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This paper is devoted to the study of Newton-type algorithm for solving inclusions involving
set-valued maps defined on Riemannian manifolds. We provide some sufficient conditions
ensuring the existence as well as the quadratic convergence of Newton sequence. The material
studied in this paper is based on Riemannian geometry as well as variational analysis, where
metric regularity property is a key point.
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1. Introduction

We consider the problem finding a solution of inclusion

0 ∈ f(x) + F (x). (1)

Here, the variable x varies in a finite dimensional Riemannian manifold M,
f : M −→ R

n is at least continuous, while F : M ⇒ R
n is a set-valued

mapping. We suppose that the graph Gr(F ) of F is closed with respect to the
product topology on M× R

n.
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The general inclusion (1) covers many situations which have been studied
widely in the literature. When M is a Euclidean space, (1) is nothing but the
so-called generalized equation. In [3], the authors studied the (super-)linear
convergence of a Newton-type iterative process for solving generalized equa-
tions. The Kantorovich approach and Smale’s classical (α, γ)-theory was ex-
tended to generalized equations in [4]. If F (x) ≡ 0, problem (1) reduces to
solve nonlinear equation f(x) = 0 on M. In the case F (x) ≡ K for a fixed
cone K ⊂ R

n, (1) coincides with the problem studied in [21].
The current work considers a scheme of Newton-type method to approximate
a solution of (1). This is based on the well-known Josephy-Newton method
applied to the generalized equation which was introduced in [8]. The strategy
is that to start at a guess point x0 nearby a solution, and generates a sequence
(xk, vk) in the tangent bundle TM by the scheme

0 ∈ f(xk) + Df(xk)(vk) + (F ◦Rxk
) (vk), xk+1 = Rx(vk). (2)

In (2), Df(x) : TxM −→ R
n and Rx : TxM −→ M are respectively the

covariant derivative of f and the retraction at x (see Section 2). Observe that
when F ≡ 0, (2) subsumes as a particular case of Newton-type methods for
solving nonlinear equation on manifold M studied e.g. in [2, 6]. Furthermore,
it might be viewed as an extension of algorithms for finding singularities of
a vector field considered by the works [5, 9, 10] if f is replaced by a smooth
vector field X, and F is the zero field F (x) = 0x. In the same spirit, more other
discussions about Newton-type method applying on smooth manifold can be
found in [1, 19, 17, 20].
The paper is organized as follows. In section 2, we recall basic elements, no-
tations and backgrounds on Riemannian geometry that will be useful in the
sequel. Section 3 is devoted to the stability of the metric regularity property
of the sum of two operators on Riemannian manifolds. In section 4, we prove
the local and global convergence of the retraction Newton-type algorithm for
solving (1).

2. Notions and backgrounds

Throughout this paper, we prefer to adopt the standard notations and different
concepts used in [7, 15] dealing with the basic background from Riemannian
geometry. For more details about these events, the readers are referred to
[12, 1, 14, 18] and references therein.

Riemannian manifold, metric structure. All objects under consideration
in this paper concerns finite dimensional smooth manifolds. The terminology
smooth is meant to be differentiable at least beyond the order that appears.
Elementary notions of differential geometry are assumed to be familiar.
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A Riemannian manifold M of dimension m is a differentiable manifold of the
same dimension which is endowed with a Riemannian metric g. If x is a point
in M, the norm induced by g in the tangent space TxM of M at x is denoted
by ∥·∥x. By Bx(v, r) (resp. Bx(v, r)) we mean the open (resp. closed) ball in
TxM with center at v ∈ TxM and radius r > 0. To mention about the open
(closed) unit ball in TxM, we write Bx (resp. Bx).
Let χ : [a, b] −→ M be a piecewise smooth curve, then its length is given by
the quantity

ℓ(χ) =

∫ b

a

∥χ′(t)∥χ(t) dt.

Recall that here χ′(t) stands for the tangent vector (or velocity) of χ at the
instant t. (This is sometimes denoted in other ways, such as, χ̇(t) or dχ

dt
(t).)

For two points x, y in the manifold M, the Riemannian distance between x

and y can be defined as follow

dM(x, y) = inf

{

ℓ(χ)
∣

∣

∣

χ : [a, b] ⊂ R −→ M piecewise smooth;
χ(a) = x, χ(b) = y

}

.

We will omit the subscript M when the manifold is fixed.
With the Riemannian distance dM, M becomes a metric space. Unless it has
some other specification, the space (M, dM) is always supposed to be complete.
Completeness can be described via the famous Hofp–Rinow theorem (see [7,
15]). As usual, we denote the open and closed ball on M with center x and
radius r > 0 by BM(x, r) and BM(x, r), respectively.

Connection, covariant derivative. Let ∇ be the Levi-Civita connection
on the manifold M. Consider a smooth function f : M −→ R and a vector
field Y on M. The covariant derivative of f with respect to Y is the function
∇Y f := Y f , where Y f indicates the action of Y on f (see [12, 15]). For
x ∈ M, the covariant derivative Df(x) : TxM −→ R of f at x is a function
which assigns to each v ∈ TxM the value Df(x)(v) := (∇Y f)(x) ∈ R, where
Y is a vector field such that Yx = v. Explicitly, we have

Df(x)(v) = χ′(0)(f) = (f ◦ χ)′ (0) (3)

for any smooth curve χ satisfying χ(0) = x and χ′(0) = v.
Generally, if f = (f1, . . . , fn) : M −→ R

n is a smooth map, then one defines

Df(x) =







Df1(x)
...

Dfn(x)







as the covariant derivative of f at x. The covariant derivative Df(x) is a linear
map from TxM into R

n (cf.[6]). In the sequel, we use the following norm for
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the covariant derivative

∥Df(x)∥ := sup
u∈TxM
∥u∥x61

∥Df(x)(u)∥
Rn . (4)

Vector transportation. We will need later the concept of vector transports.
They provide a way to link between different tangent spaces of a manifold.
Among them, parallel transportations are the most typical and important.
Assume χ : [a, b] −→ M is a smooth curve. By a vector field V along χ,
we mean a smooth map such that V (t) ∈ Tχ(t)M. V is said to be parallel
along χ if its covariant derivative ∇χ′V vanishes. Then, the parallel transport
Pχ,χ(a),χ(b) : Tχ(a)M −→ Tχ(b)M is given by

Pχ,χ(a),χ(b)(v) = V (b),

where V is the unique vector field along χ satisfying ∇χ′V = 0 and V (a) = v.
It is well-known from Riemannian geometry that Pχ,χ(a),χ(b) is a linear isometry.
In particular, one always has

∥

∥Pχ,χ(a),χ(b)

∥

∥

Tχ(a)M,Tχ(b)M
= 1 and P−1

χ,χ(a),χ(b) = Pχ,χ(b),χ(a).

Retraction. Retraction (cf. [5, 17]) is a crucial object for our approach. In
this paper, a retraction is meant to be a smooth map R : TM −→ M from the
tangent bundle into M so that its restriction Rx (retraction at x) of R onto
each tangent space TxM satisfies
• Rx (0x) = x,
• (dRx)0x = idTxM, with the identification T0x (TxM) ≃ TxM.
On the preceding descriptions, (dRx)0x stands for the differential of Rx at
the origin 0x of TxM. If R is a retraction, and (x, v) is in TM, then the
map χ : t 7−→ Rx(tv) defines a smooth curve on M satisfying χ(0) = x

and χ′(0) = v. There is a natural retraction reduced by geodesics on M,
known as exponential map of the tangent bundle [7]. Recall that a curve
χ : I −→ M is called a geodesic, if its acceleration ∇χ′χ′ is vanishing. The
exponential map exp : TM −→ M can be defined by exp(x, v) = χ(1, x, v),
where t 7−→ χ(t, x, v) is the unique geodesic such that χ(0, x, v) = x and
χ′(0, x, v) = v.
The exponential map has many important properties. At each point of a Rie-
mannian manifold, there is a normal neighborhood for which expx is injective
on some ball around the origin of tangent space TxM (see [12, 7, 18]). In accor-
dance with this property, we will establish here a similar result applied for any
retraction. The proof is based on the same strategy as the case of exponential
maps presented in the literature.
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Proposition 2.1. Let M be a complete m–dimensional Riemannian manifold,
and let R : TM −→ M be a retraction. Then for every x ∈ M there exists
a neighborhood Wx = BM(x, rx) (rx > 0 depends on x) and a real number
CR(x) > 0 such that if y ∈ Wx then Ry : TyM −→ M is injective in the ball
CR(x)By with Ry (CR(x)By) ⊃ Wx. We will call such a pair (rx, CR(x)) as a
R–normal pair at x.
Proof. Let (U,x) be a local coordinate of M at x. Then

(

U × U, (x,x)
)

is a
local coordinate on M×M. Consider the map H : TU −→ M×M given by

H(z, v) =
(

z, Rz(v)
)

.

Since Rx(0x) = x and (dRx)0x = id, the matrix of dH(x,0x) in the local coordi-
nate above can be written as follow

(

I 0
∗ I

)

.

Hence, we can apply an analogous argument as the proof of existence for normal
neighborhood in Riemannian manifold and obtain the required conclusion. For
shortness, one keeps in mind [15, Lemma 5.12] and/or [7, Theorem 3.7].

Besides Proposition 2.1, we shall also need some other facts. The next state-
ment will be useful throughout the rest of this paper.
Assumption 2.2. Given a retraction R : TM −→ M, an open subset Ω ⊂
M and positive numbers ε, ρ1, ρ2. We say that R satisfies the uniform rate
condition on Ω with respect to ratios ρ1, ρ2 and radius ε, written as R ∈
URC(ρ1, ρ2, ε,Ω), if

ρ1 ∥u− v∥x 6 d
(

Rx(u), Rx(v)
)

6 ρ2 ∥u− v∥x (5)

for all x ∈ Ω and u, v ∈ εBx.

Remark 2.3. It is obvious to see that (5) is trivial in the case M = R
n and R

is the usual translation Rx(u) = x+u. Another less trivial case will be showed
in Example 2.4 below. When R = exp is the exponential, the left-hand side
of (5) is satisfied on any Hadamard manifold (for instance, cf. [18], Chapter
V, Proposition 4.5). If R = exp and Ω = BM(x̄, r), where r is small enough,
the right-hand side of (5) is also valid in terms of local property [12, 6]. For
general retractions, a condition ensures (5) appeared in the work [17], where
retractions Rx are required to satisfy the equicontinuous derivative on Ω.

Example 2.4 (retraction on the unit sphere). Consider the m-unit sphere

S
m :=

{

x ∈ R
m+1 : ∥x∥2 = xTx = 1

}

,

where the vector is written in column form. Sm is endowed with the Riemannian
metric

gx(u, v) = ⟨u, v⟩TxS
m := uTv, ∀u, v ∈ TxS

m =
{

z ∈ R
m+1 : zTx = 0

}

. (6)
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The Riemannian distance associated to the metric above is given by

d(x, y) = arccos
(

xTy
)

, x, y ∈ S
m. (7)

According to [1], let us consider the retraction

Rx(u) =
x+ u

∥x+ u∥ , x ∈ S
m, u ∈ TxS

m. (8)

Observe that we have

d
(

x,Rx(u)
)

= arccos

(

xT (x+ u)

∥x+ u∥

)

= arccos
1

√

1 + ∥u∥2
= arctan ∥u∥ .

So, Rx is injective on the whole space TxS
m and Rx (εBx) = BSm (x, arctan ε)

for every x ∈ S
m and ε > 0.

Let r > 0 be small enough and Ω ⊂ S
m is a closed set. Suppose that x ∈ Ω

and u, v ∈ rBx ⊂ TxS
m are fixed. For brevity, we put d̂ := d

(

Rx(u), Rx(v)
)

.
From (7) and (8) we get

cos d̂ = Rx(u)
TRx(v) =

1

∥x+ u∥ ∥x+ v∥(x+ u)T (x+ v)

=
1 + uTv

(

1 + ∥u∥2
)1/2 (

1 + ∥v∥2
)1/2

.

Hence

sin2 d̂ = 1− cos2 d̂ =
∥u− v∥2 + ∥u∥2 ∥v∥2 −

(

uTv
)2

(

1 + ∥u∥2
) (

1 + ∥v∥2
) .

It is clear that ∥u∥2 ∥v∥2 −
(

uTv
)2

> 0, so

sin2 d̂ >
∥u− v∥2

(

1 + ∥u∥2
) (

1 + ∥v∥2
) >

(

1

1 + r2

)2

∥u− v∥2 . (9)

On the other hand, we have 2uTv = ∥u∥2 + ∥v∥2 − ∥u− v∥2, which implies

∥u∥2 ∥v∥2 −
(

uTv
)2

= ∥u∥2 ∥v∥2 − 1

4

(

∥u∥2 + ∥v∥2 − ∥u− v∥2
)2

=
1

2

(

∥u∥2 + ∥v∥2
)

∥u− v∥2 − 1

4

[

∥u− v∥4 +
(

∥u∥2 − ∥v∥2
)2
]

6
1

2

(

∥u∥2 + ∥v∥2
)

∥u− v∥2 .

Thus,

sin2 d̂ 6

[

1 + 1
2

(

∥u∥2 + ∥v∥2
)]

∥u− v∥2
(

1 + ∥u∥2
) (

1 + ∥v∥2
) 6 ∥u− v∥2 . (10)
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Note that

d̂ 6 d
(

x,Rx(u)
)

+ d
(

x,Rx(v)
)

= arctan ∥u∥+ arctan ∥v∥ 6
π

2

whenever u, v are in the unit ball of TxS
m. Taking into account the following

fact
0 < t 6

π

2
=⇒ 2

π
6

sin t

t
6 1,

(9) and (10) give us

1

1 + r2
6

d
(

Rx(u), Rx(v)
)

∥u− v∥ 6
π

2
, 0 6 r 6 1, u ̸= v ∈ rBx.

Consequently,
R ∈ URC (ρ1(r), ρ2(r), r,Ω) , (11)

where r ∈ (0, 1], ρ1(r) = 1
1+r2

and ρ2(r) =
π
2
.

3. Stability of the metric regularity property on Riemannian
manifolds

To study the convergence of schemes like (2), the concept of metric regularity for
set-valued mapping [13] plays an important role in our analysis. Recall that a
set-valued (or also multivalued) mapping Φ : X ⇒ Y between two metric spaces
X and Y is a correspondence assigning to each x ∈ X a subset Φ(x) ⊂ Y . Such
a mapping is totally determined by its graph Gr(Φ) :=

{

(x, y) ∈ X × Y : y ∈
Φ(x)

}

. The mapping Φ is said to be metrically regular on a subset V ⊂ X×Y

if there exists a constant κ > 0 (a modulus of regularity) such that

distX
(

x,Φ−1(y)
)

6 κdistY
(

y,Φ(x)
)

, for all (x, y) ∈ V. (12)

In (12), distX(·, ·) and distY (·, ·) are respectively the distances in X and Y ,
while Φ−1 stands for the inverse of Φ, given by

x ∈ Φ−1(y) ⇐⇒ y ∈ Φ(x).

When dealing with a property like (12), we will sometimes write κ∈REG
(

Φ, V
)

to simplify notations. Moreover, we also write G ∈ L ipλ(S) to indicate that
the mapping (maybe set-valued) G is Lipschitz continuous on the set S with a
modulus λ. In words, G ∈ L ipλ(S) means

dHY
(

G(x), G(y)
)

6 λdX(x, y), x, y ∈ S, (13)

where dHY
(

C,D
)

is the Hausdorff distance [16] between two subsets C and D

in Y

dHY
(

C,D
)

= sup
y∈Y

∣

∣dY
(

y, C
)

− dY
(

y,D
)∣

∣ . (14)
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We now present the main results of this section, which ensures the stability of
metric regularity property. These are essential preliminaries for the convergence
analysis at the end of this paper.
Proposition 3.1 (stability of local metric regularity). Given a complete
Riemannian manifold of dimension m, and a retraction R : TM −→ M. Fix
a point x ∈ M and let (rx, CR(x)) be a R–normal pair at x. Suppose that there
exist some positive numbers 0 < ρ1 6 ρ2 satisfying R ∈ URC(ρ1, ρ2, δ,Wx)
with Wx = BM(x, rx) and δ = CR(x). Pick some tangent vector ū ∈ TxM
and some positive constants r, s, r′, s′, λ, λ′, σ and κ obeying the following
relations







































θ = ρ−1
1 ρ2κ (λ

′ + λµx) < 1,

ρ−1
1 ρ2

(

1 + 1+θ
1−θ

)

r′ + κ
1−θ

s′ 6 r,
(

ρ−1
1 ρ2

)2
(λ′ + λµx)

(

1 + 1+θ
1−θ

)

r′ +
(

1 + θ
1−θ

)

s′ 6 s,

ρ−1
1 ρ2 ∥ū∥x + ρ−1

1 σ + ρ−1
1 ρ2

(

1 + 1+θ
1−θ

)

r′ + κ
1−θ

s′ 6 δ,

ρ2 ∥ū∥x + ρ2
[

ρ−1
1 ρ2

(

1 + 1+θ
1−θ

)

r′ + κ
1−θ

s′
]

6 rx,

(15)

for µx = ∥Df(x)∥. Assume that the mapping Φx = Df(x)(·) + (F ◦Rx) (·)
is metrically regular on a neighborhood Vx := Bx(ū, r) × BRn(p̄, s) of (ū, p̄) ∈
Gr(Φx) together with a modulus κ. Pick some point y ∈ BM(x, σ) ∩ Wx such
that, for each geodesic χ : [0, 1] −→ M having χ(0) = x, χ(1) = y and
χ([0, 1]) ⊂ Wx:
(i) Σχ,y,x = R−1

x ◦Ry − Pχ,y,x ∈ L ipλ(δBy);
(ii) the linear map Gχ,x,y := Df(y) ◦ Pχ,x,y − Df(x) satisfies ∥Gχ,x,y∥ 6 λ′.
Set v̄ =

(

R−1
y ◦Rx

)

(ū) ∈ TyM, q̄ = p̄− Df(x)(ū) + Df(y)(v̄) ∈ R
n, and τ =

ρ−1
1 ρ2

κ
1−θ

. Then one has τ ∈ REG
(

Φy, Vy

)

, where Φy = Df(y)(·) + (F ◦Ry) (·)
and Vy := By(v̄, r

′)× BRn(q̄, s′).

To prove Proposition 3.1, we need the following lemma.
Lemma 3.2. Under the assumptions of Proposition 3.1, one has

Ψy,x := Df(y)− Df(x) ◦
(

R−1
x ◦Ry

)

∈ L ipλ′+λµx
(δBy).

Proof. Without loss of generality, we can focus on the case where Wx is a
normal neighborhood at x. Let χ : [0, 1] −→ Wx be a geodesic having χ(0) = x

and χ(1) = y. It is not difficult to check that

Ψy,x(v) =
(

Gχ,x,y ◦ P−1
χ,x,y

)

(v) + (Df(x) ◦Σχ,y,x) (v),

for v ∈ δBy. As a result, we find
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∥Ψy,x(v
′)−Ψy,x(v)∥Rn

=
∥

∥

(

Gχ,y,x ◦ P−1
χ,x,y

)

(v′ − v) + Df(x) (Σχ,y,x(v
′)−Σχ,y,x(v))

∥

∥

Rn

6 ∥Gχ,y,x∥
∥

∥P−1
χ,x,y

∥

∥ ∥v′ − v∥y + ∥Df(x)∥ ∥Σχ,y,x(v
′)−Σχ,y,x(v)∥x

6 λ′ ∥v′ − v∥y + µxλ ∥v′ − v∥y .

Hence, the conclusion of Lemma 3.2 follows.

Proof of Proposition 3.1. Pick (v, w) ∈ Vy. We have to establish the esti-
mation

dist
(

v, Φ−1
y (w)

)

6 τdist
(

w,Φy(v)
)

. (16)
We omitted the subscripts of spaces in (16), since these ones are determined
by the objects upon which the corresponding distances act. Here and in what
follows, we will use the common notation dist(·, ·) for distance on any arbitrary
metric space.
The set Φy(v) is obviously closed. So, (16) is easy when dist

(

w,Φy(v)
)

= 0.
Consider the case η = dist

(

w,Φy(v)
)

> 0. First, we set v0 = v and y0 = Ry(v0).
Note that v̄ = R−1

y (Rx(ū)) ∈ CR(x)By, the triangle inequality and Assumption
2.2 give us

∥v̄∥y 6 ρ−1
1 d
(

y, Ry(v̄)
)

= ρ−1
1 d
(

y, Rx(ū)
)

6 ρ−1
1

(

d(y, x) + d
(

x,Rx(ū)
))

6 ρ−1
1 (d(x, y) + ρ2 ∥ū∥x) 6 ρ−1

1 σ + ρ−1
1 ρ2 ∥ū∥x .

This implies

∥v0∥y 6 ∥v0 − v̄∥y + ∥v̄∥y < r′ + ρ−1
1 σ + ρ−1

1 ρ2 ∥ū∥x < δ.

Since R ∈ URC (ρ1, ρ2, δ,Wx), we have

d
(

y0, x
)

6 d
(

y0, Ry(v̄)
)

+ d
(

Ry(v̄), x
)

= d
(

Ry(v0), Ry(v̄)
)

+ d
(

Rx(ū), x
)

6 ρ2 ∥v0 − v̄∥y + ρ2 ∥ū∥x < ρ2r
′ + ρ2 ∥ū∥x

< ρ2 ∥ū∥x + ρ2

[

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′
]

6 rx.

Thus, y0 = Ry(v0) ∈ Wx ⊂ Rx (δBx). Let us choose u0 ∈ δBx with Rx(u0) = y0
and put

w0 = w + Df(x)(u0)− Df(y)(v0) ∈ R
n.

We claim that (u0, w0) ∈ Vx. Indeed, due to Assumption 2.2 and the choice of
u0 we get

∥u0 − ū∥x 6 ρ−1
1 d
(

Rx(u0), Rx(ū)
)

= ρ−1
1 d
(

Ry(v0), Ry(v̄)
)

6 ρ−1
1 ρ2 ∥v0 − v̄∥y ,

(17)
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which yields ∥u0 − ū∥x < ρ−1
1 ρ2r

′ < r. Taking into account Rx(u0) = Ry(v0)
and Rx(ū) = Ry(v̄), we deduce

∥w0 − p̄∥
Rn = ∥w −Ψy,x(v0)− [q̄ −Ψy,x(v̄)]∥Rn

6 ∥Ψy,x(v0)−Ψy,x(v̄)∥Rn + ∥w − q̄∥
Rn

6 (λ′ + λµx) ∥v0 − v̄∥+ ∥w − q̄∥
Rn .

(18)

In view of (18), we obtain

∥w0 − p̄∥
Rn < (λ′ + λµx)r

′ + s′

<
(

ρ−1
1 ρ2

)2
(λ′ + λµx)

(

1 +
1 + θ

1− θ

)

r′ +

(

1 +
θ

1− θ

)

s′ 6 s.

Hence, the inclusion (u0, v0) ∈ Vx is clear. By invoking the fact κ ∈ REG(Φx, Vx),
we find

dist
(

u0, Φ
−1
x (w0)

)

6 κdist
(

w0, Φx(u0)
)

= κdist
(

w0,Df(x)(u0) + (F ◦Rx) (u0)
)

= κdist
(

w,Df(y)(v0) + (F ◦Ry) (v0)
)

= κdist
(

w,Df(y)(v) + (F ◦Ry) (v)
)

= κη.

So we can select a vector u1 in Φ−1
x (w0) which satisfies

∥u0 − u1∥x = dist
(

u0, Φ
−1
x (w0)

)

6 κη.

To continue, let us set y1 = Rx(u1). Inasmuch as κ ∈ REG(Φx, Vx), one has

dist
(

ū, Φ−1
x (w0)

)

6 κdist
(

w0, Φx(ū)
)

6 κ ∥w0 − p̄∥
Rn .

Consequently,

∥u1 − u0∥x = dist
(

u0, Φ
−1
x (w0)

)

6 ∥u0 − ū∥x + dist
(

ū, Φ−1
x (w0)

)

6 ∥u0 − ū∥x + κ ∥w0 − p̄∥
Rn .

(19)

By induction hypothesis, suppose that the tangent vectors u0, . . . , uk ∈ Bx(ū, r),
v0, . . . , vk−1 ∈ δBy ⊂ TyM are given, and they obey the following conditions
• Ry(vj) = Rx(uj), j = 0, 1, . . . , k − 1;
• uj+1 ∈ Φ−1

x (wj), with wj = w+Df(x)(uj)−Df(y)(vj), j = 0, 1, . . . , k−1;
• ∥uj − uj+1∥x 6 θj ∥u1 − u0∥x, for θ = ρ−1

1 ρ2κ(λ
′ + λµx) < 1 and

j = 0, 1, . . . , k − 1.
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 Thanks to the triangle inequality, we can write

∥uj − ū∥x 6

j−1
∑

i=0

∥ui − ui+1∥x + ∥u0 − ū∥x 6

j−1
∑

i=0

θi ∥u1 − u0∥x + ∥u0 − ū∥x

=
1− θj

1− θ
∥u1 − u0∥x + ∥u0 − ū∥x 6

1

1− θ
∥u1 − u0∥x + ρ−1

1 ρ2 ∥v0 − v̄∥y .

Since ρ−1
1 ρ2 > 1, from (17), (18) and (19) we obtain

∥uj − ū∥x 6

6

{

ρ−1
1 ρ2 +

1

1− θ

[

ρ−1
1 ρ2 + κ(λ′ + λµx)

]

}

∥v0 − v̄∥x +
κ

1− θ
∥w − q̄∥

Rn

6 ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

∥v0 − v̄∥x +
κ

1− θ
∥w − q̄∥

Rn .

The latter implies

∥uj∥x 6 ∥uj − ū∥x + ∥ū∥x

6 ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

∥v0 − v̄∥x +
κ

1− θ
∥w − q̄∥

Rn + ∥ū∥x

< ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′ + ∥ū∥x 6 δ.

Next, involving again Assumption 2.2, we derive

d
(

Rx(uk), x
)

6 d
(

Rx(uk), Rx(ū)
)

+ d
(

Rx(ū), x
)

6 ρ2 ∥uk − ū∥x + ρ2 ∥ū∥x

6 ρ2

[

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

∥v0 − v̄∥x +
κ

1− θ
∥w − q̄∥

Rn

]

+ ρ2 ∥ū∥x

< ρ2

[

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′
]

+ ρ2 ∥ū∥x 6 rx.

This means yk = Rx(uk) ∈ Wx. Selecting vk ∈ δBy with Ry(vk) = Rx(uk) and

wk = w + Df(x)(uk)− Df(y)(vk) = w −Ψy,x(vk),

we get

∥wk − p̄∥
Rn = ∥w −Ψy,x(vk)− [q̄ −Ψy,x(v̄)]∥Rn

6 ∥Ψy,x(vk)−Ψy,x(v̄)∥Rn + ∥w − q̄∥
Rn

6 (λ′ + λµx) ∥vk − v̄∥y + ∥w − q̄∥
Rn

< (λ′ + λµx) ∥vk − v̄∥y + s′.
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Moreover, it holds that

∥vk − v̄∥y 6 ρ−1
1 d
(

Ry(vk), Ry(v̄)
)

= ρ−1
1 d
(

Rx(uk), Rx(ū)
)

6 ρ−1
1 ρ2 ∥uk − ū∥x

6 ρ−1
1 ρ2

{

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

∥v0 − v̄∥x +
κ

1− θ
∥w − q̄∥

Rn

}

< ρ−1
1 ρ2

{

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′
}

.

Hence,

∥wk − p̄∥
Rn < ρ−1

1 ρ2(λ
′ + λµx)

{

ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′
}

+ s′

=
(

ρ−1
1 ρ2

)2
(λ′ + λµx)

(

1 +
1 + θ

1− θ

)

r′ +

(

1 +
θ

1− θ

)

s′ 6 s.

In other words, (uk, wk) belongs to Vx. Including the hypothesis of metric
regularity property once more, we find

dist
(

uk, Φ
−1
x (wk)

)

6 κdist
(

wk, Φx(uk)
)

6 κ ∥wk − wk−1∥Rn

= κ ∥w −Ψy,x(vk)− [w −Ψy,x(vk−1)]∥Rn = κ ∥Ψy,x(vk)−Ψy,x(vk−1)∥Rn

6 κ(λ′ + λµx) ∥vk − vk−1∥y .

On the other hand,

∥vk − vk−1∥y 6 ρ−1
1 d
(

Ry(vk), Ry(vk−1)
)

= ρ−1
1 d
(

Rx(uk), Rx(uk−1)
)

6 ρ−1
1 ρ2 ∥uk − uk−1∥x ,

which implies that

dist
(

uk, Φ
−1
x (wk)

)

6 θ ∥uk − uk−1∥x 6 θk ∥u1 − u0∥x .

However, Φ−1
x (wk) is a closed subset of a finite dimension space, so it must

contain at least a vector uk+1 such that

∥uk − uk+1∥x = dist
(

uk, Φ
−1
x (wk)

)

6 θk ∥u1 − u0∥x .

As a result,

∥uk+1 − ū∥x 6

k
∑

j=0

∥uj+1 − uj∥x + ∥u0 − ū∥x

6

k
∑

j=0

θj ∥u1 − u0∥x + ∥u0 − ū∥x

6
1

1− θ
∥u1 − u0∥x + ∥u0 − ū∥x .
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According to (18) and (19) it is possible to write

∥u1 − u0∥x 6 ∥u0 − ū∥x + κ ∥w0 − p̄∥
Rn

6 [ρ−1
1 ρ2 + κ(λ′ + λµx)] ∥v0 − v̄∥y + κ ∥w − q̄∥

Rn

< ρ−1
1 ρ2(1 + θ)r′ + κs′.

Notice that ∥u0 − ū∥x 6 ρ−1
1 ρ2 ∥v0 − v̄∥y < ρ−1

1 ρ2r
′, we deduce

∥uk+1 − ū∥x < ρ−1
1 ρ2

(

1 +
1 + θ

1− θ

)

r′ +
κ

1− θ
s′ 6 r.

In particular, uk+1 ∈ Bx(ū, r), the sequences (uk) and (vk) are now well-defined
by induction.
From the construction above, both (uk) and (vk) are Cauchy sequences. Thus,
there are u∗ ∈ TxM and v∗ ∈ TyM such that uk → u∗ and vk → v∗. Passing
to the limit in the inclusion

w + Df(x)(uk)− Df(y)(vk) = wk ∈ Φx(uk+1)

we conclude
w + Df(x)(u∗)− Df(y)(v∗) ∈ Φx(u

∗).

Equivalently, w ∈ Df(y)(v∗) + (F ◦Rx) (u
∗). But from Rx(uk) = Ry(vk) we

also get Rx(u
∗) = Ry(v

∗), which gives us

w ∈ Df(y)(v∗) + (F ◦Ry) (v
∗) = Φy(v

∗).

Consequently,

dist
(

v, Φ−1
y (w)

)

6 ∥v − v∗∥y = ∥v0 − v∗∥y =
∥

∥

∥

∥

∥

∑

k>0

(vk − vk+1)

∥

∥

∥

∥

∥

y

6
∑

k>0

∥vk − vk+1∥y 6
∑

k>0

ρ−1
1 ρ2 ∥uk − uk+1∥x

6 ρ−1
1 ρ2

∑

k>0

θk ∥u1 − u0∥x = ρ−1
1 ρ2

1

1− θ
∥u1 − u0∥x

6 ρ−1
1 ρ2

1

1− θ
κη.

This is exactly (16). The proof is thereby complete.

A semi-local version of Proposition 3.1 will be useful for the study of algorithm
(2). The next statement is in this sense.
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Proposition 3.3 (stability of semi-local metric regularity). Let M, R,
rx, Wx, δ = CR(x) and ρ1, ρ2 be as in the statement of Proposition 3.1. Let
f : M −→ R

n be a given smooth map and F : M ⇒ R
n be a multivalued

mapping having closed graph. Fix a point x ∈ M. Suppose that the mapping
Φx(·) := Df(x)(·) + (F ◦Rx) (·) is metrically regular on the set

Vr,s (Φx) :=
{

(u, w) ∈ TxM× R
n : ∥u∥x 6 r, dist

(

w,Φx(u)
)

6 s
}

with a modulus κ > 0. Consider some positive numbers r′, s′, σ, λ and λ′ such
that



















θ = ρ−1
1 ρ2κ(λ

′ + λµx) < 1,

ρ−1
1 σ + ρ−1

1 ρ2r
′ + κ

1−θ
s′ < min {δ, r} ,

s′ 6 s,

ρ−1
1 ρ2σ + ρ−1

1 ρ22r
′ + ρ2

κ
1−θ

s′ < rx.

(20)

Pick some y ∈ Wx so that d(y, x) 6 σ and the conditions (i) and (ii) of Propo-
sition 3.1 hold. Then the multivalued mapping Φy(·) := Df(y)(·) + (F ◦Ry) (·)
satisfies τ ∈ REG

(

Φy, Vr′,s′(Φy)
)

for τ = ρ−1
1 ρ2

κ
1−θ

and

Vr′,s′ (Φy) :=
{

(v, w) ∈ TyM× R
n : ∥v∥x 6 r′, dist

(

w,Φy(v)
)

6 s′
}

.

Proof. We fix some (v, w) ∈ Vr′,s′(Φy) with η = dist
(

w,Φy(v)
)

> 0 and look
for a point v∗ ∈ Φ−1

y (w) such that

∥v − v∗∥x 6 τη. (21)

For this goal, let us set v0 = v, and y0 = Ry(v0). Since ∥v0∥y 6 r′ 6 ρ−1
1 ρ2r

′ <
δ, the fact R ∈ URC(ρ1, ρ2, δ,Wx) can be used. This yields

d(Ry(v0), x) 6 d(Ry(v0), y) + d(y, x) 6 ρ2 ∥v0∥y + σ 6 ρ2r
′ + σ

< ρ−1
1 ρ2σ + ρ−1

1 ρ22r
′ + ρ2

κ

1− θ
s′ < rx,

which implies y0 = Ry(v0) ∈ Wx. Thus, there exists (unique) u0 ∈ δBx with
Rx(u0) = Ry(v0). By setting

w0 = w + Df(x)(u0)− Df(y)(v0) ∈ R
n,

we are going to verify (u0, w0) ∈ Vr,s(Φx). Indeed, according to Assumption 2.2

∥u0∥x 6 ρ−1
1 d
(

Rx(u0), x
)

= ρ−1
1 d
(

Ry(v0), x
)

6 ρ−1
1

(

d
(

Ry(v0), y
)

+ d
(

y, x
))

6 ρ−1
1

(

ρ2 ∥v0∥y + σ
)

= ρ−1
1 ρ2 ∥v0∥y + ρ−1

1 σ, (22)

and therefore

∥u0∥x 6 ρ−1
1 ρ2r

′ + ρ−1
1 σ < ρ−1

1 σ + ρ−1
1 ρ2r

′ +
κ

1− θ
s′ 6 r.
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In addition, one has

dist
(

w0, Φx(u0)
)

= dist
(

w0 − Df(x)(u0), (F ◦Rx) (u0)
)

= dist
(

w − Df(y)(v0), (F ◦Ry) (v0)
)

= dist
(

w,Df(y)(v0) + (F ◦Ry) (v0)
)

= dist
(

w,Φy(v)
)

6 s′ 6 s.

So, the inclusion (u0, w0) ∈ Vr,s (Φx) is now clear. Since κ ∈ REG
(

Φx, Vr,s(Φx)
)

,
we get

dist
(

u0, Φ
−1
x (w0)

)

6 κdist
(

w0, Φx(u0)
)

= κdist
(

w,Φy(v)
)

= κη.

Selecting u1 ∈ Φ−1
x (w0) that ∥u0 − u1∥x = dist

(

u0, Φ
−1
x (w0)

)

, we conclude

∥u0 − u1∥x 6 κη.

With respect to the inductive step, assume that for some k > 1 we have found
u1, . . . , uk in TxM and v0, . . . , vk−1 in δBy ⊂ TyM such that
• Rx(uj) = Ry(vj), j = 0, 1, . . . , k − 1;
• uj+1 ∈ Φ−1

x (wj) for wj = w + Df(x)(uj)− Df(y)(vj) and j 6 k − 1;
• ∥uj − uj+1∥x 6 θj ∥uj − uj+1∥x, j 6 k − 1.
In the tangent space TxM the triangle inequality tells us

∥uj − u0∥x 6

j−1
∑

i=0

∥ui+1 − ui∥x 6

j−1
∑

i=0

θi ∥u1 − u0∥x =
1− θj

1− θ
∥u1 − u0∥x

6
1

1− θ
∥u1 − u0∥x , j = 1, . . . , k.

Taking into account (22), ∥u0∥x 6 ρ−1
1 ρ2 ∥v0∥y + ρ−1

1 σ, which yields

∥uj∥x 6 ∥uj − u0∥x + ∥u0∥x 6
1

1− θ
κη + ρ−1

1 ρ2 ∥v0∥y + ρ−1
1 σ

6 ρ−1
1 σ + ρ−1

1 ρ2r
′ +

κ

1− θ
s′ < min {δ, r} , j = 1, . . . , k.

From Assumption 2.2, we find

d
(

Rx(uk), x
)

6 ρ2 ∥uk∥x 6 ρ−1
1 ρ2σ + ρ−1

1 ρ22r
′ + ρ2

κ

1− θ
s′ < rx.

Hence, there exists vk ∈ δBy with Ry(vk) = Rx(uk). By setting

wk = w + Df(x)(uk)− Df(y)(vk) ∈ R
n,
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we claim (uk, wk) ∈ Vr,s (Φx). In fact, we have known ∥uk∥x 6 r. Besides that,
let us now estimate the quantity dist

(

w1, Φx(uk)
)

as follows

dist
(

wk, Φx(uk)
)

6 ∥wk − wk−1∥Rn = ∥w −Ψy,x(vk)− [w −Ψy,x(vk−1)]∥Rn

= ∥Ψy,x(vk)−Ψy,x(vk−1)∥Rn 6 (λ′ + λµx) ∥vk − vk−1∥y .

In the preceding estimations, we used the relations

Ψy,x(vj) = Df(y)(vj)− Df(x)(uj), j = 0, 1, . . . , k.

On the other hand, we conclude from the fact R ∈ URC(ρ1, ρ2, δ,Wx) that

∥vk − vk−1∥y 6 ρ−1
1 d
(

Ry(vk), Ry(vk−1)
)

6 ρ−1
1 ρ2 ∥uk − uk−1∥x .

Hence,

dist
(

wk, Φx(uk)
)

6 (λ′ + λµx)ρ
−1
1 ρ2 ∥uk − uk−1∥x

6 (λ′ + λµx)ρ
−1
1 ρ2θ

k−1 ∥u1 − u0∥x
6 (λ′ + λµx)ρ

−1
1 ρ2θ

k−1κη = θkη 6 θks′ < s.

Invoking the hypothesis κ ∈ REG
(

Φx, Vr,s(Φx)
)

, we obtain

dist
(

uk, Φ
−1
x (wk)

)

6 κdist
(

wk, Φx(uk)
)

6 κ(λ′ + λµx)ρ
−1
1 ρ2θ

k−1 ∥u1 − u0∥x
= θk ∥u1 − u0∥x .

Since the tangent space TxM is finite dimensional, the projection uk+1 ∈
Φ−1
x (wk) of uk onto Φ−1

x (wk) satisfies

∥uk − uk+1∥x = dist
(

uk, Φ
−1
x (wk)

)

6 θk ∥u1 − u0∥x ,

and the construction goes on. So, (uk) and (vk) are totally defined. The rest
of the proof is similar to the one of Proposition 3.1.
Remark 3.4. In the case when the set-valued part F (x) does not depend on
x (i.e., F (x) ≡ K), one has

Φy ◦ Pχ,x,y = Gχ,x,y + Φx, (23)

for any arbitrary geodesic segment χ : [0, 1] −→ M such that χ(0) = x and
χ(1) = y. Inasmuch as Pχ,x,y is linearly isometric, for each subset V ⊂ TyM×
R

n the fact τ ∈ REG
(

Φy, V
)

is equivalent to τ ∈ REG
(

Φy ◦Pχ,x,y, V
′), in which

V ′ =
{

(u, w) ∈ TxM× R
n : (Pχ,x,yu, w) ∈ V

}

.

It is well-known from the literature that under condition imposed on Φx and
Lipschitz modulus of Gχ,x,y, the right-hand side of (23) is also metrically regu-
lar. Therefore, the suppositions related to the maps Σχ,y,x in both Propositions
3.1 and 3.3 might be omitted. And we simply need ∥Gχ,x,y∥ 6 λ′ < κ−1. Of
course, the corresponding parameters as well as the region of metric regularity
may be different from the old ones in Propositions 3.1 and 3.3 above.
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4. Convergence of Newton-type algorithms

We begin with some crucial hypotheses.
Standing assumptions. Let L1, L2 : [0,+∞) −→ [0,+∞) be some nonde-
creasing continuous function with L1(0) = L2(0) = 0 and Ω be a nonempty
open subset of M. We consider the conditions below:
(A1) Given x ∈ Ω and a geodesic χ : [0, 1] −→ Ω with χ(0) = x.

If (rx, CR(x)) is a normal pair, and χ([0, 1]) ⊂ BM(x, rx) one
has Σχ,y,x ∈ L ipL1(ℓ(χ))

(

CR(x)By

)

, where y = χ(1) and
Σχ,y,x = R−1

x ◦Ry − Pχ,y,x.
(A2) If Θ: [0, 1] −→ M is a geodesic in Ω joining z = Θ(0) to z′ = Θ(1)

and GΘ,x,y := Df(x)− Df(y) ◦ PΘ,x,y, then ∥GΘ,x,y∥ 6 L2(ℓ(Θ)).
Under the conditions (A1) and (A2) we have the following statement.
Proposition 4.1. Given z̄ ∈ Ω and one R–normal pair (r̄, C̄) at z̄. Suppose
that
• the retraction segment c(t) = Rz(tu) belongs to BM(z̄, r̄),
• BM(z̄, r̄) is a convex neighborhood at z̄ (cf. [7, 15]).
Define

ΛR(f, x, u) =
∥

∥f
(

Rx(u)
)

− [f(x) + Df(x)(u)]
∥

∥

Rn , (24)
then one has

ΛR (f, z, u)) 6

6 ∥u∥z
∫ 1

0

{

µ̄L1

(

d(z, c(t))
)

+
[

L1

(

d(z, c(t))
)

+ 1
]

L2

(

d(z, c(t))
)

}

dt,
(25)

where µ̄ = ∥Df(z̄)∥.

Proof. Denoting Θt, χt : [0, 1] −→ M the minimizing geodesics with Θt(0) =
z, Θt(1) = Rz(tu), χt(0) = z̄ and χt(1) = Rz(tu). For simplicity we will use
the notation ct = c(t), Qt = (dRz)tu, P t = PΘt,z,c(t), P̄ t = Pχt,z̄,c(t). Then
ΣΘt,z,ct = R−1

c(t) ◦ Rz − P t and GΘt,z,ct = Df(x) − Df(ct)P
t. Note that tu =

R−1
z (c(t)) ∈ C̄Bz, from (A1) and (A2) one gets

∥

∥d (ΣΘt,z,ct)tu
∥

∥ 6 L1

(

ℓ(Θt)
)

, ∥GΘt,z,ct∥ 6 L2

(

ℓ(Θt)
)

.

As a consequence of the choice of Θt it holds that ℓ(Θt) = d
(

z, c(t)
)

. Combining
this with the following relation

d (ΣΘt,z,ct)tu =
(

dR−1
c(t)

)

c(t)
◦ (dRz)tu − P t = Qt − P t,

we obtain
∥

∥Qt − P t
∥

∥ 6 L1

(

ℓ(Θt)
)

= L1

(

d
(

z, c(t)
))

.
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 Thanks to the expressions Gχt,z¯,ct = Df(z¯) − Df(ct)Pχt,z¯,ct , we obtain

∥Df(ct)∥ 6 ∥−Gχt,z̄,ct + Df(z̄)∥
∥

∥(Pχt,z̄,ct)
−1
∥

∥ 6 ∥Gχt,z̄,ct∥+ ∥Df(z̄)∥
6 L2

(

ℓ(χt)
)

+ ∥Df(z̄)∥ = L2

(

d
(

z̄, c(t)
))

+ µ̄.

The map h = f ◦ c is smooth and

h′(t) = Df(ct)
(

Qt(u)
)

= Df(ct)
(

Qt(u)− P t(u)
)

+ Df(ct)
(

P tu
)

= Df(ct)
(

Qt(u)− P t(u)
)

−GΘt,x,ct(u) + Df(x)(u).

Consequently,

ΛR(f, z, u) = ∥h(1)− h(0)− Df(x)(u)∥ =

∥

∥

∥

∥

∫ 1

0

h′(t) dt− Df(x)(u)

∥

∥

∥

∥

6

∫ 1

0

(

∥Df(ct)∥
∥

∥Qt − P t
∥

∥+ ∥GΘt,x,ct∥
)

∥u∥z dt.

Hence, the conclusion of Proposition 4.1 follows.

We are now ready to present the main theorems of this section.
Theorem 4.2 (local convergence). Given a complete Riemannian manifold
M of dimension m and a retraction R : TM −→ M. Let f : M −→ R

n be a
smooth map, and F : M ⇒ R

n be a closed multivalued mapping. Let x∗ ∈ M
be a solution of problem (1), and (r∗, C∗) be a R–normal pair at x∗. Assume
that
(i) R ∈ URC

(

ρ1, ρ2, C
∗,W ∗) for some 0 < ρ1 6 ρ2 and W ∗ = BM(x∗, r∗);

(ii) the statements (A1) and (A2) hold for some real functions L1, L2 together
with Ω = W ∗;

(iii) the mapping Φ∗ := Df(x∗)(·) + (F ◦Rx∗) (·) satisfies τ ∈ REG
(

Φ∗, V ∗)

where V ∗ = rBx∗
× BRn

(

− f(x∗), s
)

;
(iv) L1 and L2 are of class C1;
(v) 2K∗r 6 1, with















K∗ = (ρ−1
1 ρ2)

2
{

µ∗K1(r) + [L1(r) + 1]K2(r)
}

,

Kj(r) = sup06t6r

∣

∣L′
j(t)
∣

∣ , j = 1, 2,

µ∗ = ∥Df(x∗)∥ .

We also assume in addition that W ∗ is a convex neighborhood at x∗. Set

σ = min

{

ρ1

ρ2
r, ρ1r,

ρ1τ
∗

2K∗r
s,

ρ1

1 + 2K∗r
C∗,

ρ2

2ρ1K∗r
r
∗
}

> 0, (26)
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then for any x ∈ BM(x∗, σ), there is a sequence (xk) generated by scheme (2)
which starts at x0 = x and converges quadratically to x∗. More precisely, one
has

d(xk+1, x
∗) 6

ρ2

2ρ1r

[

d(xk, x
∗)
]2
, k = 0, 1, . . . (27)

Under the suppositions of Theorem 4.2

Lj(t) 6 Lj(0) +Kj(r)t = Kj(r)t, j = 1, 2 (28)

for every t in the interval [0, r].

Proof. Pick x ∈ BM(x∗, σ) and we set x0 = x, σ0 = d(x∗, x0) < σ. If x = x∗,
then the proof is trivial. We focus on the case where x ̸= x∗. To find the next
iteration, we shall make use of Proposition 3.1. Let χ0 : [0, 1] −→ W ∗ be a
minimizing geodesic which links x∗ = χ0(0) and x0 = χ0(1). The hypothesis
(ii) of Theorem 4.2 tells us

Σχ0,x0,x∗ ∈ L ipL1(σ0)(W
∗), ∥Gχ0,x∗,x0∥ 6 L2(σ0).

Choose ū = 0x∗ , p̄ = −f(x∗), v̄ = R−1
x0
(x∗) ∈ C∗

Bx0 and q̄ = −f(x∗) +
Df(x0)(v̄). Using condition (i) of Theorem 4.2

∥v̄∥x0
6 ρ−1

1 d
(

Rx0(v̄), x0

)

= ρ−1
1 d(x∗, x0) = ρ−1

1 σ0 < ρ−1
1 σ 6 r.

Since

d
(

x∗, Rx0(tv̄)
)

= d
(

Rx0(v̄), Rx0(tv̄)
)

6 ρ2 ∥(1− t)v̄∥x0
6 ρ2ρ

−1
1 σ 6 r

whenever 0 6 t 6 1, the retraction segment Θ0(t) = Rx0(tv̄) lies into W ∗.
Moreover, d

(

x0,Θ0(t)
)

6 ρ2t ∥v̄∥x0
by assumption (i). Thus, applying Propo-

sition 4.1 for z̄ = x∗ and z = x0

ΛR(f, x0, v̄) 6

6 ∥v̄∥x0

∫ 1

0

{

µ∗L1

(

ρ2t ∥v̄∥x0

)

+
[

L1

(

ρ2t ∥v̄∥x0

)

+ 1
]

L2

(

ρ2t ∥v̄∥x0

)

}

dt

=
1

ρ2

∫ ρ2∥v̄∥x0

0

{

µ∗L1(t) + [L1(t) + 1]L2(t)
}

dt

6
1

ρ2

∫ ρ−1
1 ρ2σ0

0

{

µ∗L1(t) + [L1(t) + 1]L2(t)
}

dt.

Taking into account ρ−1
1 ρ2σ0 < ρ−1

1 ρ2σ 6 r, we get Lj(t) 6 Kj(r)t for j = 1, 2
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and t ∈ [0, ρ−1
1 ρ2σ0]. As a result,

ΛR(f, x0, v̄) 6
1

ρ2

∫ ρ−1
1 ρ2 σ0

0

{

µ∗L1(t) + [L1(t) + 1]L2(t)
}

dt

6
1

ρ2

{

µ∗K1(r) + [L1(r) + 1]K2(r)
}

∫ ρ−1
1 ρ2σ0

0

t dt

=
ρ2

ρ21

{

µ∗K1(r) + [L1(r) + 1]K2(r)
}

σ2
0 =

1

2ρ2τ ∗
K∗σ2

0.

Hence

∥f(x∗)− f(x0)− Df(x0)(v̄)∥Rn = ΛR(f, x0, v̄) 6
1

2ρ2τ ∗
K∗σ2

0. (29)

Let us now test the following evaluations














































θ0 = ρ−1
1 ρ2τ

∗[L2(σ0) + L1(σ0)µ
∗] < 1,

τ∗

1−θ0

[

1
2ρ1τ∗

K∗σ2
0

]

< r,
(

1 + θ0
1−θ0

) [

1
2ρ1τ∗

K∗σ2
0

]

< s,

ρ−1
1 σ0 +

τ∗

1−θ0

[

1
2ρ1τ∗

K∗σ2
0

]

< C∗,

ρ2
τ∗

1−θ0

[

1
2ρ1τ∗

K∗σ2
0

]

< rx.

(30)

Indeed, the first relation in (30) is valid from the hypothesis, because of

θ0 6 ρ−1
1 ρ2τ

∗σ0[K2(r) +K1(r)µ
∗] 6 K∗σ0 6 K∗r 6

1

2
.

Besides that, one has K∗σ0 6 K∗r, 1
1−θ0

6
1

1−K∗r
6 2 and θ0

1−θ0
6

K∗r
1−K∗r

6 1.
So, (30) follows from the suppositions (26) and (v).
Returning to the main proof: From (30), we can take some constants r0 > 0
and s0 >

1
2ρ1τ∗

K∗σ2
0 with



































ρ−1
1 ρ2

(

1 + 1+θ0
1−θ0

)

r0 +
τ∗

1−θ0
s0 < r,

(

ρ−1
1 ρ2

)2
[L2(σ0) + L2(σ0)µ

∗]
(

1 + 1+θ0
1−θ0

)

r0 +
(

1 + θ0
1−θ0

)

s0 < s,

ρ−1
1 σ0 + ρ−1

1 ρ2

(

1 + 1+θ0
1−θ0

)

r0 +
τ∗

1−θ0
s0 < C∗,

ρ2

[

ρ−1
1 ρ2

(

1 + 1+θ0
1−θ0

)

r0 +
τ∗

1−θ0
s0

]

< rx.

Now, applying Proposition 3.1 for data ū, p̄, v̄ and q̄ above, the mapping
Φ0(·) = Df(x0)(·)+(F ◦Rx0) (·) satisfies the relation τ0 ∈ REG

(

Φ0, V0

)

, where
τ0 = ρ−1

1 ρ2
τ∗

1−θ0
and V0 = Bx0(v̄, r0)×BRn(q̄, s0). If we pick w0 = −f(x0), then

w0 − q̄ = f(x∗)− [f(x0) + Df(x0)(v̄)] .
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It follows from (29) that (v̄, w0) ∈ V0. Thus, we deduce

dist
(

v̄, Φ−1
0 (w0)

)

6 τ0dist
(

w0, Φ0(v̄)
)

6 τ0 ∥w0 − q̄∥
Rn = ΛR(f, x0, v̄)

6 ρ−1
1 ρ2

τ ∗

1− θ0

[

1

2ρ2τ ∗
K∗σ2

0

]

6 ρ−1
1 K∗σ2

0.

From this, the closed set Φ−1
0 (w0) contains a vector v0 such that

∥v̄ − v0∥x0
= dist

(

v̄, Φ−1
0 (w0)

)

6 ρ−1
1 K∗σ2

0.

By the triangle inequality in Tx0M, we find

∥v0∥x0
6 ∥v̄ − v0∥x0

+ ∥v̄∥x0
6 ρ−1

1 K∗σ2
0 + ρ−1

1 σ0

6 ρ−1
1

(

K∗σ + 1
)

σ0 < ρ−1
1

(

K∗r + 1
)

σ < C∗.

Consequently,

d(x1, x
∗) = d

(

Rx0(v0), Rx0(v̄)
)

6 ρ2 ∥v0 − v̄∥x0
6 ρ2ρ

−1
1 K∗σ2

0

6
ρ2

2ρ1r
[d(x0, x

∗)]2.

Taking into account σ 6
ρ1
ρ2
r and d(x0, x

∗) < σ, we get ρ2
2ρ1r

d(x0, x
∗) 6 1

2
. This

tells us x1 ∈ BM(x∗, σ). Therefore, we can use x1 as a new starting point, and
go on.
Repeating this procedure, the sequence (xk) generated by (2) is well-defined
for which (27) is fulfilled. Exploiting (27) many times, we arrive at

d(xk, x
∗) 6

[

ρ2

2ρ1r
d(x0, x

∗)

]2k−1

d(x0, x
∗) 6

(

1

2

)2k−1

d(x0, x
∗),

which means xk → x∗ quadratically. Hence, the proof is done.

In the statement of Theorem 4.2, the behavior of f and F around the solution
x∗ is a key point. There are many situations in practice where the informations
around x∗ are not available. So, a global version might be quite useful and
significant. The next theorem will be in this sense.
Theorem 4.3 (global analysis). Let M, R, f and F as in Theorem 4.2.
Given a point x ∈ M and let (rx, Cx) be a R-normal pair at x so that
Wx = BM(x, rx) is a convex neighborhood. We require in addition that R ∈
URC

(

ρ1, ρ2, Cx,Wx

)

with 0 < ρ1 6 ρ2. Assume the following statements are
fulfilled:
(i) Φ(·) := Df(x)(·) + (F ◦Rx) (·) satisfying τ ∈ REG

(

Φ, Vr,s(Φ)
)

for some
τ > 0, r > 0, s > 0;
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(ii) dist
(

0, f(x) + F (x)
)

< min
{

s, 1
2ρ1τ

Cx

}

;

(iii) the assumptions (A1) and (A2) are valid with some C1 functions L1, L2;
(iv) α = 2Kβ 6 1, where















K =
(

ρ−1
1 ρ2

)2
τ
{

µxK1(r) + [L1(r) + 1]K2(r)
}

> 0,

β = ρ1τdist
(

0, f(x) + F (x)
)

,

K1(r) = sup06t6r |L′
1(t)| , K2(r) = sup06t6r |L′

2(t)| ,

and µx = ∥Df(x)∥;
(v) ηβ 6 min

{

ρ21ρ
−1r, ρ1ρ

−1
2 r, ρ21ρ

−1
2 Cx, ρ

2
1ρ

−2
2 rx

}

, for η = 2
1+

√
1−α

.

Then, there exists a solution x∗ of problem 0 ∈ f(x) + F (x) such that

d(x, x∗) 6 ρ2ρ
−1
1 βη 6 r. (31)

For such a solution, it has a selection of sequence (xk) generated by (2) and
converges to x∗. More precisely, one has

{

d(xk, x
∗) 6 ρ2ρ

−1
1

(

4
√
1−α
α

λ2k

1−λ2k

)

β, if α < 1,

d(xk, x
∗) 6 ρ2ρ

−1
1 2−k+1β if α = 1,

(32)

where λ = 1−
√
1−α

1+
√
1−α

6 1.

It is clear to see that the case β(τ, x) = 0 is trivial. From now, we assume β > 0.
In order to prove Theorem 4.3, the next technical lemma will be essential.
Lemma 4.4. Let us consider the quadratic polynomial ω(t) = 1

2
Kt2 − t + β.

The Newton iterative sequence applied for the equation ω(t) = 0 reads

t0 = 0, tk+1 = tk − ω(tk)
−1ω(tk). (33)

Then (tk) is well-defined, strictly increasing and converges to the smallest root
t∗ = 1−

√
1−α

K
of ω. Furthermore, the error bounds below are inherited:

• if α < 1, then






t∗ − tk 6
4
√
1−α
α

λ2k

1−λ2k
(t1 − t0) =

4
√
1−α
α

λ2k

1−λ2k
β,

2(tk+1−tk)

1+

√

1+4λ2k(1+λ2k)
−2 6 t∗ − tk 6 λ2k−1

(tk − tk−1);
(34)

• if α = 1, then
{

t∗ − tk 6 2−k+1(t1 − t0) = 2−k+1β,

2
(√

2− 1
)

(tk+1 − tk) 6 t∗ − tk 6 tk − tk−1.
(35)
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Proof of Lemma 4.4. The existence of (tk) and the error bounds (34), (35)
can be found in [11]. For the monotonicity, let us define the function φ : t ∈
(−∞, t∗) 7−→ t − ω′(t)−1ω(t). By a simple computation φ′(t) = ω′′(t)ω(t)

[ω′(t)]2
=

K
ω(t)

[ω′(t)]2
. The polynomial ω is positive on the interval I = (−∞, t∗), so φ′(t) >

0. Since tk+1 = φ(tk), we obtain the necessary conclusion by induction.

Remark 4.5. From Lemma 4.4 we have

tk < t∗ =
1−

√
1− α

K
=

α

K(1 +
√
1− α)

=
2β

1 +
√
1− α

= ηβ 6 r (36)

for all k. Moreover, if α = 1, error bounds in (35) yield

δk = tk+1 − tk 6
1

2
(√

2− 1
)(t∗ − tk) 6

1

2
(√

2− 1
)2−k+1β. (37)

When α < 1, taking into account (34), we deduce

δk = tk+1 − tk 6
1

2

(

1 +

√

1 +
4λ2k

(

1 + λ2k
)2

)

(t∗ − tk)

6
1

2

(

1 +

√

1 +
4λ

(1 + λ)2

)

(t∗ − tk) =
1 +

√
1 + α

2
(t∗ − tk)

6
1 +

√
1 + α

2

4
√
1− α

α

λ2k

1− λ2k
β 6

1 +
√
1 + α

2

4
√
1− α

α

λ2

1− λ2
β

=
α
(

1 +
√
1 + α

)

2
(

1 +
√
1− α

)2β.

In particular,

δk 6
1 +

√
2

2
β =

1 +
√
2

2
ρ1τdist

(

0, f(x) + F (x)
)

. (38)

Now, we begin to prove Theorem 4.3.

Proof of Theorem 4.3. We shall construct by induction the sequence (xk)
satisfying

d(xk, xk+1) 6 ρ2ρ
−1
1 (tk+1 − tk) , k = 0, 1, . . . (39)

At the initial step, we set x0 = x, Φ0 = Φ, r0 = r, s0 = s, τ0 = τ . Then
τ0 ∈ REG

(

Φ0, Vr0,s0(Φ0)
)

. Put z0 = −f(x0), one has

dist
(

z0,Φ0(0x0)
)

= dist
(

− f(x0), F (x0)
)

= dist
(

0, f(x) + F (x)
)

< s0,

23



which implies (0x0 , z0) ∈ Vr0,s0(Φ0). Since τ0 ∈ REG
(

Φ0, Vr0,s0(Φ0)
)

, we get

dist
(

0x0 ,Φ
−1
0 (z0)

)

6 τ0dist
(

z0,Φ0(0x0)
)

= τdist
(

0, f(x) + F (x)
)

= ρ−1
1 β.

Hence, there is a vector v0 in Φ−1
0 (z0) with

∥v0∥x0
= dist

(

0x0 ,Φ
−1
0 (z0)

)

6 ρ−1
1 β = ρ−1

1 (t1 − t0) . (40)

To continue, we pick x1 = Rx0(v0). Observe that z0 = −f(x0) ∈ Φ0(v0), or
equivalently,

−f(x0) ∈ Df(x0)(v0) + (F ◦Rx0) (v0).

Therefore, x1 verifies (2). Furthermore, note that η = 2
1+

√
1−2Kβ

> 1, one has

∥v0∥x0
6 ρ−1

1 β < ρ−1
1 ηβ 6 ρ1ρ

−1
2 Cx 6 Cx.

By virtue of R ∈ URC
(

ρ1, ρ2, Cx,Wx

)

, we deduce

d(x1, x0) = d
(

Rx0(v0), x0

)

6 ρ2 ∥v0∥x0
6 ρ2ρ

−1
1 β = ρ2ρ

−1
1 (t1 − t0) , (41)

which means that (39) is valid for k = 0.
Passing to the inductive step, given k (k > 1) points x1, . . . , xk in M and k

corresponding tangent vectors v0 ∈ Tx0M, …, vk−1 ∈ Txk−1
M for which the

following relations hold
• xj+1 = Rxj

(vj), j = 0, . . . , k − 1;
• vj ∈ Φ−1

j (zj), where zj = −f(xj), Φj(·) = Df(xj)(·) +
(

F ◦Rxj

)

(·),
j 6 k − 1;

• ∥vj∥xj
6 ρ−1

1 (tj+1 − tj) := ρ−1
1 δj, j 6 k − 1;

• d(xj, xj+1) 6 ρ2ρ
−1
1 (tj+1 − tj), j 6 k − 1.

We also denote Φk(·) = Df(xk)(·) + (F ◦Rxk
) (·) and zk = −f(xk). The

triangle inequality in M tells us

d(xj, x) = d(xj, x0) 6

j−1
∑

i=0

d(xi, xi+1) 6

j−1
∑

i=0

ρ2ρ
−1
1 (ti+1 − ti) = ρ2ρ

−1
1 tj.

So, by (36) d(xj, x) 6 ρ2ρ
−1
1 tk < ρ2ρ

−1
1 t∗ = ρ2ρ

−1
1 ηβ 6 rx.

This means xj ∈ Wx for j 6 k. We are now going to estimate the value of
quantity dist

(

zk,Φk(0xk
)
)

. From the definition of zk and Φk, it holds that

dist
(

zk,Φk(0xk
)
)

= dist
(

− f(xk), F (xk)
)

.

But by the induction hypothesis

−f(xk−1) = zk−1 ∈ Φk−1(vk−1) = Df(xk−1)(vk−1) + F (xk)
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we obtain

dist
(

zk,Φk(0xk
)
)

6 ∥−f(xk)− [−f(xk−1)− Df(xk−1)(vk−1)]∥Rn

= ΛR(f, xk−1, vk−1).

This suggests using Proposition 4.1. We can see that for t ∈ [0, 1]

d
(

x,Rxk−1
(tvk−1)

)

6 d(x, xk−1) + d
(

xk−1, Rxk−1
(tvk−1)

)

6 ρ2ρ
−1
1 tk−1 + tρ2 ∥vk−1∥xk−1

6 ρ2ρ
−1
1 tk−1 + ρ2ρ

−1
1 (tk − tk−1)

= ρ2ρ
−1
1 tk < ρ2ρ

−1
1 t∗ = ρ2ρ

−1
1 ηβ < rx,

so that the retraction segment Rxk−1
(tvk−1) (0 6 t 6 1) is in Wx. Invoking

Proposition 4.1 and taking into account

d
(

xk−1, Rxk−1
(tvk−1)

)

6 tρ2 ∥vk−1∥xk−1
6 ρ2ρ

−1
1 δk−1t,

we find

ΛR(f, xk−1, vk−1) 6

6 ρ−1
1 δk−1

∫ 1

0

{

µxL1(ρ2ρ
−1
1 δk−1t) + [L1(ρ2ρ

−1
1 δk−1t) + 1]L2(ρ2ρ

−1
1 δk−1t)

}

dt

=
1

ρ2

∫ ρ2ρ
−1
1 δk−1

0

{

µxL1(t) + [L1(t) + 1]L2(t)
}

dt

6
1

ρ2

∫ ρ2ρ
−1
1 δk−1

0

[µxK1(r) + [L1(r) + 1]K2(r)] t dt

=
ρ2

2ρ21

{

µxK1(r) + [L1(r) + 1]K2(r)
}

δ2k−1.

As a result,

dist
(

zk,Φk(0xk
)
)

6
ρ2

2ρ21

{

µxK1(r)+[L1(r)+1]K2(r)
}

δ2k−1 6
1

2ρ1τ
Kδ2k−1. (42)

For the goal of applying Proposition 3.3, let us check that


























θk = ρ−1
1 ρ2τ [L2(tk) + L1(tk)µx] < 1,

ρ2ρ
−2
1 tk +

τ
1−θk

(

1
2ρ1τ

Kδ2k−1

)

< min {Cx, r} ,
1

2ρ1τ
Kδ2k−1 < s,

ρ22ρ
−2
1 tk + ρ2

τ
1−θk

(

1
2ρ1τ

Kδ2k−1

)

< rx.

(43)

Indeed, since tk < t∗ = ηβ 6 r (see (36)), it holds that L1(tk) 6 K1(r)tk and
L2(tk) 6 K2(r)tk. Thus,

θk 6 ρ−1
1 ρ2τ [K2(r) +K1(r)µx]tk 6 Ktk < Kt∗ = 1−

√
1− α 6 1,
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and the first r elation i n ( 43) i s d one. F or t he s econd o ne, w e e xpand the 
polynomial ω with center at tk−1

ω(tk) = ω(tk−1) + ω′(tk−1)δk−1 + ω′′(tk−1)
δ2k−1

2
=

1

2
Kδ2k−1.

Consequently,

ρ2ρ
−2
1 tk +

τ

1− θk

(

1

2ρ1τ
Kδ2k−1

)

6 ρ2ρ
−2
1 tk +

1

1−Ktk

(

ρ2

2ρ21
Kδ2k−1

)

= ρ2ρ
−2
1

[

tk − ω′(tk)
−1ω(tk)

]

= ρ−1
1

(

tk + δk
)

= ρ2ρ
−2
1 tk+1 < ρ2ρ

−2
1 t∗ = ρ2ρ

−2
1 ηβ 6 min

{

r, Cx

}

.

Next, we use (38) and combine this relation with the initial condition (ii)

1

2ρ1τ
Kδ2k−1 6

1

2ρ1
τ−1K

(

1 +
√
2

2

)2

β2 =
1

4ρ1

(

1 +
√
2

2

)2

τ−1αβ

=

(

1 +
√
2

4

)2

α dist
(

0, f(x) + F (x)
)

< s.

Finally, since

ρ22ρ
−2
1 tk + ρ2

τ

1− θk

(

1

2ρ1τ
Kδ2k−1

)

6 ρ22ρ
−2
1

(

tk +
1

1−Ktk
ω(tk)

)

= ρ22ρ
−2
1 (tk + δk) = ρ22ρ

−2
1 tk < ρ22ρ

−2
1 t∗ = ρ22ρ

−2
1 ηβ 6 rx,

the last inequality in (43) is valid due to the supposition (v) of Theorem 4.3.
In summary, (43) is completely fulfilled.
According to (43), we can select some positive numbers rk and sk such that



















1
2ρ1τ

Kδ2k−1 < sk < s,

ρ2ρ
−2
1 tk + ρ−1

1 ρ2rk +
τ

1−θk
sk < min {r, Cx} ,

ρ−2
1 ρ22tk + ρ−1

1 ρ22rk + ρ2
τ

1−θk
sk < rx.

Recalling d(xk, x) 6 ρ2ρ
−1
1 tk, Proposition 3.3 asserts that τk ∈ REG

(

Φk, Vk

)

,
where

τk = ρ−1
1 ρ2

τ

1− θk
6 ρ−1

1 ρ2
τ

1−Ktk
, Vk = Vrk,sk(Φk).

Thanks to (42), the inclusion (0xk
, zk) ∈ Vk is true. This guarantees for the

estimations below
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dist
(

0xk
,Φ−1

k (zk)
)

6 τkdist
(

zk,Φk(0xk
)
)

6 ρ−1
1 ρ2

τ

1−Ktk

ρ2

2ρ21

{

µxK1(r) + [L1(r) + 1]K2(r)
}

δ2k−1

= ρ−1
1

(

1

1−Ktk

1

2
Kδ2k−1

)

= ρ−1
1

[

− ω′(tk)
−1ω(tk)

]

= ρ−1
1 (tk+1 − tk).

Because Txk
M is finite dimensional, there exists vk ∈ Φ−1

k (zk) with

∥vk∥xk
= dist

(

0xk
,Φ−1

k (zk)
)

6 ρ−1
1 (tk+1 − tk).

And we update now xk+1 = Rxk
(vk) as the next iteration.

The selection of vk tells us −f(xk) = zk ∈ Φk(vk), which is equivalent to

−f(xk) ∈ Df(xk)(vk) + (F ◦Rxk
) (vk).

As a consequence, (xk, vk) is generated by (2). Using (38) once more, from
hypothesis (ii) we arrive at

∥vk∥xk
6

1 +
√
2

2
τρ1dist

(

0, f(x) + F (x)
)

< Cx,

and hence

d(xk+1, xk) = d (Rxk
(vk), xk) 6 ρ2 ∥vk∥xk

6 ρ2ρ
−1
1 (tk+1 − tk) .

The construction of sequence (xk) is now completed by induction.
Since (tk) is convergent, and d(xk, xk+1) 6 ρ2ρ

−1
1 (tk+1 − tk), the sequence (xk)

is Cauchy. So, xk must converge to some x∗ in M. The error bounds in (31)
and (32) follows from (34), (35) and the following

d(xk, x
∗) 6

∑

j>k

d(xj, xj+1) 6 ρ2ρ
−1
1

∑

j>k

(tj+1 − tj) = ρ2ρ
−1
1 (t∗ − tk) .

To finish the proof, we claim that x∗ solves (1). In fact, it follows from the
preceding construction that

0 ∈ f(xk) + Df(xk)(vk) + F (xk+1). (44)

Fixing an index k which is large enough. If χk : [0, 1] −→ Wx is a minimizing
geodesic joining x∗ = χk(0) to xk = χk(1), then ℓ(χk) = d(x∗, xk). Using the
hypothesis (iii) of Theorem 4.3,

∥Gχk,x∗,xk
∥ 6 L2(ℓ(χk)) = L2

(

d(x∗, xk)
)

6 K2(r)d(x
∗, xk).
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Note that Gχk,x∗,xk
= −Df(xk)Pχk,x∗,xk

+ Df(x∗), so

∥Df(xk)∥ =
∥

∥−Gχk,x∗,xk
P−1
χk,x∗,xk

+ Df(x∗)P−1
χk,x∗,xk

∥

∥

6 ∥Gχk,x∗,xk
∥
∥

∥P−1
χk,x∗,xk

∥

∥+ ∥Df(x∗)∥
∥

∥P−1
χk,x∗,xk

∥

∥

= ∥Gχk,x∗,xk
∥+ ∥Df(x∗)∥ 6 K2(r)d(x

∗, xk) + ∥Df(x∗)∥ .

Thus, we obtain

∥Df(xk)(vk)∥Rn 6 ∥Df(xk)∥ ∥vk∥xk

6
[

K2(r)d(x
∗, xk) + ∥Df(x∗)∥

]

ρ−1
1 (tk+1 − tk) .

Hence, Df(xk)(vk) converges to 0 in R
n as k → ∞. Finally, by passing to the

limit in (44), we get 0 ∈ f(x∗) + F (x∗).

Remark 4.6. In the proofs of Theorems 4.2 and 4.3, the existence and the
convergence of a Newton sequence (xk) require the assumptions (A1) and (A2)
which are imposed on covariant derivative Df as well as the retraction R.
Assumption (A2) usually concerns with the so-called ”Lipschitz continuity”
for Df (see, e.g., [10, 9]). If the higher order covariant derivatives Dkf (cf.
[6, 21]) are involved in the hypotheses of those theorems, we obtain (A2) from
the informations on Dkf . Therefore, we can achieve some new versions of
Theorems 4.2 and 4.3 under conditions of type Kantorovich and/or Smale.
On the other hand, if we restrict our consideration on the case F (x) ≡ C,
and R = exp is the exponential, then Theorems 4.2 and 4.3 can be slightly
improved. Indeed, as noticed in Remark 3.4, the stability of metric regularity
property can be obtained by using only (A2). Besides that, when R = exp,
the essential Proposition 4.1 holds with L1(t) ≡ 0 and L2(t) is the function in
(A2) since Pχ,χ(0),χ(t) (χ

′(0)) = χ′(t) for any arbitrary geodesic χ. Consequently,
Kantorovich-type versions of Theorems 4.2 and 4.3 like in [21] can be recovered.
Now, we keep assuming F (x) ≡ C, while (A2) is replaced by the following
(A3) For each x and y in Ω so that R−1

x (y) is a singleton, one has
∥

∥GR
x,y

∥

∥ =
∥

∥Df (x)− Df (y)TR
x,y

∥

∥ 6 L
(

d
(

x, y
))

. (45)

where TR
x,y is the vector transport defined by

TR
x,y(v) = (dRx)u (v) =

d

dt

{

Rx(u+ tv)
}

∣

∣

∣

∣

t=0

, u = R−1
x (y).

We refer to [1, Section 8.1] and [17] for more details about transportation of
the form TR

x,y. Then, by considering f along the retraction curve χ(t) = Rz(tu),
the estimation (25) in Proposition 4.1 simply reads

ΛR(f, z, u) 6 ∥u∥z
∫ 1

0

L
(

d
(

z, χ(t)
))

dt. (46)
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So, by removing all conditions related to L1 and putting L instead of L2 in
both Theorems 4.2 and 4.3, we obtain Kantorovich-type results for algorithm
(2), which might be viewed as extensions of the corresponding ones studied in
[21].

5. Concluding Remarks

In this paper, we have studied a Newton-type algorithm for solving generalized
equations in a finite dimensional Riemannian manifold. We provided sufficient
conditions that guaranteed the existence and the quadratic convergence of the
sequence generated by the extended Newton’s method. This work can be con-
sidered one of the first that studied Newton’s type algorithms for set-valued
inclusions of the form (1), where the metric regularity concept plays an impor-
tant role. Due to the large number of applications in the calculus of variations
or PDE’s e.g., it would be interesting to consider the infinite dimensional Rie-
mannian manifolds modeled on a Banach or a Hilbert space.
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