10s3ct1 10.80 14 10.80 23 10.80 28

tc1c10s2cf2 9.03 6 9.03 2 9.03 9

tc1c10s2cf3 16.37 58 16.37 60 16.37 53

tc1c10s2cf4 16.10 22 16.10 51 16.10 13

tc1c10s2ct2 10.75 139 10.75 166 10.75 535

tc1c10s2ct3 13.17 22 13.17 61 13.17 6

tc1c10s2ct4 13.83 24 13.83 64 13.83 5

tc1c10s3cf2 9.03 2 9.03 25 9.03 16

tc1c10s3cf3 16.37 1328 16.37 2994 16.37 306

tc1c10s3cf4 14.90 59 14.90 235 14.90 43

tc1c10s3ct2 9.20 120 9.20 535 9.20 302

tc1c10s3ct3 13.02 1567 13.02 789 13.02 188

tc1c10s3ct4 13.21 81 13.21 83 13.21 40

tc2c10s2cf0 21.77 10800 21.77 10800 21.77 1224

tc2c10s2ct0 12.45 3305 12.45 3847 12.45 577

tc2c10s3cf0 21.77 10800 21.77 10800 21.77 4002

tc2c10s3ct0 11.51 10800 11.51 10800 11.51 4222

tc0c20s3cf2 - 10800 - 10800 27.49 10800

tc0c20s3ct2 17.08 10800 17.08 10800 17.08 10800

tc0c20s4cf2 - 10800 - 10800 27.51 10800

tc0c20s4ct2 16.99 10800 17.22 10800 17.43 10800

tc1c20s3cf1 17.49 10800 17.49 10800 17.49 10800

tc1c20s3cf3 16.45 10800 16.80 10800 16.83 10800

tc1c20s3cf4 17.00 108 17.00 177 17.00 712

tc1c20s3ct1 18.94 10800 18.94 10800 19.39 10800

tc1c20s3ct3 12.60 529 12.60 4341 12.60 10800

tc1c20s3ct4 16.21 309 16.21 329 16.21 599

tc1c20s4cf1 16.38 10800 16.38 10800 16.38 10800

tc1c20s4cf3 16.80 10800 16.80 10800 17.04 10800

tc1c20s4cf4 17.00 545 17.00 1530 20.06 10800

tc1c20s4ct1 18.02 10800 18.25 10800 19.12 10800

tc1c20s4ct3 14.43 10800 14.43 10800 14.43 10800

tc1c20s4ct4 17.00 1495 17.00 559 - 10800

tc2c20s3cf0 - 10800 24.87 10800 24.85 10800

tc2c20s3ct0 25.79 10800 25.79 10800 25.83 10800

tc2c20s4cf0 24.86 10800 - 10800 24.73 10800

tc2c20s4ct0 - 10800 - 10800 26.36 10800
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Table 12: Detailed comparison of the results obtained by ILS with the results of Montoya et al. (2017) and

Koç et al. (2018) for the E-VRP-NL (instances with 10, 20, or 40 customers)

ILS + HC LNS ILS ILS + HC LNS ILS

Instance BKS Best #R Best #R Best #R BA Avg Time Avg Time Avg Time

tc0c10s2cf1 19.75 19.75 3 19.75 3 19.75 3 19.75 20.12 4 19.77 8 19.75 5

tc0c10s2ct1 12.30 12.30 2 12.30 2 12.30 2 12.30 12.34 4 12.31 8 12.30 3

tc0c10s3cf1 19.75 19.75 3 19.75 3 19.75 3 19.75 20.12 4 19.76 7 19.75 5

tc0c10s3ct1 10.80 10.80 2 10.80 2 10.80 2 10.80 10.80 5 10.81 8 10.80 5

tc1c10s2cf2 9.03 9.03 3 9.03 3 9.03 3 9.03 9.07 2 9.04 9 9.03 4

tc1c10s2cf3 16.37 16.37 3 16.37 3 16.37 3 16.37 16.37 6 16.38 9 16.37 5

tc1c10s2cf4 16.10 16.10 3 16.10 3 16.10 3 16.10 16.10 5 16.11 7 16.10 5

tc1c10s2ct2 10.75 10.75 3 10.75 3 10.75 3 10.75 10.75 4 10.76 8 10.75 3

tc1c10s2ct3 13.17 13.17 2 13.17 2 13.17 2 13.17 13.18 8 13.18 9 13.17 6

tc1c10s2ct4 13.83 13.83 2 13.83 2 13.83 2 13.83 13.83 5 13.84 9 13.83 5

tc1c10s3cf2 9.03 9.03 3 9.03 3 9.03 3 9.03 9.06 2 9.04 10 9.03 5

tc1c10s3cf3 16.37 16.37 3 16.37 3 16.37 3 16.37 16.37 6 16.39 8 16.37 3

tc1c10s3cf4 14.90 14.90 3 14.90 3 14.90 3 14.90 14.90 7 14.91 8 14.90 2

tc1c10s3ct2 9.20 9.20 3 9.20 3 9.20 3 9.20 9.34 5 9.21 9 9.20 6

tc1c10s3ct3 13.02 13.02 2 13.02 2 13.02 2 13.02 13.02 10 13.03 7 13.02 5

tc1c10s3ct4 13.21 13.21 2 13.21 2 13.21 2 13.21 13.21 6 13.22 9 13.21 5

tc2c10s2cf0 21.77 21.77 3 21.77 3 21.77 3 21.77 21.77 9 21.78 8 21.77 6

tc2c10s2ct0 12.45 12.45 3 12.45 3 12.45 3 12.45 12.45 5 12.46 8 12.45 6

tc2c10s3cf0 21.77 21.77 3 21.77 3 21.77 3 21.77 21.77 9 21.79 7 21.77 3

tc2c10s3ct0 11.51 11.51 3 11.51 3 11.51 3 11.51 11.54 7 11.52 9 11.51 5

tc0c20s3cf2 27.47 27.60 4 27.47 4 27.47 4 27.47 27.66 12 27.52 12 27.47 10

tc0c20s3ct2 17.08 17.08 3 17.08 3 17.08 3 17.08 17.13 8 17.11 18 17.08 6

tc0c20s4cf2 27.47 27.48 4 27.60 4 27.47 4 27.47 27.61 13 27.65 14 27.47 9

tc0c20s4ct2 16.99 16.99 3 16.99 3 16.99 3 16.99 17.10 9 17.02 16 16.99 9

tc1c20s3cf1 17.49 17.50 3 17.50 3 17.49 3 17.49 17.53 12 17.53 13 17.49 10

tc1c20s3cf3 16.44 16.63 4 16.48 3 16.44 3 16.44 16.78 8 16.50 17 16.44 7

tc1c20s3cf4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 4 17.03 15 17.00 5

tc1c20s3ct1 18.94 18.95 4 18.95 4 18.94 4 18.94 19.38 15 18.97 14 18.94 9

tc1c20s3ct3 12.60 12.65 3 12.60 3 12.60 3 12.60 12.72 9 12.62 17 12.60 9

tc1c20s3ct4 16.21 16.21 4 16.21 4 16.21 4 16.21 16.25 5 16.24 11 16.21 8

tc1c20s4cf1 16.38 16.39 4 16.47 3 16.38 4 16.38 16.40 13 16.49 18 16.38 6

tc1c20s4cf3 16.44 16.56 3 16.48 3 16.44 3 16.44 16.80 9 16.51 11 16.44 11

tc1c20s4cf4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 4 17.03 15 17.00 8

tc1c20s4ct1 17.80 18.25 4 18.25 4 17.80 4 17.80 18.32 16 18.28 18 17.80 11

tc1c20s4ct3 14.43 14.43 3 14.43 3 14.43 3 14.43 14.50 8 14.46 12 14.43 7

tc1c20s4ct4 17.00 17.00 4 17.00 4 17.00 4 17.00 17.00 6 17.03 11 17.00 6

tc2c20s3cf0 24.68 24.68 4 24.68 4 24.68 4 24.68 24.68 14 24.70 11 24.68 7

tc2c20s3ct0 25.79 25.79 4 25.79 4 25.79 4 25.79 25.79 15 25.83 15 25.79 10

tc2c20s4cf0 24.67 24.67 4 24.67 4 24.67 4 24.67 24.69 15 24.71 13 24.67 11

tc2c20s4ct0 26.02 26.02 4 26.03 4 26.02 4 26.02 26.02 15 26.07 16 26.02 9

tc0c40s5cf0 32.20 32.67 8 32.67 8 32.20 7 32.30 33.25 24 32.75 52 32.30 16

tc0c40s5cf4 30.25 30.77 6 30.60 6 30.25 6 30.25 31.49 33 30.69 49 30.25 22

tc0c40s5ct0 27.91 28.72 7 28.70 7 27.91 6 27.91 29.35 25 28.78 46 27.91 17

tc0c40s5ct4 28.63 28.63 6 29.17 5 28.63 6 28.63 28.72 33 29.25 59 28.63 18

tc0c40s8cf0 30.40 31.28 7 31.23 7 30.40 6 30.40 32.02 34 31.31 63 30.40 18

tc0c40s8cf4 28.11 29.32 6 28.25 5 28.11 5 28.23 29.86 43 28.30 52 28.23 25

tc0c40s8ct0 26.22 26.35 6 26.22 6 26.22 6 26.22 26.89 29 26.27 58 26.22 17

tc0c40s8ct4 29.07 29.20 6 29.22 6 29.07 5 29.07 29.27 47 29.28 48 29.07 22

tc1c40s5cf1 64.51 65.16 10 65.52 10 64.51 10 64.51 66.03 44 65.67 33 64.51 25

tc1c40s5ct1 52.33 52.68 9 52.60 9 52.33 8 52.33 53.36 59 52.72 40 52.33 23

tc1c40s8cf1 40.64 40.75 7 41.63 7 40.64 7 40.64 42.33 70 41.71 34 40.64 21

tc1c40s8ct1 40.18 40.56 7 40.56 7 40.18 7 40.18 41.19 71 40.67 49 40.18 24

tc2c40s5cf2 27.54 27.54 6 27.54 6 27.54 6 27.54 27.67 32 27.62 42 27.54 17

tc2c40s5cf3 19.65 19.74 5 19.65 5 19.65 5 19.65 20.18 17 19.70 50 19.65 21

tc2c40s5ct2 26.91 26.91 6 26.91 6 26.91 6 26.91 27.02 23 26.99 42 26.91 14

tc2c40s5ct3 23.39 23.54 6 23.71 6 23.39 6 23.39 23.77 26 23.75 51 23.39 22

tc2c40s8cf2 27.13 27.15 6 27.14 6 27.13 6 27.13 27.31 29 27.20 35 27.13 16

tc2c40s8cf3 19.65 19.66 5 19.65 5 19.65 5 19.65 20.24 19 19.69 36 19.65 22

tc2c40s8ct2 26.28 26.33 6 26.29 6 26.28 6 26.28 26.71 26 26.34 40 26.28 16

tc2c40s8ct3 22.45 22.71 5 22.45 5 22.45 5 22.45 23.23 25 22.52 30 22.45 24
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Table 13: Detailed comparison of the results obtained by ILS with the results of Montoya et al. (2017) and

Koç et al. (2018) for the E-VRP-NL (instances with 80, 160, or 320 customers)

ILS + HC LNS ILS ILS + HC LNS ILS

Instance BKS Best #R Best #R Best #R BA Avg Time Avg Time Avg Time

tc0c80s12cf0 34.16 34.64 9 35.24 8 34.16 8 34.16 35.59 57 35.40 105 34.16 66

tc0c80s12cf1 40.91 42.90 10 42.30 9 40.91 9 40.94 44.07 75 42.47 85 40.94 68

tc0c80s12ct0 37.51 39.31 9 39.27 9 37.51 8 38.08 39.83 66 39.41 86 38.08 65

tc0c80s12ct1 39.91 41.94 10 41.64 9 39.91 9 40.06 43.03 73 41.83 103 40.06 59

tc0c80s8cf0 39.08 39.43 9 40.64 10 39.08 9 39.16 39.86 56 40.77 88 39.16 48

tc0c80s8cf1 43.38 45.23 10 46.65 9 43.38 9 43.95 45.73 121 46.80 98 43.95 73

tc0c80s8ct0 40.52 41.90 10 41.44 9 40.52 9 41.44 42.76 54 41.59 87 41.44 61

tc0c80s8ct1 43.85 45.27 10 45.25 10 43.85 9 44.07 45.85 130 45.37 100 44.07 73

tc1c80s12cf2 28.65 29.54 8 29.54 8 28.65 7 28.77 30.73 61 29.66 113 28.77 52

tc1c80s12ct2 28.73 29.52 8 29.38 8 28.73 8 29.18 30.66 59 29.47 114 29.18 54

tc1c80s8cf2 29.15 30.81 8 31.38 8 29.15 8 29.15 31.83 51 31.47 94 29.15 51

tc1c80s8ct2 30.45 31.74 8 31.72 8 30.45 8 30.52 32.36 60 31.82 98 30.52 57

tc2c80s12cf3 30.60 31.97 9 31.28 8 30.60 8 30.60 32.70 76 31.37 105 30.60 57

tc2c80s12cf4 42.10 43.89 9 43.69 9 42.10 9 42.14 44.97 131 43.81 86 42.14 83

tc2c80s12ct3 29.90 30.83 9 30.31 8 29.90 8 29.90 31.59 58 30.39 114 29.90 54

tc2c80s12ct4 40.27 42.40 9 42.56 9 40.27 9 40.27 42.82 134 44.68 103 40.27 74

tc2c80s8cf3 31.70 32.44 9 31.94 8 31.70 8 31.93 32.60 64 32.06 87 31.93 55

tc2c80s8cf4 46.03 49.29 10 49.67 10 46.03 9 46.78 49.69 100 49.84 128 46.78 93

tc2c80s8ct3 31.38 32.31 9 32.71 9 31.38 8 31.43 32.55 65 32.82 89 31.43 65

tc2c80s8ct4 43.83 44.83 10 44.16 10 43.83 9 44.00 46.61 111 44.31 103 44.00 75

tc0c160s16cf2 57.91 61.20 16 62.09 15 57.91 15 58.00 62.99 365 62.55 442 58.00 242

tc0c160s16cf4 76.90 82.92 18 82.77 18 76.90 16 77.55 83.84 1213 83.41 709 77.55 367

tc0c160s16ct2 57.64 59.90 15 59.75 15 57.64 15 57.73 62.80 342 60.29 811 57.73 247

tc0c160s16ct4 76.14 82.37 18 82.90 18 76.14 16 76.90 83.08 945 83.85 983 76.90 353

tc0c160s24cf2 56.32 59.27 15 59.26 15 56.32 14 56.76 60.92 403 59.79 732 56.76 253

tc0c160s24cf4 75.53 81.44 18 81.43 18 75.53 16 76.30 82.13 1209 82.33 595 76.30 370

tc0c160s24ct2 55.42 59.25 16 59.67 16 55.42 14 56.47 60.19 410 60.21 915 56.47 253

tc0c160s24ct4 75.05 80.96 18 81.38 18 75.05 16 75.87 82.11 957 82.21 436 75.87 372

tc1c160s16cf0 74.54 79.80 18 79.76 18 74.54 16 75.32 80.75 766 80.52 420 75.32 327

tc1c160s16cf3 66.45 71.76 17 71.98 17 66.45 15 67.20 72.75 462 72.77 729 67.20 307

tc1c160s16ct0 74.20 79.04 17 80.21 17 74.20 16 75.31 79.90 643 80.99 472 75.31 326

tc1c160s16ct3 65.31 73.29 17 73.24 17 65.31 15 66.20 75.11 279 73.82 750 66.20 289

tc1c160s24cf0 73.62 78.60 17 79.48 17 73.62 16 74.05 79.30 741 80.32 460 74.05 331

tc1c160s24cf3 62.90 68.56 17 68.73 17 62.90 15 63.64 69.57 483 69.28 522 63.64 282

tc1c160s24ct0 73.34 78.21 17 78.32 17 73.34 16 74.00 79.35 578 79.05 553 74.00 319

tc1c160s24ct3 63.19 68.72 17 69.17 17 63.19 15 63.66 69.98 358 69.76 889 63.66 280

tc2c160s16cf1 56.65 60.34 16 60.25 15 56.65 14 57.39 61.26 274 60.70 716 57.39 252

tc2c160s16ct1 55.37 60.27 15 59.86 15 55.37 14 55.52 60.62 288 60.40 408 55.52 232

tc2c160s24cf1 56.70 59.82 16 60.01 16 56.70 14 57.27 61.14 305 60.63 564 57.27 260

tc2c160s24ct1 55.03 59.13 16 59.97 15 55.03 14 55.15 59.72 340 60.53 531 55.15 238

tc1c320s24cf2 133.32 152.13 36 153.12 36 133.32 31 133.99 153.99 7106 154.65 4155 133.99 1287

tc1c320s24cf3 106.43 117.48 30 117.39 30 106.43 28 107.00 118.36 3066 118.43 3258 107.00 1060

tc1c320s24ct2 131.63 148.77 36 148.57 36 131.63 30 132.49 154.13 6853 149.89 4727 132.49 1231

tc1c320s24ct3 105.93 116.64 31 117.50 31 105.93 27 106.67 119.17 3274 118.53 5105 106.67 1045

tc1c320s38cf2 129.19 141.63 33 142.25 33 129.19 30 129.76 147.08 7236 144.17 4249 129.76 1178

tc1c320s38cf3 106.01 116.22 30 117.31 30 106.01 28 106.36 117.74 3114 118.78 5978 106.36 1129

tc1c320s38ct2 128.82 140.96 32 142.75 32 128.82 30 129.51 145.09 6974 144.50 6078 129.51 1167

tc1c320s38ct3 105.73 116.07 30 117.91 30 105.73 27 106.74 117.71 3063 119.40 3157 106.74 1186

tc2c320s24cf0 158.80 182.45 38 182.90 38 158.80 33 160.55 186.94 6566 185.27 4014 160.55 1343

tc2c320s24cf1 87.46 95.51 29 95.71 29 87.46 26 87.64 96.42 1456 96.81 5150 87.64 890

tc2c320s24cf4 111.16 122.74 32 122.83 32 111.16 28 111.62 124.68 3681 124.51 3923 111.62 989

tc2c320s24ct0 159.70 181.45 37 182.29 37 159.70 33 160.49 186.23 7204 183.80 6191 160.49 1309

tc2c320s24ct1 87.25 94.73 27 94.97 27 87.25 26 87.83 96.49 1259 95.96 3530 87.83 863

tc2c320s24ct4 111.09 121.94 32 122.09 32 111.09 28 111.62 123.85 4274 123.45 5196 111.62 1041

tc2c320s38cf0 158.70 176.92 37 178.17 37 158.70 33 159.53 182.31 6734 179.81 3350 159.53 1356

tc2c320s38cf1 86.92 94.29 28 95.73 28 86.92 26 87.25 95.07 1602 96.79 5343 87.25 890

tc2c320s38cf4 109.80 122.32 32 122.26 32 109.80 28 110.66 123.47 2661 123.46 3724 110.66 1087

tc2c320s38ct0 158.71 190.97 41 192.23 41 158.71 33 159.35 192.15 7637 194.66 4448 159.35 1374

tc2c320s38ct1 86.59 94.53 28 94.66 28 86.59 26 86.97 95.29 1409 95.87 3973 86.97 894

tc2c320s38ct4 110.05 121.66 32 121.64 32 110.05 28 110.55 123.15 2785 123.06 5554 110.55 1034
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Table 14: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 1 (instances with 10,

20, or 40 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c10s2cf1 5 10 19.75 19.75 5 10 19.75 19.75 6 10 19.75 19.75 5 10 19.75 19.75 19.75 19.75

tc0c10s2ct1 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 12.30 12.30

tc0c10s3cf1 5 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 19.75 19.75

tc0c10s3ct1 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 10.80 10.80

tc1c10s2cf2 5 10 9.03 9.03 5 10 9.03 9.03 6 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s2cf3 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 16.37 16.37

tc1c10s2cf4 5 10 16.10 16.10 6 10 16.10 16.10 5 10 16.10 16.10 6 10 16.10 16.10 16.10 16.10

tc1c10s2ct2 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 10.75 10.75

tc1c10s2ct3 5 10 13.25 13.25 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 13.17 13.17

tc1c10s2ct4 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 13.83 13.83

tc1c10s3cf2 4 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s3cf3 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 16.37 16.37

tc1c10s3cf4 3 10 14.90 14.90 4 10 14.90 14.90 4 10 14.90 14.90 4 10 14.90 14.90 14.90 14.90

tc1c10s3ct2 7 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 9.20 9.20

tc1c10s3ct3 5 10 13.02 13.02 6 10 13.02 13.02 6 10 13.02 13.02 6 10 13.02 13.02 13.02 13.02

tc1c10s3ct4 5 10 13.21 13.21 6 10 13.21 13.21 6 10 13.21 13.21 5 10 13.21 13.21 13.21 13.21

tc2c10s2cf0 5 10 21.83 21.83 5 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 21.77 21.77

tc2c10s2ct0 5 10 12.45 12.45 5 10 12.45 12.45 4 10 12.45 12.45 5 10 12.45 12.45 12.45 12.45

tc2c10s3cf0 4 10 21.83 21.83 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 21.77 21.77

tc2c10s3ct0 6 10 11.51 11.51 6 10 11.51 11.51 6 10 11.51 11.51 6 10 11.51 11.51 11.51 11.51

tc0c20s3cf2 12 10 27.62 27.62 12 10 27.47 27.47 11 10 27.47 27.47 12 10 27.47 27.47 27.47 27.47

tc0c20s3ct2 8 10 17.08 17.08 8 10 17.08 17.08 7 10 17.08 17.08 8 10 17.08 17.08 17.08 17.08

tc0c20s4cf2 10 10 27.62 27.62 10 10 27.47 27.47 10 10 27.47 27.47 9 10 27.47 27.47 27.47 27.47

tc0c20s4ct2 10 10 16.99 16.99 10 10 16.99 16.99 10 10 16.99 16.99 11 10 16.99 16.99 16.99 16.99

tc1c20s3cf1 12 10 17.49 17.49 12 10 17.49 17.49 13 10 17.49 17.49 12 10 17.49 17.49 17.49 17.49

tc1c20s3cf3 9 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 10 10 16.44 16.44 16.44 16.44

tc1c20s3cf4 6 10 17.00 17.00 7 10 17.00 17.00 6 10 17.00 17.00 6 10 17.00 17.00 17.00 17.00

tc1c20s3ct1 11 10 18.94 18.94 10 10 18.94 18.94 11 10 18.94 18.94 11 10 18.94 18.94 18.94 18.94

tc1c20s3ct3 11 10 12.60 12.60 11 10 12.60 12.60 11 10 12.60 12.60 11 10 12.60 12.60 12.60 12.60

tc1c20s3ct4 9 10 16.21 16.21 10 10 16.21 16.21 9 10 16.21 16.21 9 10 16.21 16.21 16.21 16.21

tc1c20s4cf1 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 16.38 16.38

tc1c20s4cf3 13 10 16.44 16.44 12 10 16.44 16.44 12 10 16.44 16.44 13 10 16.44 16.44 16.44 16.44

tc1c20s4cf4 10 10 17.00 17.00 10 10 17.00 17.00 9 10 17.00 17.00 10 10 17.00 17.00 17.00 17.00

tc1c20s4ct1 12 10 17.80 17.80 13 10 17.80 17.80 12 10 17.80 17.80 12 10 17.80 17.80 17.80 17.80

tc1c20s4ct3 7 10 14.43 14.43 7 10 14.43 14.43 7 10 14.43 14.43 8 10 14.43 14.43 14.43 14.43

tc1c20s4ct4 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 17.00 17.00

tc2c20s3cf0 9 10 24.68 24.68 9 10 24.68 24.68 8 10 24.68 24.68 9 10 24.68 24.68 24.68 24.68

tc2c20s3ct0 12 10 25.80 25.80 12 10 25.79 25.79 12 10 25.79 25.79 12 10 25.79 25.79 25.79 25.79

tc2c20s4cf0 12 10 24.68 24.68 12 10 24.67 24.67 12 10 24.67 24.67 12 10 24.67 24.67 24.67 24.67

tc2c20s4ct0 11 10 26.17 26.18 11 10 26.02 26.02 12 10 26.02 26.02 12 10 26.02 26.02 26.02 26.02

tc0c40s5cf0 21 10 32.20 32.23 20 10 32.20 32.23 20 10 32.20 32.23 20 10 32.20 32.23 32.20 32.23

tc0c40s5cf4 26 10 30.25 30.25 25 10 30.25 30.25 25 10 30.25 30.25 26 10 30.25 30.25 30.25 30.25

tc0c40s5ct0 20 10 27.91 27.91 20 10 27.91 27.91 21 10 27.91 27.91 21 10 27.91 27.91 27.91 27.91

tc0c40s5ct4 23 10 28.63 28.63 23 10 28.63 28.63 22 10 28.63 28.63 22 10 28.63 28.63 28.63 28.63

tc0c40s8cf0 22 10 30.46 30.51 21 10 30.40 30.40 21 10 30.40 30.40 21 10 30.40 30.40 30.40 30.40

tc0c40s8cf4 28 10 28.24 28.25 29 10 28.24 28.25 29 10 28.24 28.25 28 10 28.24 28.25 28.24 28.25

tc0c40s8ct0 20 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 26.22 26.22

tc0c40s8ct4 27 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 27 10 29.07 29.07 29.07 29.07

tc1c40s5cf1 27 0 - - 14 0 - - 14 0 - - 1299 0 - - - -

tc1c40s5ct1 26 10 52.42 52.70 28 10 52.42 52.60 26 10 52.42 52.60 27 10 52.33 52.33 52.33 52.33

tc1c40s8cf1 25 10 41.67 42.21 24 10 40.64 40.64 23 10 40.64 40.64 24 10 40.64 40.64 40.64 40.64

tc1c40s8ct1 29 10 40.45 40.73 28 10 40.35 40.36 28 10 40.35 40.36 29 10 40.35 40.35 40.35 40.35

tc2c40s5cf2 20 10 27.54 27.54 19 10 27.54 27.54 20 10 27.54 27.54 21 10 27.54 27.54 27.54 27.54

tc2c40s5cf3 26 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 19.65 19.65

tc2c40s5ct2 20 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 26.91 26.91

tc2c40s5ct3 23 10 23.39 23.39 22 10 23.39 23.39 22 10 23.39 23.39 21 10 23.39 23.39 23.39 23.39

tc2c40s8cf2 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 27.13 27.13

tc2c40s8cf3 26 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 24 10 19.65 19.65 19.65 19.65

tc2c40s8ct2 19 10 26.28 26.28 19 10 26.28 26.28 18 10 26.28 26.28 18 10 26.28 26.28 26.28 26.28

tc2c40s8ct3 27 10 22.45 22.45 28 10 22.45 22.45 28 10 22.45 22.45 28 10 22.45 22.45 22.45 22.45
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Table 15: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of charger at every CS is equal to 1(instances with 80,

160, or 320 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c80s12cf0 74 10 34.06 34.20 75 10 34.06 34.20 78 10 34.06 34.20 77 10 34.06 34.20 34.06 34.20

tc0c80s12cf1 78 10 40.83 40.95 77 10 40.83 40.94 77 10 40.83 40.94 77 10 40.83 40.94 40.83 40.94

tc0c80s12ct0 76 10 37.51 37.95 77 10 37.51 37.89 77 10 37.51 37.89 77 10 37.51 37.98 37.51 37.89

tc0c80s12ct1 72 10 39.72 40.01 73 10 39.72 40.00 71 10 39.72 40.00 72 10 39.72 40.00 39.72 40.00

tc0c80s8cf0 61 10 38.59 38.79 61 10 38.59 38.79 62 10 38.59 38.79 60 10 38.59 38.79 38.59 38.79

tc0c80s8cf1 83 10 43.41 44.28 80 10 43.38 44.05 81 10 43.38 44.05 85 10 43.38 44.13 43.38 44.05

tc0c80s8ct0 71 10 40.53 41.47 71 10 40.53 41.47 69 10 40.53 41.47 69 10 40.53 41.47 40.53 41.47

tc0c80s8ct1 82 10 43.86 43.99 82 10 43.85 43.98 80 10 43.85 43.98 82 10 43.85 43.98 43.85 43.98

tc1c80s12cf2 58 10 28.65 28.77 59 10 28.65 28.77 58 10 28.65 28.77 59 10 28.65 28.77 28.65 28.77

tc1c80s12ct2 60 10 28.73 29.17 60 10 28.73 29.09 59 10 28.73 29.09 62 10 28.73 29.14 28.73 29.09

tc1c80s8cf2 63 10 29.15 29.15 62 10 29.15 29.15 60 10 29.15 29.15 62 10 29.15 29.15 29.15 29.15

tc1c80s8ct2 61 10 29.88 30.42 63 10 29.88 30.42 62 10 29.88 30.42 63 10 29.88 30.42 29.88 30.42

tc2c80s12cf3 63 10 30.61 30.61 62 10 30.60 30.60 63 10 30.60 30.60 62 10 30.60 30.60 30.60 30.60

tc2c80s12cf4 89 10 42.20 42.62 88 10 42.12 42.25 89 10 42.12 42.25 105 10 42.12 42.26 42.12 42.25

tc2c80s12ct3 62 10 29.90 29.90 61 10 29.90 29.90 62 10 29.90 29.90 61 10 29.90 29.90 29.90 29.90

tc2c80s12ct4 87 10 40.28 40.28 86 10 40.27 40.27 85 10 40.27 40.27 86 10 40.27 40.27 40.27 40.27

tc2c80s8cf3 61 10 31.70 31.93 60 10 31.70 31.93 61 10 31.70 31.93 60 10 31.70 31.93 31.70 31.93

tc2c80s8cf4 100 10 46.19 46.85 102 10 46.19 46.84 104 10 46.19 46.84 102 10 46.19 46.94 46.19 46.84

tc2c80s8ct3 75 10 31.38 31.38 76 10 31.38 31.38 76 10 31.38 31.38 74 10 31.38 31.38 31.38 31.38

tc2c80s8ct4 85 10 43.98 44.03 86 10 43.98 44.02 84 10 43.98 44.02 88 10 43.98 44.02 43.98 44.02

tc0c160s16cf2 285 10 57.93 58.04 272 10 57.91 58.02 273 10 57.91 58.02 268 10 57.91 58.01 57.91 58.01

tc0c160s16cf4 428 10 77.56 78.47 429 10 77.30 77.63 425 10 77.30 77.63 862 10 77.30 77.67 77.30 77.63

tc0c160s16ct2 286 10 57.16 57.63 288 10 57.16 57.64 289 10 57.16 57.64 279 10 57.16 57.64 57.16 57.63

tc0c160s16ct4 417 10 76.18 77.25 404 10 76.30 76.97 414 10 76.30 76.98 798 10 76.18 76.97 76.18 76.97

tc0c160s24cf2 291 10 56.86 56.93 284 10 56.86 56.94 285 10 56.86 56.94 286 10 56.86 56.93 56.86 56.93

tc0c160s24cf4 430 10 76.21 77.04 429 10 75.63 76.60 432 10 75.63 76.55 538 10 75.83 76.67 75.63 76.55

tc0c160s24ct2 298 10 55.53 56.30 303 10 55.42 56.23 301 10 55.42 56.23 294 10 55.42 56.17 55.42 56.17

tc0c160s24ct4 420 10 75.13 76.34 432 10 75.09 76.26 430 10 75.09 76.26 577 10 75.36 76.29 75.09 76.26

tc1c160s16cf0 382 8 75.81 77.16 372 10 74.69 76.53 379 10 74.69 76.53 413 10 74.64 75.83 74.64 75.83

tc1c160s16cf3 348 10 66.52 67.80 347 10 66.52 67.17 352 10 66.52 67.18 352 10 66.49 67.26 66.49 67.17

tc1c160s16ct0 369 10 74.30 74.94 367 10 74.24 74.91 360 10 74.24 74.91 382 10 74.20 74.62 74.20 74.62

tc1c160s16ct3 323 10 65.45 66.40 316 10 65.24 66.02 318 10 65.24 66.02 313 10 65.23 66.08 65.23 66.02

tc1c160s24cf0 381 10 73.93 74.60 372 10 73.62 73.96 374 10 73.62 73.90 445 10 73.62 74.03 73.62 73.90

tc1c160s24cf3 328 10 63.22 63.93 323 10 63.06 63.60 331 10 63.06 63.60 331 10 63.05 63.78 63.05 63.60

tc1c160s24ct0 384 10 73.95 74.61 380 10 73.32 73.95 371 10 73.32 73.95 375 10 73.32 73.77 73.32 73.77

tc1c160s24ct3 335 10 62.76 63.22 334 10 62.70 63.30 335 10 62.70 63.30 328 10 62.70 63.26 62.70 63.22

tc2c160s16cf1 284 10 56.71 57.44 286 10 56.59 57.33 285 10 56.59 57.33 284 10 56.66 57.38 56.59 57.33

tc2c160s16ct1 257 10 55.37 55.45 257 10 55.37 55.43 255 10 55.37 55.43 261 10 55.37 55.44 55.37 55.43

tc2c160s24cf1 289 10 56.00 57.24 298 10 56.47 57.20 299 10 56.47 04:48 297 10 56.47 57.36 56.00 57.20

tc2c160s24ct1 276 10 55.03 55.07 286 10 54.96 55.10 281 10 54.96 55.10 270 10 55.03 55.15 54.96 55.07

tc1c320s24cf2 1600 0 - - 1582 10 133.89 135.14 1570 10 133.91 135.16 3219 10 133.66 135.37 133.66 135.14

tc1c320s24cf3 1250 10 105.88 106.73 1252 10 105.70 106.70 1268 10 105.70 106.70 1262 10 105.47 106.77 105.47 106.70

tc1c320s24ct2 1480 0 - - 2337 10 133.46 135.57 2366 10 133.46 135.23 3461 9 132.50 134.69 132.50 134.69

tc1c320s24ct3 1166 10 105.40 106.31 1162 10 105.68 106.29 1156 10 105.68 106.29 1186 10 105.89 106.47 105.40 106.29

tc1c320s38cf2 1417 0 - - 1370 10 129.09 129.61 1375 10 129.09 129.68 1561 10 128.96 129.40 128.96 129.40

tc1c320s38cf3 1286 10 105.60 106.21 1276 10 105.71 106.47 1265 10 105.71 106.47 1232 10 105.41 106.23 105.41 106.21

tc1c320s38ct2 1422 0 - - 1397 10 128.86 129.80 1399 10 128.86 129.79 2603 10 128.69 129.65 128.69 129.65

tc1c320s38ct3 1342 10 106.42 106.82 1356 10 105.93 106.60 1377 10 105.93 106.60 1395 10 105.44 106.66 105.44 106.60

tc2c320s24cf0 1840 0 - - 2534 10 163.39 165.89 2587 10 163.39 165.94 3472 10 162.15 165.15 162.15 165.15

tc2c320s24cf1 1014 10 87.19 87.59 1004 10 87.27 87.65 1021 10 87.27 87.65 1028 10 87.26 87.68 87.19 87.59

tc2c320s24cf4 1113 4 112.46 114.09 1095 10 111.74 112.45 1083 10 111.74 112.39 1433 10 111.59 112.19 111.59 112.19

tc2c320s24ct0 1683 0 - - 2482 10 164.81 166.51 2498 10 164.81 166.46 3413 10 164.18 166.59 164.18 166.46

tc2c320s24ct1 1016 10 86.86 87.57 1026 10 87.26 87.64 1043 10 87.26 87.64 1017 10 87.01 87.51 86.86 87.51

tc2c320s24ct4 1214 5 111.66 113.18 1191 10 111.00 111.90 1182 10 111.00 111.76 1231 10 110.95 111.82 110.95 111.76

tc2c320s38cf0 1697 0 - - 1875 10 160.69 162.51 1886 10 160.69 162.51 3388 10 160.59 161.69 160.59 161.69

tc2c320s38cf1 1016 10 86.65 87.17 1013 10 86.97 87.25 1029 10 86.97 87.25 999 10 86.69 87.21 86.65 87.17

tc2c320s38cf4 1274 10 109.48 110.62 1226 10 110.19 110.63 1224 10 110.19 110.63 1253 10 109.91 110.46 109.48 110.46

tc2c320s38ct0 1825 0 - - 2169 10 160.54 162.97 2166 10 160.36 162.94 3252 10 161.25 162.34 160.36 162.34

tc2c320s38ct1 1076 10 86.59 86.97 1075 10 86.23 86.72 1068 10 86.23 86.72 1061 10 86.53 86.88 86.23 86.72

tc2c320s38ct4 1182 10 109.97 110.73 1201 10 109.60 110.29 1189 10 109.60 110.29 1210 10 109.44 110.27 109.44 110.27
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Table 16: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 2 (instances with 10,

20, or 40 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c10s2cf1 6 10 19.75 19.75 6 10 19.75 19.75 5 10 19.75 19.75 5 10 19.75 19.75 19.75 19.75

tc0c10s2ct1 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 4 10 12.30 12.30 12.30 12.30

tc0c10s3cf1 6 10 19.75 19.75 5 10 19.75 19.75 6 10 19.75 19.75 6 10 19.75 19.75 19.75 19.75

tc0c10s3ct1 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 5 10 10.80 10.80 10.80 10.80

tc1c10s2cf2 6 10 9.03 9.03 6 10 9.03 9.03 5 10 9.03 9.03 6 10 9.03 9.03 9.03 9.03

tc1c10s2cf3 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 6 10 16.37 16.37 16.37 16.37

tc1c10s2cf4 6 10 16.10 16.10 5 10 16.10 16.10 5 10 16.10 16.10 6 10 16.10 16.10 16.10 16.10

tc1c10s2ct2 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 4 10 10.75 10.75 10.75 10.75

tc1c10s2ct3 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 5 10 13.17 13.17 13.17 13.17

tc1c10s2ct4 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 5 10 13.83 13.83 13.83 13.83

tc1c10s3cf2 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 5 10 9.03 9.03 9.03 9.03

tc1c10s3cf3 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 4 10 16.37 16.37 16.37 16.37

tc1c10s3cf4 3 10 14.90 14.90 4 10 14.90 14.90 3 10 14.90 14.90 3 10 14.90 14.90 14.90 14.90

tc1c10s3ct2 6 10 9.20 9.20 7 10 9.20 9.20 7 10 9.20 9.20 6 10 9.20 9.20 9.20 9.20

tc1c10s3ct3 6 10 13.02 13.02 5 10 13.02 13.02 5 10 13.02 13.02 5 10 13.02 13.02 13.02 13.02

tc1c10s3ct4 5 10 13.21 13.21 6 10 13.21 13.21 5 10 13.21 13.21 5 10 13.21 13.21 13.21 13.21

tc2c10s2cf0 6 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 6 10 21.77 21.77 21.77 21.77

tc2c10s2ct0 5 10 12.45 12.45 5 10 12.45 12.45 5 10 12.45 12.45 5 10 12.45 12.45 12.45 12.45

tc2c10s3cf0 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 4 10 21.77 21.77 21.77 21.77

tc2c10s3ct0 6 10 11.51 11.51 6 10 11.51 11.51 7 10 11.51 11.51 6 10 11.51 11.51 11.51 11.51

tc0c20s3cf2 11 10 27.47 27.47 11 10 27.47 27.47 12 10 27.47 27.47 12 10 27.47 27.47 27.47 27.47

tc0c20s3ct2 8 10 17.08 17.08 8 10 17.08 17.08 8 10 17.08 17.08 7 10 17.08 17.08 17.08 17.08

tc0c20s4cf2 9 10 27.47 27.47 10 10 27.47 27.47 10 10 27.47 27.47 9 10 27.47 27.47 27.47 27.47

tc0c20s4ct2 11 10 16.99 16.99 11 10 16.99 16.99 11 10 16.99 16.99 10 10 16.99 16.99 16.99 16.99

tc1c20s3cf1 12 10 17.49 17.49 12 10 17.49 17.49 12 10 17.49 17.49 12 10 17.49 17.49 17.49 17.49

tc1c20s3cf3 10 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 9 10 16.44 16.44 16.44 16.44

tc1c20s3cf4 7 10 17.00 17.00 7 10 17.00 17.00 6 10 17.00 17.00 7 10 17.00 17.00 17.00 17.00

tc1c20s3ct1 11 10 18.94 18.94 11 10 18.94 18.94 11 10 18.94 18.94 10 10 18.94 18.94 18.94 18.94

tc1c20s3ct3 11 10 12.60 12.60 11 10 12.60 12.60 10 10 12.60 12.60 10 10 12.60 12.60 12.60 12.60

tc1c20s3ct4 9 10 16.21 16.21 9 10 16.21 16.21 10 10 16.21 16.21 10 10 16.21 16.21 16.21 16.21

tc1c20s4cf1 9 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 8 10 16.38 16.38 16.38 16.38

tc1c20s4cf3 13 10 16.44 16.44 13 10 16.44 16.44 13 10 16.44 16.44 13 10 16.44 16.44 16.44 16.44

tc1c20s4cf4 10 10 17.00 17.00 9 10 17.00 17.00 10 10 17.00 17.00 9 10 17.00 17.00 17.00 17.00

tc1c20s4ct1 12 10 17.80 17.80 13 10 17.80 17.80 13 10 17.80 17.80 13 10 17.80 17.80 17.80 17.80

tc1c20s4ct3 7 10 14.43 14.43 8 10 14.43 14.43 7 10 14.43 14.43 8 10 14.43 14.43 14.43 14.43

tc1c20s4ct4 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 8 10 17.00 17.00 17.00 17.00

tc2c20s3cf0 9 10 24.68 24.68 9 10 24.68 24.68 8 10 24.68 24.68 8 10 24.68 24.68 24.68 24.68

tc2c20s3ct0 12 10 25.79 25.79 12 10 25.79 25.79 12 10 25.79 25.79 11 10 25.79 25.79 25.79 25.79

tc2c20s4cf0 12 10 24.67 24.67 12 10 24.67 24.67 11 10 24.67 24.67 11 10 24.67 24.67 24.67 24.67

tc2c20s4ct0 12 10 26.02 26.02 12 10 26.02 26.02 11 10 26.02 26.02 11 10 26.02 26.02 26.02 26.02

tc0c40s5cf0 20 10 32.20 32.23 20 10 32.20 32.23 21 10 32.20 32.23 20 10 32.20 32.23 32.20 32.23

tc0c40s5cf4 26 10 30.25 30.25 26 10 30.25 30.25 25 10 30.25 30.25 26 10 30.25 30.25 30.25 30.25

tc0c40s5ct0 20 10 27.91 27.91 20 10 27.91 27.91 19 10 27.91 27.91 19 10 27.91 27.91 27.91 27.91

tc0c40s5ct4 23 10 28.63 28.63 23 10 28.63 28.63 23 10 28.63 28.63 22 10 28.63 28.63 28.63 28.63

tc0c40s8cf0 20 10 30.40 30.40 21 10 30.40 30.40 21 10 30.40 30.40 20 10 30.40 30.40 30.40 30.40

tc0c40s8cf4 28 10 28.24 28.25 28 10 28.24 28.25 29 10 28.24 28.25 29 10 28.24 28.25 28.24 28.25

tc0c40s8ct0 21 10 26.22 26.22 20 10 26.22 26.22 20 10 26.22 26.22 21 10 26.22 26.22 26.22 26.22

tc0c40s8ct4 26 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 26 10 29.07 29.07 29.07 29.07

tc1c40s5cf1 28 2 66.55 66.55 28 10 65.38 67.50 28 10 65.38 67.50 454 10 65.38 66.51 65.38 66.51

tc1c40s5ct1 27 10 52.33 52.33 27 10 52.33 52.33 26 10 52.33 52.33 26 10 52.33 52.33 52.33 52.33

tc1c40s8cf1 23 10 40.64 40.64 24 10 40.64 40.64 24 10 40.64 40.64 23 10 40.64 40.64 40.64 40.64

tc1c40s8ct1 28 10 40.18 40.18 27 10 40.18 40.18 27 10 40.18 40.18 28 10 40.18 40.18 40.18 40.18

tc2c40s5cf2 19 10 27.54 27.54 19 10 27.54 27.54 20 10 27.54 27.54 20 10 27.54 27.54 27.54 27.54

tc2c40s5cf3 25 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 26 10 19.65 19.65 19.65 19.65

tc2c40s5ct2 18 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 19 10 26.91 26.91 26.91 26.91

tc2c40s5ct3 22 10 23.39 23.39 22 10 23.39 23.39 23 10 23.39 23.39 22 10 23.39 23.39 23.39 23.39

tc2c40s8cf2 20 10 27.13 27.13 20 10 27.13 27.13 20 10 27.13 27.13 19 10 27.13 27.13 27.13 27.13

tc2c40s8cf3 25 10 19.65 19.65 26 10 19.65 19.65 25 10 19.65 19.65 25 10 19.65 19.65 19.65 19.65

tc2c40s8ct2 19 10 26.28 26.28 19 10 26.28 26.28 18 10 26.28 26.28 19 10 26.28 26.28 26.28 26.28

tc2c40s8ct3 29 10 22.45 22.45 28 10 22.45 22.45 29 10 22.45 22.45 29 10 22.45 22.45 22.45 22.45

39



Table 17: Detailed comparison of the best results obtained by the matheuristic for the E-VRP-NL-C according

to the version of the subproblem it uses if the number of chargers at every CS is equal to 2 (instances with 80,

160, or 320 customers).

Instance
Version N Version D Version DW Version DWR

BS BA
Time #F Best Avg Time #F Best Avg Time #F Best Avg Time #F Best Avg

tc0c80s12cf0 76 10 34.06 34.20 74 10 34.06 34.20 75 10 34.06 34.20 77 10 34.06 34.20 34.06 34.20

tc0c80s12cf1 77 10 40.83 40.94 77 10 40.83 40.94 77 10 40.83 40.94 76 10 40.83 40.94 40.83 40.94

tc0c80s12ct0 75 10 37.51 37.95 76 10 37.51 37.89 74 10 37.51 37.89 75 10 37.51 37.98 37.51 37.89

tc0c80s12ct1 71 10 39.72 40.00 70 10 39.72 40.00 72 10 39.72 40.00 71 10 39.72 40.00 39.72 40.00

tc0c80s8cf0 61 10 38.59 38.84 62 10 38.59 38.84 62 10 38.59 38.84 61 10 38.59 38.84 38.59 38.84

tc0c80s8cf1 83 10 43.38 44.09 82 10 43.38 44.12 85 10 43.38 44.12 87 10 43.38 44.10 43.38 44.09

tc0c80s8ct0 67 10 40.53 41.47 69 10 40.53 41.47 70 10 40.53 41.47 71 10 40.53 41.47 40.53 41.47

tc0c80s8ct1 78 10 43.85 43.98 80 10 43.85 43.98 79 10 43.85 43.98 81 10 43.85 43.98 43.85 43.98

tc1c80s12cf2 59 10 28.65 28.77 57 10 28.65 28.77 60 10 28.65 28.77 59 10 28.65 28.77 28.65 28.77

tc1c80s12ct2 60 10 28.73 29.17 62 10 28.73 29.09 63 10 28.73 29.09 62 10 28.73 29.14 28.73 29.09

tc1c80s8cf2 62 10 29.15 29.15 63 10 29.15 29.15 62 10 29.15 29.15 62 10 29.15 29.15 29.15 29.15

tc1c80s8ct2 64 10 29.88 30.42 64 10 29.88 30.42 64 10 29.88 30.42 62 10 29.88 30.42 29.88 30.42

tc2c80s12cf3 63 10 30.60 30.60 62 10 30.60 30.60 61 10 30.60 30.60 62 10 30.60 30.60 30.60 30.60

tc2c80s12cf4 87 10 42.12 42.20 89 10 42.11 42.18 88 10 42.11 42.18 88 10 42.11 42.18 42.11 42.18

tc2c80s12ct3 63 10 29.90 29.90 64 10 29.90 29.90 64 10 29.90 29.90 62 10 29.90 29.90 29.90 29.90

tc2c80s12ct4 88 10 40.27 40.27 86 10 40.27 40.27 88 10 40.27 40.27 85 10 40.27 40.27 40.27 40.27

tc2c80s8cf3 59 10 31.70 31.93 60 10 31.70 31.93 59 10 31.70 31.93 59 10 31.70 31.93 31.70 31.93

tc2c80s8cf4 101 10 46.18 46.65 101 10 46.06 46.64 103 10 46.06 46.64 102 10 46.18 46.65 46.06 46.64

tc2c80s8ct3 75 10 31.38 31.38 78 10 31.38 31.38 76 10 31.38 31.38 76 10 31.38 31.38 31.38 31.38

tc2c80s8ct4 87 10 43.72 43.97 85 10 43.72 43.97 84 10 43.72 43.97 87 10 43.72 43.97 43.72 43.97

tc0c160s16cf2 277 10 57.91 58.01 279 10 57.91 58.01 276 10 57.91 58.01 279 10 57.91 58.01 57.91 58.01

tc0c160s16cf4 416 10 77.04 77.59 418 10 77.04 77.62 424 10 77.04 77.62 427 10 77.03 77.60 77.03 77.59

tc0c160s16ct2 286 10 57.16 57.63 280 10 57.16 57.63 285 10 57.16 57.63 286 10 57.16 57.64 57.16 57.63

tc0c160s16ct4 403 10 76.66 76.93 395 10 76.37 76.86 408 10 76.37 76.86 399 10 76.14 76.87 76.14 76.86

tc0c160s24cf2 284 10 56.86 56.93 283 10 56.86 56.92 283 10 56.86 56.92 285 10 56.86 56.92 56.86 56.92

tc0c160s24cf4 432 10 75.50 76.46 415 10 76.00 76.61 410 10 76.00 76.61 430 10 75.59 76.48 75.50 76.46

tc0c160s24ct2 289 10 55.43 56.18 291 10 55.42 56.16 302 10 55.42 56.16 296 10 55.42 56.17 55.42 56.16

tc0c160s24ct4 418 10 74.99 76.16 428 10 75.06 76.01 429 10 75.06 76.01 436 10 74.99 76.19 74.99 76.01

tc1c160s16cf0 365 10 74.55 75.63 370 10 74.55 75.51 368 10 74.55 75.51 374 10 74.55 75.51 74.55 75.51

tc1c160s16cf3 348 10 66.14 66.92 352 10 66.32 67.02 351 10 66.32 67.02 344 10 66.32 66.98 66.14 66.92

tc1c160s16ct0 372 10 74.19 74.70 372 10 74.20 75.16 368 10 74.20 75.16 379 10 74.19 74.66 74.19 74.66

tc1c160s16ct3 307 10 65.22 66.08 309 10 66.03 66.42 311 10 66.03 66.42 319 10 65.26 66.27 65.22 66.08

tc1c160s24cf0 377 10 73.67 74.05 367 10 73.62 73.85 371 10 73.62 73.85 372 10 73.62 74.06 73.62 73.85

tc1c160s24cf3 323 10 63.17 63.86 334 10 63.22 63.83 325 10 63.22 63.83 333 10 63.17 63.74 63.17 63.74

tc1c160s24ct0 371 10 73.34 73.81 367 10 73.32 73.81 361 10 73.32 73.81 366 10 73.34 74.12 73.32 73.81

tc1c160s24ct3 330 10 62.70 63.28 326 10 62.70 63.27 337 10 62.70 63.27 336 10 62.70 63.32 62.70 63.27

tc2c160s16cf1 285 10 57.04 57.65 279 10 57.01 57.62 284 10 57.01 57.62 280 10 57.04 57.65 57.01 57.62

tc2c160s16ct1 260 10 55.37 55.44 258 10 55.37 55.44 262 10 55.37 55.44 258 10 55.37 55.46 55.37 55.44

tc2c160s24cf1 298 10 56.00 57.27 300 10 56.47 57.18 294 10 56.47 57.18 288 10 56.67 57.38 56.00 57.18

tc2c160s24ct1 281 10 55.03 55.16 291 10 55.03 55.14 283 10 55.03 55.14 274 10 54.96 55.10 54.96 55.10

tc1c320s24cf2 1561 10 133.66 134.28 1464 10 132.45 133.57 1458 10 132.45 133.57 1461 10 132.82 133.75 132.45 133.57

tc1c320s24cf3 1237 10 105.29 106.53 1233 10 105.47 106.60 1224 10 105.47 106.60 1264 10 106.21 106.98 105.29 106.53

tc1c320s24ct2 1601 10 132.16 133.09 1380 10 131.73 132.30 1379 10 131.73 132.30 1386 10 131.69 132.28 131.69 132.28

tc1c320s24ct3 1199 10 105.92 106.40 1142 10 105.25 106.06 1150 10 105.25 106.06 1156 10 105.37 106.27 105.25 106.06

tc1c320s38cf2 1359 10 129.01 129.40 1360 10 128.87 129.21 1375 10 128.87 129.21 1371 10 128.87 129.28 128.87 129.21

tc1c320s38cf3 1231 10 105.55 106.24 1243 10 104.90 105.88 1227 10 104.90 105.88 1253 10 105.72 106.24 104.90 105.88

tc1c320s38ct2 1395 10 128.84 129.44 1366 10 128.71 129.43 1349 10 128.71 129.43 1418 10 128.79 129.34 128.71 129.34

tc1c320s38ct3 1350 10 105.83 106.50 1385 10 105.39 106.64 1379 10 105.39 106.64 1339 10 105.23 106.42 105.23 106.42

tc2c320s24cf0 1880 10 160.36 161.73 1539 10 159.66 160.55 1555 10 159.66 160.55 1703 10 158.96 160.60 158.96 160.55

tc2c320s24cf1 1012 10 87.26 87.73 1032 10 87.35 87.71 1047 10 87.35 87.71 1039 10 87.31 87.66 87.26 87.66

tc2c320s24cf4 1065 10 110.98 111.52 1088 10 110.58 111.12 1074 10 110.58 111.12 1085 10 110.73 111.37 110.58 111.12

tc2c320s24ct0 1826 10 160.19 161.36 1505 10 159.58 160.22 1485 10 159.58 160.30 2184 10 159.62 160.01 159.58 160.01

tc2c320s24ct1 996 10 87.26 87.68 1030 10 87.02 87.52 1024 10 87.02 87.52 1014 10 87.28 87.70 87.02 87.52

tc2c320s24ct4 1175 10 111.07 111.63 1177 10 111.04 111.54 1155 10 111.04 111.54 1171 10 110.99 111.63 110.99 111.54

tc2c320s38cf0 1571 10 159.35 159.93 1588 10 158.29 159.33 1580 10 158.29 159.33 1589 10 158.44 159.48 158.29 159.33

tc2c320s38cf1 1008 10 86.88 87.22 1024 10 86.78 87.19 1015 10 86.78 87.19 1021 10 86.77 87.30 86.77 87.19

tc2c320s38cf4 1264 10 109.93 110.56 1264 10 109.94 110.39 1255 10 109.94 110.39 1246 10 109.80 110.57 109.80 110.39

tc2c320s38ct0 1782 9 158.59 159.53 1617 10 158.30 159.06 1580 10 158.30 159.06 1586 10 157.81 158.88 157.81 158.88

tc2c320s38ct1 1093 10 85.90 86.81 1038 10 86.52 86.95 1049 10 86.52 86.95 1074 10 86.26 86.85 85.90 86.81

tc2c320s38ct4 1204 10 109.50 110.12 1191 10 109.75 110.13 1164 10 109.75 110.13 1187 10 109.85 110.18 109.50 110.12
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