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A family of prismatic and hexahedral solid-shell (SHB) elements, with their linear and quadratic versions, is proposed in this work to model thin structures. The formulation of these SHB elements is extended to explicit dynamic analysis and large-strain anisotropic plasticity on the basis of a fully three-dimensional approach using an arbitrary number of integration points along the thickness direction. Several special treatments are applied to the SHB elements in order to avoid all locking phenomena and to guarantee the accuracy and efficiency of the simulations. These solid-shell elements have been implemented into ABAQUS standard/quasi-static and explicit/dynamic software packages. A number of static and dynamic benchmark problems, as well as a simulation of the deep drawing of a cylindrical cup, have been conducted to assess the performance of these SHB elements.

INTRODUCTION

In modern industry, the finite element analysis has become an essential approach in the analysis of complex engineering processes. The accurate and efficient simulation of thin structures has motivated a number of researchers to develop advanced finite element technologies. Among these, the solid-shell concept [START_REF] Abed-Meraim | SHB8PS--a new adaptive, assumed-strain continuum mechanics shell element for impact analysis[END_REF] and [START_REF] Parente | Sheet metal forming simulation using EAS solid-shell finite elements[END_REF] has emerged in recent decades for the efficient modelling of thin 3D structures [START_REF] Reese | A large deformation solid-shell concept based on reduced integration with hourglass stabilization[END_REF] and [START_REF] Schwarze | A reduced integration solid-shell finite element based on the EAS and the ANS concept-Geometrically linear problems[END_REF], while accurately describing the various non-linear phenomena [START_REF] Caseiro | Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures[END_REF] and [START_REF] Flores | A simple reduced integration hexahedral solid-shell element for large strains[END_REF]. The formulation of solidshell elements is based on the reduced-integration technique, which makes them very attractive due to their low computational cost. However, they require special numerical treatments to avoid several locking phenomena. Among these techniques, the assumed strain method (ASM) has been used in [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF] to eliminate locking modes. The enhanced assumed strain (EAS) technique is also widely used in the formulation of solid-shell elements, which is based on the inclusion of additional deformation modes for removing locking problems [START_REF] Parente | Sheet metal forming simulation using EAS solid-shell finite elements[END_REF], [START_REF] Pagani | Computationally efficient explicit nonlinear analyses using reduced integration-based solidshell finite elements[END_REF] and [START_REF] Sena | On the use of EAS solid-shell formulations in the numerical simulation of incremental forming processes[END_REF]. The EAS technique is often combined with the assumed natural strain (ANS) method in order to prevent most locking phenomena [START_REF] Schwarze | A reduced integration solid-shell finite element based on the EAS and the ANS concept-Geometrically linear problems[END_REF], [START_REF] Cardoso | -Shell Elements for Quasi-Static and Dynamic Simulations of thin 3D structures: Application to a Deep Drawing Process 11[END_REF] and [START_REF] Ben Bettaieb | On the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and nonlinear applications[END_REF]. The concept of solid-shell elements has been widely adopted in the analysis of non-linear elastic and elastic-plastic thin structures, and it has been recently extended to the modeling of laminates [START_REF] Moreira | A solid-shell layerwise finite element for non-linear geometric and material analysis[END_REF] and [START_REF] Naceur | On the modeling and design of composite multilayered structures using solid-shell finite element model[END_REF], and multilayer sandwich structures [START_REF] Kpeky | Modeling of viscoelastic sandwich beams using solid-shell finite elements[END_REF].

In the current contribution, four assumedstrain based solid-shell (SHB) elements are proposed. They consist of linear prismatic (SHB6) [START_REF] Trinh | A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[END_REF] and hexahedral (SHB8PS) [START_REF] Abed-Meraim | SHB8PS--a new adaptive, assumed-strain continuum mechanics shell element for impact analysis[END_REF] and [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF] elements, and their quadratic counterparts (SHB15) and (SHB20) [START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF] and [START_REF] Wang | Efficient solid-shell finite elements for quasi-static and dynamic analyses and their application to sheet metal forming simulation[END_REF], respectively. These SHB elements are formulated within a three-dimensional framework with large displacements and rotations. An in-plane reducedintegration scheme with an arbitrary number of integration points along the thickness is adopted, which allows modeling thin structures with only a single element layer. The spurious zero-energy modes that are inherent in the reduced-integration technique are stabilized with a special procedure, while most locking phenomena are eliminated using an appropriate projection of the discrete gradient operator. The resulting SHB elements are coupled with three-dimensional anisotropic elastic-plastic constitutive models for metallic materials and then implemented into the ABAQUS standard/quasi-static and explicit/dynamic software packages. Several quasi-static and dynamic benchmark tests, which induce geometric and material nonlinearities, are first conducted to evaluate the performance of the SHB elements. Next, attention is focused on the simulation of a complex deep drawing process involving large strains, anisotropic plasticity, and contact.

BASIC CONCEPTS OF THE SHB ELEMENTS

A unified formulation for the linear hexahedral SHB8PS and prismatic SHB6 solidshell elements, as well as their quadratic counterparts SHB20 and SHB15, is briefly presented in this section. The current developments extend and enlarge the earlier quasi-static formulations of the SHB elements [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF][START_REF] Trinh | A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[END_REF][START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF]. Note that the earlier formulations of the linear prismatic element SHB6 [START_REF] Trinh | A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[END_REF] and the quadratic elements SHB15 and SHB20 [START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF] have been restricted to small-strain analysis and linear elastic behaviour. In this paper, all of the SHB elements are extended to explicit dynamic analysis, as well as being coupled with advanced large-strain anisotropic plasticity models, for the analysis of quasi-static and dynamic structural problems as well as sheet metal forming processes.

Definition of the Element Reference Geometry

Fig. 1 shows the reference geometry of all SHB elements with the location of their integration points. In the element reference frame, direction ζ denotes the thickness, along which multiple integration points can be used. In general, only two integration points along the thickness direction are sufficient to model elastic problems, while five integration points are recommended for non-linear (elastic-plastic) problems.

Fig. 1. Reference geometry of the SHB elements and location of their integration points: a) linear hexahedral SHB8PS element; b) linear prismatic SHB6 element; c) quadratic hexahedral SHB20 element, and d) quadratic

prismatic SHB15 element

Quasi-Static Framework

The classical isoparametric linear and quadratic interpolation functions for standard hexahedral and prismatic elements are adopted in the formulation of the SHB elements. Accordingly, the three-dimensional position and displacement of any point inside the element, i x
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, , , The SHB element formulation is based on the assumed-strain method, which corresponds to the simplified form of the Hu-Washizu variational principle proposed by Simo and Hughes [START_REF] Simo | On the variation foundations of assumed strain methods[END_REF] ( )
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where δ represents a variation, ε ɺ the assumedstrain rate, σ the Cauchy stress tensor, d ɺ the nodal velocities, and ext f the external nodal forces. The assumed-strain rate ε ɺ is defined using a B matrix, which is obtained by projecting the classical discrete gradient operator B involved in Eq. (3)
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Inserting Eq. ( 5) into the variational principle (Eq. ( 4)), the element stiffness matrix e K and internal force vector int f can be derived as

e e T ep e GEOM int T d + d Ω Ω = ⋅ ⋅ Ω = ⋅ Ω ∫ ∫ K B C B K f B σ , (6) 
where the additional term GEOM K in the expression of the stiffness matrix originates from the non-linear part of the strain field and is commonly called geometric stiffness matrix [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF], while ep C is the elastic-plastic tangent modulus associated with the material behaviour law [START_REF] Salahouelhadj | Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic-plastic formulation[END_REF].

In addition to the basic formulation of the SHB elements described above, some special treatments are required for the linear SHB8PS and SHB6 elements in order to improve their performance.

In particular, a physical stabilization matrix, computed in a co-rotational coordinate frame [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF], is used in the formulation of the SHB8PS element in order to control the zeroenergy modes, which are inherent in the reducedintegration technique.

Furthermore, an appropriate projection of the strains is required to eliminate some locking phenomena, in particular for the linear SHB6 and SHB8PS elements [START_REF] Abed-Meraim | An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elasticplastic stability analysis[END_REF][START_REF] Trinh | A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[END_REF].

Explicit/Dynamic Framework

The dynamic version of the SHB elements is essentially based on the quasi-static formulation described above; therefore, it will not be repeated here. However, the mass matrix is required in dynamic problems in order to calculate the inertial term in the variational principle. Note that the stiffness matrix e K (see Eq. ( 6)) is not required in such dynamic analysis, except for problems dealing with natural frequency extraction, for which both the stiffness and mass matrix are computed. Several computational methods exist in the literature for the calculation of the element mass matrix [START_REF] Zienkiewicz | The Finite Element Method: Its Basis and Fundamentals[END_REF]. Among them, the lumped mass matrix approach is usually adopted in most dynamic problems, which results in a diagonal mass matrix. In the formulation of the current solid-shell elements, the lumped mass matrix method is followed, due to its computational advantages. Accordingly, the element mass matrix e M (with a size of 3n×3n) can be expressed in terms of the following block of components:
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is the mass density.

FINITE ELEMENT SIMULATIONS AND DISCUSSIONS

In this section, several benchmark tests, including both linear and non-linear problems, are selected to evaluate the performance of the SHB solid-shell elements. The first two linear tests are investigated to examine the convergence rate of the SHB elements. Then, the SHB elements are tested in vibration analysis in order to predict the first four Eigen frequencies of a rectangular cantilever plate and a fully clamped square plate. Finally, three non-linear benchmark problems involving quasi-static and dynamic analyses are carried out to assess the performance of the SHB elements in the framework of large displacements and rotations as well as large strains.

In the following simulations, the geometries are meshed using the nomenclature N 1 ×N 2 ×N 3 for the linear and quadratic hexahedral elements (SHB8PS and SHB20), and N 1 ×N 2 ×2×N 3 for the linear and quadratic prismatic elements (SHB6 and SHB15), where N 1 denotes the number of elements in the length direction, N 2 the number of elements in the width direction, and N 3 the number of elements in the thickness direction. The latter is equal to 1 in all simulations, which represents a single element layer through the thickness.

Linear Static Beam Problems

Elastic Cantilever Beam Subjected to Bending Forces

The first linear static test is an elastic cantilever beam with four concentrated loads at its free end. The geometric parameters and material properties are given in Fig. 2. This simple test aims to analyse the behaviour of the SHB elements in the case of bending-dominated conditions. The analytical solution for the deflection at the load point is U ref = 7.326×10 -3 m. The convergence results are given in Tables 1 and2 in terms of normalized deflection with respect to the analytical solution. These simulation results prove that all of the SHB elements provide an excellent convergence rate, but with a slower convergence rate for the linear prismatic element SHB6. For the latter, the triangular geometry and the associated interpolation functions lead to constant strain fields inside the element, which requires finer meshes to obtain accurate solutions [START_REF] Trinh | A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[END_REF]. 

Fig. 2. Elastic cantilever beam subjected to bending forces

Elastic Cantilever Beam Subjected to Torsion-Type Forces

The second linear static test is illustrated in Fig. 3 and consists of a cantilever beam subjected to a torsion-type loading. The end of the beam is loaded by two opposite concentrated forces causing a twisting-type loading along the beam. The geometric and material parameters are given in Fig. 3. In the same way, the deflection results at one load point, normalized with respect to the reference solution U ref = 3.537×10 -4 m, are reported in Tables 3 and4. Similar to the previous test problem, the simulation results again show that all of the SHB elements provide a good convergence rate, without noticeable locking phenomena, except for the linear prismatic element SHB6 that requires finer meshes for convergence.

Fig. 3. Elastic cantilever beam subjected to torsiontype loading

Plate Vibration Problems

Simple Rectangular Cantilever Plate

The first plate vibration problem is a rectangular cantilever plate with constant thickness. As illustrated in Fig. 4, the rectangular plate, with length L, width b=L/2, and thickness t, is fully clamped on one side, while the other sides are entirely free. The predicted results, in terms of non-dimensional frequency coefficient

4 tL D ω ρ
, associated with the first four natural frequencies ω are summarized in Table 5, where ( )
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is the flexural rigidity of the plate; E and ν are the Young modulus and Poisson ratio, respectively. All predicted results using the SHB8PS, SHB20, and SHB15 elements are in good agreement with the theoretical results as well as with the reference solutions given in [START_REF] Barton | Vibration of rectangular and skew cantilever plates[END_REF] and [START_REF] Anderson | Vibration and stability of plates using finite elements[END_REF]. For the linear prismatic SHB6 element, due to its relatively poor performance, finer meshes are required to obtain relatively accurate solutions.

Fully Clamped Square Plate

The second plate vibration problem relates to a fully clamped square plate, as illustrated in Fig. 5. The length to thickness ratio of this square plate is fixed equal to 1000 and the Poisson ratio of the material is 0.3. For comparison with reference solutions from the literature, the nondimensional frequency coefficient λ is calculated for the first six natural frequencies of the plate, which is defined as

2 2 L t D λ ω ρ = ,
where D is the flexural rigidity defined in the previous test problem. All predicted frequency coefficients obtained using SHB elements are summarized in Table 6 and compared with reference solutions taken from [START_REF] Leissa | Vibration of Plates[END_REF] and [START_REF] Sze | A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I: solid-shell element formulation[END_REF]. Similar to the previous vibration problem, the obtained results show the performance and efficiency of the SHB elements in determining the natural frequencies of plates, except for the linear prismatic SHB6 element, for which finer meshes are inherently required to obtain accurate results.

Fig. 4. Simple rectangular cantilever plate

Fig. 5. Clamped square plate

Non-Linear Static Problems

Fully Clamped Circular Plate

A fully clamped elastic circular plate subjected to a uniform pressure is considered here, which involves geometric nonlinearities. The geometric dimensions and material elastic properties are taken from [START_REF] Cai | Large rotation analyses of plate/shell structures based on the primal variational principle and a fully nonlinear theory in the updated lagrangian co-rotational reference frame[END_REF] and summarized in Fig. 6. Due to the problematic symmetry, only one quarter of the plate is modelled, which is meshed using 105 SHB8PS elements, 3200 SHB6 elements, 39 SHB20 elements, and 78 SHB15 elements, successively. Fig. 7 shows the numerical results, in terms of the nondimensional ratio of the central deflection W 0 to the thickness t, obtained with the SHB elements together with the reference solution from [START_REF] Cai | Large rotation analyses of plate/shell structures based on the primal variational principle and a fully nonlinear theory in the updated lagrangian co-rotational reference frame[END_REF] and the analytical solution given by Chia [START_REF] Chia | Nonlinear analysis of plate[END_REF]. As revealed by Fig. 7, all SHB solid-shell elements provide an accurate solution for this type of bending problem as compared to the reference and analytical solutions. Note: results marked by * are taken from [START_REF] Barton | Vibration of rectangular and skew cantilever plates[END_REF], while results marked by ** are available in [START_REF] Anderson | Vibration and stability of plates using finite elements[END_REF]. Note: results marked by * are taken from [START_REF] Leissa | Vibration of Plates[END_REF], while results marked by ** are taken from [START_REF] Sze | A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I: solid-shell element formulation[END_REF]. 

Pinched Semi-Cylindrical Shell

The pinched semi-cylindrical shell, as shown in Fig. 8, is a popular benchmark test that has been considered in several references [START_REF] Sze | Popular benchmark problems for geometric nonlinear analysis of shells[END_REF]; both isotropic and laminated shells have been studied. This semi-cylindrical shell is subjected to a vertical radial force at the middle of the free circumferential edge, while the other circumferential edge is fully clamped (see Fig. 8 for the geometric and material parameters as well as the remaining boundary conditions). Due to the symmetry of the problem, only one half of the structure is modelled. Fig. 9 displays the loaddeflection curves at the load point A, which are obtained using the SHB elements along with the reference solution available in [START_REF] Sze | Popular benchmark problems for geometric nonlinear analysis of shells[END_REF]. The simulation results show good agreement with the reference solution given in [START_REF] Sze | Popular benchmark problems for geometric nonlinear analysis of shells[END_REF], which was obtained using (40×40) shell elements. Note, however, that these good convergence results are obtained here with less computational effort, since the SHB elements most often require coarser meshes, except for the linear prismatic SHB6 element, where a finer mesh is required to obtain an accurate solution. 

Elastic Cantilever Beam Bending

In order to evaluate the dynamic nonlinear response of the SHB elements, we consider here an elastic cantilever beam that is loaded impulsively with a concentrated force applied at its free end. The geometric parameters and material properties are summarized in Fig. 10. The deflection history at Point A (indicated at the free edge in Fig. 10), which is obtained with the SHB elements, is plotted in Fig. 11, where it is compared with the reference results given in [START_REF] Pagani | Computationally efficient explicit nonlinear analyses using reduced integration-based solidshell finite elements[END_REF].

From this figure, one can observe that for all of the SHB elements, both the maximum deflection and time period are in good agreement with those provided by the reference solution. 

Simply Supported Elastic Beam

The second non-linear dynamic problem is an elastic beam, which is simply supported at both ends. The beam is subjected to a uniform load, resulting in a maximum deflection of the order of its depth. The geometric dimensions, material properties, and boundary conditions are all summarized in Fig. 12. Owing to the symmetry of the problem, only half of the beam is discretized. The deflection of the central point, obtained with the SHB solid-shell elements, is depicted in Fig. 13 and compared with the reference solution taken from [START_REF] Flanagan | A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[END_REF]. It can be seen that the numerical results obtained with the proposed SHB elements are in good agreement with the reference 12. Simply supported elastic beam Fig. 13. Deflection results for the simply supported elastic beam

Application to the Simulation of Deep Drawing Process

In this section, a popular sheet metal forming process, involving geometric and material nonlinearities as well as double-sided contact, is simulated to further evaluate the performance of the proposed SHB elements. This selective benchmark consists in the simulation of the deep drawing process of a cylindrical cup, which is commonly used to study the earing profile of the cup when the anisotropic behaviour of sheet metals is considered. The initially circular metal sheet, with a diameter of 158.76 mm and a thickness of 1.6 mm, is made of an AA2090-T3 aluminium alloy [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF]. For the modeling of the elastoplastic material behaviour, isotropic hardening described by the Swift law is considered. Its expression is given by 0 ( )

p n y eq k σ ε ε = + , ( 8 
)
where y σ is the yield stress, p eq ε is the equivalent plastic strain, and ( ) 0 , , k n ε are the hardening parameters. The Hill'48 quadratic yield criterion is adopted in this work to characterize the anisotropic plasticity of the sheet metal. All of the material parameters are summarized in Tables 7 and 8 [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF]. The schematic view and dimensions of the drawing setup are given in Fig. 14. Owing to the symmetry of the problem, only one quarter of the circular blank is discretized. The holding force is kept constant during the deep drawing and equal to 22.2 kN (for the complete model). The standard Coulomb law is used to model the contact between the circular sheet and the rigid tools, with a friction coefficient of 0.1 [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF]. This process is simulated using the ABAQUS explicit/dynamic and Linear and Quadratic Solid-Shell Elements for Quasi implicit/quasi-static solvers for comparis purposes. The simulation results are compared with the experimental ones taken from [ worth noting that, for all of the SHB elements, the simulations are performed using only a single element layer in the thickness with five integration points. Fig. 15 shows the deformed meshes of the blank, as obtained with the four SHB elements, which correspond to a completely drawn cup. It can be seen that all SHB elements predict four ears for the cylindrical cup, which is consistent with the use of the quadratic Hill'48 yield surface for the description of the material planar anisotropy. Fig. 16 shows the final height profiles for the cup as obtained with the SHB elements for the quarter model. On the whole, one can observe that the shape of the predicted profiles is in good agreement with the experimental results for both quasidynamic versions of the SHB elements. More specifically, the SHB element predictions are closer to the experiment cup heights in the range around the experimental peak value at 50° from the rolling direction, while the predicted cup heights are underestimated at 0° and 90° from the rolling direction. These predictions could be improved in the future by using more appropriate anisotropic yield criteria [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF], which can more than four earing profiles for the complete circular blank, as observed experimentally aluminium alloys [START_REF] Banabic | Advances in anisotropy and formability[END_REF] and [31]. static solvers for comparison purposes. The simulation results are compared with the experimental ones taken from [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF]. It is worth noting that, for all of the SHB elements, the simulations are performed using only a single element layer in the thickness with five 15 shows the deformed meshes of the blank, as obtained with the four SHB elements, which correspond to a completely drawn cup. It can be seen that all SHB elements predict four ears for the cylindrical cup, which is adratic Hill'48 yield surface for the description of the material 16 shows the final height profiles for the cup as obtained with the SHB elements for the quarter model. On the whole, one can observe that the shape of the predicted earing profiles is in good agreement with the -static and dynamic versions of the SHB elements. More specifically, the SHB element predictions are closer to the experiment cup heights in the range ental peak value at 50° from the rolling direction, while the predicted cup heights are underestimated at 0° and 90° from the rolling direction. These predictions could be improved in the future by using more appropriate can predict profiles for the complete circular blank, as observed experimentally for the drawing setup [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF] 
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 151639 Fig. 15. Final deformed shape for a completely drawn cylindrical cup using a) the SHB8PS elements; b) the SHB6 elements; c) the SHB20 elements; and d) the SHB15 elements

Table 1 .

 1 Normalized deflection results obtained with the linear SHB elements

		SHB8PS		SHB6
	Mesh		Mesh	
		U/U ref		U/U ref
	5×1×1	0.9750	12×2×2×1	0.7062
	10×1×1	0.9898	24×2×2×1	0.9019
	12×4×1	0.9898	48×2×2×1	0.9669

Table 2 .

 2 Normalized deflection results obtained with the quadratic SHB elements

	Mesh	SHB20 U/U ref	Mesh	SHB15 U/U ref
	2×1×1	0.9672	12×2×2×1	0.9896
	5×1×1	0.9865	24×2×2×1	0.9925
	10×1×1	0.9929		

Table 3 .

 3 Normalized deflection results obtained with the hexahedral SHB elements

	Mesh	SHB8PS U/U ref	SHB20 U/U ref
	10×5×1	1.0470	1.0278
	20×5×1	1.0479	1.0280
	50×5×1	1.0500	
	50×10×1	1.0289	

Table 4 .

 4 Normalized deflection results obtained with the prismatic SHB elements

	Mesh	SHB6 U/U ref	SHB15 U/U ref
	10×5×2×1	0.0107	0.9783
	20×5×2×1	0.0247	1.0111
	50×5×2×1	0.0916	
	50×10×2×1	0.3438	
	100×20×2×1	1.0873	

Table 5 .

 5 Natural frequency coefficients for the rectangular cantilever plate

	Mode	Theoretical results*	Experimental results*	Simulated results**	SHB8PS SHB20 20×10×1 10×5×1 400×200×2×1 10×5×2×1 SHB6 SHB15
	1	3.47	3.42	3.44	3.44	3.44	4.022	3.44
	2	14.93	14.52	14.77	14.66	14.46	20.51	14.56
	3	21.26	20.86	21.50	21.42	21.22	28.03	21.43
	4	48.71	46.9	48.19	47.69	46.95	59.97	47.63

Table 6 .

 6 Natural frequency coefficients for the clamped square plate

	Mode	Reference solution*	Simulated results**	SHB8PS SHB20 16×16×1 16×16×1 400×400×2×1 SHB6	SHB15 16×16×2×1
	1	5.999	6.024	6.004	6.012	6.659	6.027
	2,3	8.567	8.671	8.599	8.605	9.079	8.632
	4	10.4	10.52	10.387	10.545	11.337	10.533
	5,6	11.5	11.78	11.590	11.523	12.257	11.614

Table 7 .

 7 Elastic

			-plastic parameters for the AA2090-T3
				aluminium sheet		
	E	(MPa)	ν	k	(MPa)	ε	0	n
	70500	0.34		646	0.025 0.227
	Table 8. r-values for the AA2090-T3 aluminium sheet
		0 r		45 r		90 r		
		0.2115	1.7695	0.6923	
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modeling of thin three-dimensional structures under quasi-static or dynamic loading conditions and sheet metal forming processes. This family of SHB solid-shell elements consists of a linear 6node prismatic element and a linear 8-node hexahedral element as well as their quadratic counterparts (15-node prismatic element and 20node hexahedral element, respectively). All of these linear and quadratic solid-shell elements have been implemented into ABAQUS implicit/static and explicit/dynamic software packages to model various quasi-static and dynamic problems. The respective capabilities of the proposed SHB elements were first evaluated through a series of linear and non-linear benchmark tests, both in static and dynamic analyses. The obtained results, using only a single element layer with two integration points, showed excellent performance in terms of convergence rate and accuracy when compared to reference solutions yielded by existing state-of-the-art solid and shell finite elements from the literature. Then, the performance of the SHB elements has been assessed via the simulation of the deep drawing process of a cylindrical cup made of an aluminium alloy with anisotropic plastic behaviour. For comparison purposes, both implicit/quasi-static and explicit/dynamic versions of the SHB elements have been used for these deep drawing simulations. The earing profiles predicted by the implicit/quasi-static and explicit/dynamic versions were found to be reasonably close to each other, and in satisfactory agreement with the experiments on the whole. Nevertheless, the prediction of the earing profiles could be improved by adopting advanced nonquadratic anisotropic yield functions that are more suitable to aluminium alloys.