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We report the experimental observation of modulation
instability in the weak normal dispersion region of a
passive fiber ring cavity. We show that the fourth-order
dispersion strongly modifies the dynamics of the cavity
through the generation of new instability bands. Exper-
imental results are in excellent agreement with theoreti-
cal predictions and numerical simulations. © 2017 Optical

Society of America
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bilities and chaos; (230.5750) Resonators
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Modulation instabilty (MI) in passive optical cavities has been
widely studied during the last 30 years and has found a wealth
of applications ranging from ultra-fast pulse train generation
to frequency combs [1]. MI results from the interplay between
dispersion, nonlinearity and cavity detuning and all these pa-
rameters appear in the phase matching relation that character-
izes the process. To date, most investigations have been carried
out in large dispersion regions where the Taylor development
of the propagation constant limited to the second-order (the
group velocity dispersion, β2) is enough to capture the whole
dynamics of the system [2, 3]. In weak dispersion regions, since
the width of MI spectra is inversely proportional to the group
velocity dispersion [4], the spectrum is wider and it is thus nec-
essary to consider higher order dispersion terms to account for
the variation of the propagation constant over the whole spec-
trum. Consequently, it has been shown that even orders have
to be considered in the phase matching relation [5], as in the
single pass configurations [6–8]. These additional terms allow
new phase matching frequencies, which strongly modify the
dynamics of the system. For instance it allows MI to exist in
the normal dispersion region of single pass configurations [7, 8],
or more surprisingly in passive cavities, leads to the disappear-
ance of MI when the pump power exceeds a certain value [5]
or to the generation of tens of quasi-phase-matched MI side
lobes in dispersion varying cavities [9]. Note that odd orders
dispersion terms do not enter into play in the phase matching
relation that characterizes the linear stage of MI (just above the
MI threshold), but they have an impact on the nonlinear stage
of MI. For instance, they lead to a symmetry breaking of the MI
spectrum [10, 11], or to the generation of dispersive waves in

the context of cavity solitons [12], which stabilize the underlying
Kerr frequency combs [13].

In this letter we present an experimental study of MI in the
weak normal dispersion region of a passive fiber ring cavity in
both the monostable and bistable regimes in the linear stage
of the process (just above the MI threshold). We show that
taking into account the fourth-order dispersion is required to
capture the whole dynamics of cavities operating in this regime.
It leads to significant modifications of the MI process among
which, the generation of new spectral sidebands. Experimental
results are in excellent agreement with theoretical predictions
and numerical simulations.

Light propagation in passive fiber ring cavities is well mod-
elled by the Lugiato-Lefever equation (LLE) [4, 14]. In low dis-
persion regions, it is necessary to account for higher order dis-
persion terms leading to an extended version of the original LLE
[5, 9, 15] :
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where z is the propagation distance, t the time in the frame
travelling at the group velocity dispersion of the pump, and
E the intracavity electric field envelop. L is the cavity length,
γ the nonlinear coefficient of the fiber. β2, β3, and β4 are re-
spectively the group velocity dispersion, the third-order and the
fourth-order dispersion terms. Note that we restricted the devel-
opment up to β4 because higher order contribution is negligible
regarding the MI frequency shifts observed in realistic passive
cavities. Ein is the input field driving the cavity. θ and ρ define,
respectively, the coupler transmission and reflection coefficients
such that θ2 + ρ2 = 1. δ refers to the cavity detuning which
can be normalized in the following way ∆ = δ

α [4]. In this way,
the system is known to be monostable whenever ∆ <

√
3, and

bistable otherwise [4, 14]. The finesse of the cavity is usually de-
fined as F = π

α where α describes the total losses (splices, linear,
coupling and excess losses of the coupler) over one round-trip
of the cavity. The parametric gain can be calculated from a linear
stability analysis, as described in Ref. [5] which gives the most
unstable frequencies:
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Fig. 1. Frequency shifts calculated from Eq.(2) with β4 (solid
blue lines) and without (dashed black lines). (a) In the monos-
table regime (∆ = 1.1, Pin = 230 mW), in the bistable regime
(∆ = 4.6) (b) on the lower branch (Pin = 2.69 W) and (c) on the
upper branch (Pin = 4.09 W). Red (blue) area: normal (anoma-
lous) dispersion region. Parameters as in experiments: γ = 2.5
W−1.km−1, β4 = −6.0× 10−4 ps4.km−1, L = 37.9 m.

In the following, we focus our attention on configurations for
which β4 < 0 as it is the case in most optical fibers and when
β2 > 0. We do not investigate the case where β2 is also nega-
tive since only the position of MI sidebands would be affected
without impacting the MI dynamics contrary to what will be
shown in this paper. Note that the specific case where β4 > 0
and β2 < 0 has been addressed theoretically in Ref. [5], and
show in particular that two frequencies can be destabilized at a
primary intra-cavity power threshold. When the input power
increases, the two corresponding bands of unstable frequencies
widen, and merge in a single large band to eventually disappear
from a secondary pump threshold, the system returning to a
stationary state. Figure 1 illustrates the evolution of the most
unstable frequencies calculated from Eq.(2) for both regimes of
operation of the cavity (Fig. 1 (a) monostable and Fig. 1 bistable,
lower (b) and upper (c) branch respectively). We represent this
evolution across normal (β2 > 0) and anomalous (β2 < 0) dis-
persion regions with β4 (solid blue lines) and without β4 (dashed
black lines). The normalized cavity detuning has been fixed to
∆ = 1.1 for the monostable regime and ∆ = 4.6 for the bistable
regime, which is above the critical value of 4.25 that allows MI
to be stably observed on the lower branch [16]. The impact of β4
can be divided into two main categories. In the first one, without
β4 MI only exits in the anomalous dispersion region (dashed
black lines) while with β4, owing to its negative value, a perfect
phase matching exists whatever the sign of β2. This occurs in
the monostable regime (Fig. 1 (a)) or on the upper branch of the
bistable regime (Fig. 1 (c)). The second category corresponds
to the lower branch of the bistable regime (Fig. 1 (b)). In this
regime, β4 leads to the generation of a second pair of MI side
lobes (solid blue lines) while without β4 a single pair is predicted
(dashed black lines). Consequently, the contribution of β4 on the
dynamics of passive fiber cavities is very important as it allows
the observation of MI in new windows of dispersion (normal
dispersion in monostable regime and in the upper branch of the
bistable one) and leads to the generation of new MI sidebands
in the lower branch of the bistable regime.

In order to validate these theoretical predictions experimen-
tally, we built a cavity for which the group velocity dispersion
is slightly normal at the pump wavelength. The experimental
setup is depicted in Fig. 2 and is similar to the one reported
in Ref. [9, 17] except that the cavity is uniform and made of a
dispersion shifted fiber (DSF). Investigation of MI in this cavity
is performed by means of a pulse train whose wavelength is

tunable between 1549.5 nm and 1550.5 nm. These pulses are
generated from a continuous wave (cw) laser which is chopped
by an electro-optic modulator (EOM) with a repetition rate of
5.4 MHz corresponding to the round trip time of the 37.9 m long
cavity. Brillouin scattering has been avoided by using square
pulses with a duration of 1.5 ns. These pulses are amplified by
means of an erbium doped fiber amplifier (EDFA), and then fil-
tered to remove amplified spontaneous emission (ASE) in excess.
The cavity is built with a DSF and a 90/10 coupler made of the
same fibers to get a perfectly uniform cavity and to avoid in-
stabilities that might be observed in dispersion varying cavities
[9, 17, 18]. The DSF has a zero dispersion wavelength (ZDW) at
1551.6 nm and a nonlinear coefficient γ of 2.5 W−1.km−1. The
pump wavelength has been tuned between 1549.5 nm and 1550.5
nm corresponding to a weak positive group velocity dispersion
variation lying between 0.20 and 0.11 ps2.km−1. Higher order
dispersion terms are β3 = 0.12 ps3.km−1 and β4 = −6.0× 10−4

ps4.km−1. Two circulators at each output of the cavity allows
us to use independently the two propagation directions of the
cavity. Pump pulses propagate in the anti-clockwise direction
(blue arrows Fig. 2), while a fraction of the cw laser travels in the
clockwise direction (green arrows Fig. 2). This latter is used to
stabilize the cavity length against external perturbations by us-
ing a feedback loop (proportional-integral-derivative controller,
PID). As in Ref. [3, 9, 17, 19] a combination of three polarization
controllers are used to control the cavity detuning.

Laser
50/50

90/10

99/1

PD

Cavity

PC3

PC2

PC1

PID

EOM

BPF
EDFA

BC

OSA

Piezo Tuning

Fig. 2. Experimental setup. PC, polarization controller; BC,
bias controller; PD, photo-detector; EOM, electro-optic modu-
lator; OSA, optical spectrum analyser; EDFA, erbium-doped
fiber amplifier; BPF, band-pass filter; PID, proportional-
integral-derivate controller.

We first analyse the monostable regime by setting the detun-
ing to δ = 0.13 rad. The cavity finesse is estimated to be F = 26.5
which corresponds to total losses α = 0.118. Accordingly, the
normalized detuning is ∆ = δ/α = 1.1 <

√
3 [16, 17]. We set the

pump wavelength at 1549.9 nm (1.7 nm below the ZDW leading
to β2 = 0.16 ps2.km−1) just above the MI threshold of the cavity
with Pin = 0.23 W (Pin,threshold = α3/(γθ2L)(∆2 − 2∆ + 2) =
0.18 W from theoretical predictions). As can be seen in Fig. 3(a),
two symmetric side lobes are generated on both sides of the
pump at 9.28 THz. These experimental results are in excellent
agreement with theoretical predictions from Eq. (2), (9.25 THz,
indicated by a vertical dashed line) and from numerical simu-
lations of the LLE (Eq. (1), Fig. 3(b)). In order to validate the
theoretical predictions of Eq. (2) regarding the evolution of the
position of the MI sidebands with the group velocity dispersion,
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Fig. 3. Cavity output spectra in the monostable regime. (a)
experiments, (b) numerics from Eq. 1. (c) Evolution of MI
sidebands position as a function of the pump wavelength, red
dots from experimental measurements and solid blue lines
from theory (Eq. 2). Parameters: ∆ = 1.1 <

√
3, λpump =

1549.9 nm and Pin = 0.23 W.

we recorded output spectra for pump wavelengths ranging from
1549.5 nm to 1550.5 nm. Experimental results are represented
by red dots in Fig. 3(c) and theoretical predictions (Eq. (2))
by solid blue lines. By moving closer to the ZDW of the fiber,
the frequency shift of the MI sidebands is reduced, in excellent
agreement with theoretical predictions.

Then, we investigated the bistable regime of the cavity. The
pump power has been set to 2.69 W, just above the MI threshold
of the lower branch of the bistable cycle. As expected from the
theory, two pairs of MI side lobes have been generated on both
sides of the pump (Fig 4(a)) by pumping in the weak normal dis-
persion region of the fiber (λpump = 1549.9 nm, 1.7 nm below the
ZDW). They are located at 1.18 THz and 9.19 THz respectively.
Note that we also see the birth of harmonics of the first sideband
pair at 2.36 THz due to degenerate four-wave mixing (FWM)
with the pump. Again, these results are confirmed by theoretical
prediction from Eq. 2 (1.29 THz and 9.09 THz, dashed vertical
lines in Figs. 4), and numerical simulations from the LLE (Fig. 4
(b)). It is quite remarkable to note that while the system exibits
more than one single pair of sidebands their amplitude seems
very similar in both experiments and numerics (Fig. 4(a) and
(b)). In order to confirm this specific feature, we calculated the
parametric gain spectrum from the linear stability analysis of Eq.
(1), which is represented Fig. 4 (c). It reveals that the paramet-
ric gain value is indeed exactly the same for each sideband, as
found in the case where β4 is positive [5]. The evolution of the
frequency shifts of these sidebands as a function of the pump
wavelength has been investigated experimentally (red dots in
Fig. 4(c)). The frequency shift of the first sideband pair increases
and the one of the second sideband pair decreases as the pump
wavelength gets closer to the ZDW, in excellent agreement with
theoretical predictions (blue curves). Above 1551.2 nm, no MI
is expected to be observed on the lower branch of the bistable
cycle (Fig. 4 (c)). This feature is due to the contribution of β4
since without β4, MI is predicted in the whole normal dispersion
region of the cavity (Fig. 1 (b)).

Finally, MI on the upper branch of the bistable regime of
the cavity has been studied. To switch the system over the up-
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Fig. 4. Cavity output spectra on the lower branch of the
bistable regime. (a) experiments, (b) numerics from Eq. 1, (c)
theoretical gain spectrum. (d) Evolution of MI sidebands posi-
tion as a function of the pump wavelength, red dots from ex-
perimental measurements and solid blue lines from theory (Eq.
2). Parameters: ∆ = 4.6, λpump = 1549.9 nm and Pin = 2.69 W.

per branch, the pump power has been increased to Pin = 4.09
W, which is well above the cavity threshold for this regime
(Pin,threshold = 2.51 W). Results are reported in Fig. 5, where
we used the same representation as in Figs. 3 and Fig. 4. As
can be seen, MI indeed exists in the normal dispersion region
thanks to the contribution of β4 (Fig. 5(a)) and the agreement
with theory and numerics is good (Fig. 5 (b) and (c)). However,
a higher discrepancy is observed in that configuration compared
to the previous ones. This might be due to the fact that pump
power used is well above the MI threshold in this case. In ad-
dition, MI side lobes are asymmetric, this behaviour is due to
the third-order dispersion term which induces nonlinear sym-
metry breaking of the MI process in optical fiber resonators as
discussed in [11]. Numerical simulations including this term
confirm this asymmetry as it can be seen in Fig. 5(b).

We then address the case of the transitions from the lower to
the upper branch of the bistable response of the cavity and vice
versa by increasing/decreasing the pump power and recording
output steady state spectra. We set the system at λpump = 1549.7
nm with a normalized detuning of ∆ = 5.5, allowing the ob-
servation of MI on both branches [16]. Fig. 6 shows a 2D plot
of the evolution of the output spectrum as a function of the
pump power. When the pump power is below Pin = 3.75 W,
the cavity is stable and no feature of MI is observed. Above this
threshold, and up to Pin = 4.15 W, MI appears on the lower
branch and is characterized by two pairs of side lobes. Note
that, while being predicted by theory, this steady state regime
is very tricky to achieve and only exists for a limited range of
parameters (see also Refs [16] and [9, 17]). By further increasing
the pump power, the system up-switches on the upper branch
of the bistable response of the cavity. The least detuned pair
of MI sidebands (at 1.7 THz) disappears while the other pair
broadens and experiences a slight frequency shift. This is in
pretty good agreement with what has been discussed and pre-
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Fig. 5. Cavity output spectra on the upper branch of the
bistable regime. (a) experiments, (b) numerics from Eq. 1. (c)
Evolution of MI sidebands position as a function of the pump
wavelength, red dots from experimental measurements and
solid blue lines from theory (Eq. 2). Parameters: ∆ = 4.6,
λpump = 1549.9 nm and Pin = 4.09 W.

sented previously. We emphasize than in a cavity with a large
normal dispersion, the contribution of β4 would be negligible
and the second pair of sidebands would not exist when working
on the lower branch [16, 17]. Also, the cavity would remain
stable on the upper branch [16]. Then by decreasing the pump
power, the system remains on the upper branch until it down
switches at Pin = 2.96 W (Fig. 6 (d)). This value is lower than
the up-switching power which reveals the hysteresis cycle of the
cavity. As the MI area on the lower branch is limited to a small
range of pump power, the system switches down on the lower
branch but on a steady state portion where no MI exists.
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Fig. 6. Color level plot of experimental output cavity spectrum
vs input power when increasing input power from the lower
branch to the upper branch (c) and to the upper branch to
the lower branch (d). (a) and (b), the bistability curve where
colored part correspond to the domain investigated on color
level plot, colored arrows on (c), (d) correspond respectively to
colored part investigated on (a) and (b).

To conclude we report the experimental observation of MI in
a passive fiber ring cavity in the weak normal dispersion region.

We show that the fourth-order dispersion term strongly modi-
fies the dynamics of the cavity in both monostable and bistable
regimes. In the monostable regime and on the upper branch of
the bistable regime, the cavity becomes modulationnaly unsta-
ble, and on the lower branch, a second pair of MI sideband is
generated owing to the contribution of β4. Experimental results
are confirmed by numerical simulations and are in excellent
agreement with theoretical predictions from the LLE. These in-
vestigations have been performed in the context of modulation
instability, just above the threshold but should also impact non-
linear effects of higher order such as frequency comb/cavity
soliton generation, which are involved in a wealth of promising
applications [1, 20–22].
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