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Dedicated to

Introduction

We consider the problem finding a solution of inclusion 0 ∈ f (x) + F (x).

(1)

Here, the variable x varies in a finite dimensional Riemannian manifold M, f : M -→ R n is at least continuous, while F : M ⇒ R n is a set-valued mapping. We suppose that the graph Gr(F ) of F is closed with respect to the product topology on M × R n .

The general inclusion (1) covers many situations which have been studied widely in the literature. When M is a Euclidean space, (1) is nothing but the so-called generalized equation. In [START_REF] Adly | Newton's method for solving inclusions using set-valued approximations[END_REF], the authors studied the (super-)linear convergence of a Newton-type iterative process for solving generalized equations. The Kantorovich approach and Smale's classical (α, γ)-theory was extended to generalized equations in [START_REF] Adly | Newton's method for solving generalized equation: Kantorovich's and Smale's approaches[END_REF]. If F (x) ≡ 0, problem (1) reduces to solve nonlinear equation f (x) = 0 on M. In the case F (x) ≡ K for a fixed cone K ⊂ R n , (1) coincides with the problem studied in [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF].

The current work considers a scheme of Newton-type method to approximate a solution of [START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF]. This is based on the well-known Josephy-Newton method applied to the generalized equation which was introduced in [START_REF] Dontchev | Implicit Functions and Solution Mappings: A View from Variational Analysis[END_REF]. The strategy is that to start at a guess point x 0 nearby a solution, and generates a sequence (x k , v k ) in the tangent bundle T M by the scheme

0 ∈ f (x k ) + Df (x k )(v k ) + (F • R x k ) (v k ), x k+1 = R x (v k ). (2) 
In [START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF], Df (x) : T x M -→ R n and R x : T x M -→ M are respectively the covariant derivative of f and the retraction at x (see Section 2). Observe that when F ≡ 0, (2) subsumes as a particular case of Newton-type methods for solving nonlinear equation on manifold M studied e.g. in [START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF][START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF]. Furthermore, it might be viewed as an extension of algorithms for finding singularities of a vector field considered by the works [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF][START_REF] Ferreira | Local convergence of Newton's method under a majorant condition in Riemannian manifolds[END_REF][START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF] if f is replaced by a smooth vector field X, and F is the zero field F (x) = 0 x . In the same spirit, more other discussions about Newton-type method applying on smooth manifold can be found in [START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Smith | Optimization techniques on Riemannian manifolds, in: Hamiltonian and Gradient Flows[END_REF][START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF][START_REF] Udrişte | Convex Functions and Optimization Methods on Riemannian Manifolds[END_REF].

The paper is organized as follows. In section 2, we recall basic elements, notations and backgrounds on Riemannian geometry that will be useful in the sequel. Section 3 is devoted to the stability of the metric regularity property of the sum of two operators on Riemannian manifolds. In section 4, we prove the local and global convergence of the retraction Newton-type algorithm for solving [START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF].

Notions and backgrounds

Throughout this paper, we prefer to adopt the standard notations and different concepts used in [START_REF] Carmo | Riemannian Geometry, Mathematics: Theory and Applications[END_REF][START_REF] Lee | Riemannian manifolds: An Introduction to Curvature[END_REF] dealing with the basic background from Riemannian geometry. For more details about these events, the readers are referred to [START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF][START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Lang | Fundamentals of Differential Geometry[END_REF][START_REF] Sakai | Riemannian Geometry[END_REF] and references therein.

Riemannian manifold, metric structure. All objects under consideration in this paper concerns finite dimensional smooth manifolds. The terminology smooth is meant to be differentiable at least beyond the order that appears. Elementary notions of differential geometry are assumed to be familiar.

A Riemannian manifold M of dimension m is a differentiable manifold of the same dimension which is endowed with a Riemannian metric g. If x is a point in M, the norm induced by g in the tangent space T x M of M at x is denoted by ∥•∥ x . By B x (v, r) (resp. B x (v, r)) we mean the open (resp. closed) ball in T x M with center at v ∈ T x M and radius r > 0. To mention about the open (closed) unit ball in T x M, we write B x (resp. B x ).

Let χ : [a, b] -→ M be a piecewise smooth curve, then its length is given by the quantity

ℓ(χ) = ∫ b a ∥χ ′ (t)∥ χ(t) dt.
Recall that here χ ′ (t) stands for the tangent vector (or velocity) of χ at the instant t. (This is sometimes denoted in other ways, such as, χ(t) or dχ dt (t).) For two points x, y in the manifold M, the Riemannian distance between x and y can be defined as follow

d M (x, y) = inf { ℓ(χ) χ : [a, b] ⊂ R -→ M piecewise smooth; χ(a) = x, χ(b) = y } .
We will omit the subscript M when the manifold is fixed.

With the Riemannian distance d M , M becomes a metric space. Unless it has some other specification, the space (M, d M ) is always supposed to be complete.

Completeness can be described via the famous Hofp-Rinow theorem (see [START_REF] Carmo | Riemannian Geometry, Mathematics: Theory and Applications[END_REF][START_REF] Lee | Riemannian manifolds: An Introduction to Curvature[END_REF]). As usual, we denote the open and closed ball on M with center x and radius r > 0 by B M (x, r) and B M (x, r), respectively.

Connection, covariant derivative. Let ∇ be the Levi-Civita connection on the manifold M. Consider a smooth function f : M -→ R and a vector field Y on M. The covariant derivative of f with respect to Y is the function

∇ Y f := Y f
, where Y f indicates the action of Y on f (see [START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF][START_REF] Lee | Riemannian manifolds: An Introduction to Curvature[END_REF]). For x ∈ M, the covariant derivative Df (x) :

T x M -→ R of f at x is a function which assigns to each v ∈ T x M the value Df (x)(v) := (∇ Y f )(x) ∈ R, where Y is a vector field such that Y x = v. Explicitly, we have Df (x)(v) = χ ′ (0)(f ) = (f • χ) ′ (0) (3) 
for any smooth curve χ satisfying χ(0) = x and χ ′ (0

) = v. Generally, if f = (f 1 , . . . , f n ) : M -→ R n is a smooth map, then one defines Df (x) =    Df 1 (x) . . . Df n (x)   
as the covariant derivative of f at x. The covariant derivative Df (x) is a linear map from T x M into R n (cf. [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF]). In the sequel, we use the following norm for the covariant derivative

∥Df (x)∥ := sup u∈TxM ∥u∥ x 1 ∥Df (x)(u)∥ R n . (4) 
Vector transportation. We will need later the concept of vector transports. They provide a way to link between different tangent spaces of a manifold. Among them, parallel transportations are the most typical and important. Assume χ : [a, b] -→ M is a smooth curve. By a vector field V along χ, we mean a smooth map such that V (t) ∈ T χ(t) M. V is said to be parallel along χ if its covariant derivative ∇ χ ′ V vanishes. Then, the parallel transport

P χ,χ(a),χ(b) : T χ(a) M -→ T χ(b) M is given by P χ,χ(a),χ(b) (v) = V (b),
where V is the unique vector field along χ satisfying

∇ χ ′ V = 0 and V (a) = v.
It is well-known from Riemannian geometry that P χ,χ(a),χ(b) is a linear isometry.

In particular, one always has

P χ,χ(a),χ(b) T χ(a) M,T χ(b) M = 1 and P -1 χ,χ(a),χ(b) = P χ,χ(b),χ(a) .
Retraction. Retraction (cf. [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF][START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF]) is a crucial object for our approach. In this paper, a retraction is meant to be a smooth map R : T M -→ M from the tangent bundle into M so that its restriction R x (retraction at x) of R onto each tangent space

T x M satisfies • R x (0 x ) = x, • (dR x ) 0x = id TxM , with the identification T 0x (T x M) ≃ T x M.
On the preceding descriptions, (dR x ) 0x stands for the differential of R x at the origin 0 x of T x M. If R is a retraction, and (x, v) is in T M, then the map χ : t -→ R x (tv) defines a smooth curve on M satisfying χ(0) = x and χ ′ (0) = v. There is a natural retraction reduced by geodesics on M, known as exponential map of the tangent bundle [START_REF] Carmo | Riemannian Geometry, Mathematics: Theory and Applications[END_REF]. Recall that a curve

χ : I -→ M is called a geodesic, if its acceleration ∇ χ ′ χ ′ is vanishing. The exponential map exp : T M -→ M can be defined by exp(x, v) = χ(1, x, v), where t -→ χ(t, x, v) is the unique geodesic such that χ(0, x, v) = x and χ ′ (0, x, v) = v.
The exponential map has many important properties. At each point of a Riemannian manifold, there is a normal neighborhood for which exp x is injective on some ball around the origin of tangent space T x M (see [START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF][START_REF] Carmo | Riemannian Geometry, Mathematics: Theory and Applications[END_REF][START_REF] Sakai | Riemannian Geometry[END_REF]). In accordance with this property, we will establish here a similar result applied for any retraction. The proof is based on the same strategy as the case of exponential maps presented in the literature.

Proposition 2.1. Let M be a complete m-dimensional Riemannian manifold, and let R : T M -→ M be a retraction. Then for every x ∈ M there exists a neighborhood W x = B M (x, r x ) (r x > 0 depends on x) and a real number

C R (x) > 0 such that if y ∈ W x then R y : T y M -→ M is injective in the ball C R (x)B y with R y (C R (x)B y ) ⊃ W x .
We will call such a pair (r x , C R (x)) as a R-normal pair at x. Proof. Let (U, x) be a local coordinate of M at x. Then

( U × U, (x, x)
) is a local coordinate on M × M. Consider the map H : T U -→ M × M given by

H(z, v) = ( z, R z (v) ) . Since R x (0 x ) =
x and (dR x ) 0x = id, the matrix of dH (x,0x) in the local coordinate above can be written as follow

( I 0 * I
) .

Hence, we can apply an analogous argument as the proof of existence for normal neighborhood in Riemannian manifold and obtain the required conclusion. For shortness, one keeps in mind [15, Lemma 5.12] and/or [START_REF] Carmo | Riemannian Geometry, Mathematics: Theory and Applications[END_REF]Theorem 3.7].

Besides Proposition 2.1, we shall also need some other facts. The next statement will be useful throughout the rest of this paper. M and positive numbers ε, ρ 1 , ρ 2 . We say that R satisfies the uniform rate condition on Ω with respect to ratios ρ 1 , ρ 2 and radius ε, written as R ∈

URC(ρ 1 , ρ 2 , ε, Ω), if ρ 1 ∥u -v∥ x d ( R x (u), R x (v) ) ρ 2 ∥u -v∥ x (5) 
for all x ∈ Ω and u, v ∈ εB x .

Remark 2.3. It is obvious to see that [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF] is trivial in the case M = R n and R is the usual translation R x (u) = x + u. Another less trivial case will be showed in Example 2.4 below. When R = exp is the exponential, the left-hand side of ( 5) is satisfied on any Hadamard manifold (for instance, cf. [START_REF] Sakai | Riemannian Geometry[END_REF], Chapter V, Proposition 4.5). If R = exp and Ω = B M (x, r), where r is small enough, the right-hand side of ( 5) is also valid in terms of local property [START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF][START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF]. For general retractions, a condition ensures (5) appeared in the work [START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF], where retractions R x are required to satisfy the equicontinuous derivative on Ω.

Example 2.4 (retraction on the unit sphere). Consider the m-unit sphere

S m := { x ∈ R m+1 : ∥x∥ 2 = x T x = 1 }
, where the vector is written in column form. S m is endowed with the Riemannian metric

g x (u, v) = ⟨u, v⟩ TxS m := u T v, ∀u, v ∈ T x S m = { z ∈ R m+1 : z T x = 0 } . (6) 
The Riemannian distance associated to the metric above is given by

d(x, y) = arccos ( x T y ) , x, y ∈ S m . (7) 
According to [START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF], let us consider the retraction

R x (u) = x + u ∥x + u∥ , x ∈ S m , u ∈ T x S m . (8) 
Observe that we have

d ( x, R x (u) ) = arccos ( x T (x + u) ∥x + u∥ ) = arccos 1 √ 1 + ∥u∥ 2 = arctan ∥u∥ .
So, R x is injective on the whole space T x S m and R x (εB x ) = B S m (x, arctan ε) for every x ∈ S m and ε > 0.

Let r > 0 be small enough and Ω ⊂ S m is a closed set. Suppose that x ∈ Ω and u, v ∈ rB x ⊂ T x S m are fixed. For brevity, we put

d := d ( R x (u), R x (v)
) . From ( 7) and ( 8) we get

cos d = R x (u) T R x (v) = 1 ∥x + u∥ ∥x + v∥ (x + u) T (x + v) = 1 + u T v ( 1 + ∥u∥ 2 ) 1/2 ( 1 + ∥v∥ 2 ) 1/2 .
Hence

sin 2 d = 1 -cos 2 d = ∥u -v∥ 2 + ∥u∥ 2 ∥v∥ 2 - ( u T v ) 2 ( 1 + ∥u∥ 2 ) ( 1 + ∥v∥ 2 ) . It is clear that ∥u∥ 2 ∥v∥ 2 - ( u T v ) 2 0, so sin 2 d ∥u -v∥ 2 ( 1 + ∥u∥ 2 ) ( 1 + ∥v∥ 2 ) ( 1 1 + r 2 ) 2 ∥u -v∥ 2 . (9) 
On the other hand, we have 2u

T v = ∥u∥ 2 + ∥v∥ 2 -∥u -v∥ 2 , which implies ∥u∥ 2 ∥v∥ 2 - ( u T v ) 2 = ∥u∥ 2 ∥v∥ 2 - 1 4 
( ∥u∥ 2 + ∥v∥ 2 -∥u -v∥ 2 ) 2 = 1 2 
( ∥u∥ 2 + ∥v∥ 2 ) ∥u -v∥ 2 - 1 4 [ ∥u -v∥ 4 + ( ∥u∥ 2 -∥v∥ 2 ) 2 ]
1 2

( ∥u∥ 2 + ∥v∥ 2 ) ∥u -v∥ 2 .
Thus,

sin 2 d [ 1 + 1 2 ( ∥u∥ 2 + ∥v∥ 2 )] ∥u -v∥ 2 ( 1 + ∥u∥ 2 ) ( 1 + ∥v∥ 2 ) ∥u -v∥ 2 . ( 10 
)
Note that

d d ( x, R x (u) ) + d ( x, R x (v) )
= arctan ∥u∥ + arctan ∥v∥ π 2 whenever u, v are in the unit ball of T x S m . Taking into account the following fact

0 < t π 2 =⇒ 2 π sin t t 1, (9) 
and [START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF] give us

1 1 + r 2 d ( R x (u), R x (v) ) ∥u -v∥ π 2 , 0 r 1, u ̸ = v ∈ rB x .
Consequently,

R ∈ URC (ρ 1 (r), ρ 2 (r), r, Ω) , (11) 
where r ∈ (0, 1], ρ 1 (r) = 1 1+r 2 and ρ 2 (r) = π 2 .

Stability of the metric regularity property on Riemannian manifolds

To study the convergence of schemes like (2), the concept of metric regularity for set-valued mapping [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF] plays an important role in our analysis. Recall that a set-valued (or also multivalued) mapping Φ : X ⇒ Y between two metric spaces X and Y is a correspondence assigning to each x ∈ X a subset Φ(x) ⊂ Y . Such a mapping is totally determined by its graph Gr(Φ) :=

{ (x, y) ∈ X × Y : y ∈ Φ(x)
} . The mapping Φ is said to be metrically regular on a subset V ⊂ X × Y if there exists a constant κ > 0 (a modulus of regularity) such that

dist X ( x, Φ -1 (y) ) κdist Y ( y, Φ(x) ) , for all (x, y) ∈ V. (12) 
In [START_REF] Helgason | Differential Geometry, Lie Groups, and Symmetric Spaces[END_REF], dist X (•, •) and dist Y (•, •) are respectively the distances in X and Y , while Φ -1 stands for the inverse of Φ, given by

x ∈ Φ -1 (y) ⇐⇒ y ∈ Φ(x).
When dealing with a property like ( 12), we will sometimes write κ ∈ REG ( Φ, V ) to simplify notations. Moreover, we also write G ∈ L ip λ (S) to indicate that the mapping (maybe set-valued) G is Lipschitz continuous on the set S with a modulus λ. In words,

G ∈ L ip λ (S) means d H Y ( G(x), G(y) ) λd X (x, y), x, y ∈ S, (13) 
where

d H Y ( C, D ) is the Hausdorff distance [16] between two subsets C and D in Y d H Y ( C, D ) = sup y∈Y d Y ( y, C ) -d Y ( y, D ) . ( 14 
)
We now present the main results of this section, which ensures the stability of metric regularity property. These are essential preliminaries for the convergence analysis at the end of this paper.

Proposition 3.1 (stability of local metric regularity). Given a complete

Riemannian manifold of dimension m, and a retraction R : T M -→ M. Fix a point x ∈ M and let (r x , C R (x)) be a R-normal pair at x. Suppose that there exist some positive numbers 0

< ρ 1 ρ 2 satisfying R ∈ URC(ρ 1 , ρ 2 , δ, W x ) with W x = B M (x, r x ) and δ = C R (x)
. Pick some tangent vector ū ∈ T x M and some positive constants r, s, r ′ , s ′ , λ, λ ′ , σ and κ obeying the following relations

                   θ = ρ -1 1 ρ 2 κ (λ ′ + λµ x ) < 1, ρ -1 1 ρ 2 ( 1 + 1+θ 1-θ ) r ′ + κ 1-θ s ′ r, ( ρ -1 1 ρ 2 ) 2 (λ ′ + λµ x ) ( 1 + 1+θ 1-θ ) r ′ + ( 1 + θ 1-θ ) s ′ s, ρ -1 1 ρ 2 ∥ū∥ x + ρ -1 1 σ + ρ -1 1 ρ 2 ( 1 + 1+θ 1-θ ) r ′ + κ 1-θ s ′ δ, ρ 2 ∥ū∥ x + ρ 2 [ ρ -1 1 ρ 2 ( 1 + 1+θ 1-θ ) r ′ + κ 1-θ s ′ ] r x , (15) 
for

µ x = ∥Df (x)∥. Assume that the mapping Φ x = Df (x)(•) + (F • R x ) (•) is metrically regular on a neighborhood V x := B x (ū, r) × B R n (p, s) of (ū, p) ∈ Gr(Φ x ) together with a modulus κ. Pick some point y ∈ B M (x, σ) ∩ W x such that, for each geodesic χ : [0, 1] -→ M having χ(0) = x, χ(1) = y and χ([0, 1]) ⊂ W x : (i) Σ χ,y,x = R -1 x • R y -P χ,y,x ∈ L ip λ (δB y ); (ii) the linear map G χ,x,y := Df (y) • P χ,x,y -Df (x) satisfies ∥G χ,x,y ∥ λ ′ . Set v = ( R -1 y • R x ) (ū) ∈ T y M, q = p -Df (x)(ū) + Df (y)(v) ∈ R n , and τ = ρ -1 1 ρ 2 κ 1-θ . Then one has τ ∈ REG ( Φ y , V y ) , where Φ y = Df (y)(•) + (F • R y ) (•) and V y := B y (v, r ′ ) × B R n (q, s ′ ).
To prove Proposition 3.1, we need the following lemma.

Lemma 3.2. Under the assumptions of Proposition 3.1, one has

Ψ y,x := Df (y) -Df (x) • ( R -1 x • R y ) ∈ L ip λ ′ +λµx (δB y ).
Proof. Without loss of generality, we can focus on the case where W x is a normal neighborhood at x. Let χ : [0, 1] -→ W x be a geodesic having χ(0) = x and χ(1) = y. It is not difficult to check that

Ψ y,x (v) = ( G χ,x,y • P -1 χ,x,y ) (v) + (Df (x) • Σ χ,y,x ) (v),
for v ∈ δB y . As a result, we find

∥Ψ y,x (v ′ ) -Ψ y,x (v)∥ R n = ( G χ,y,x • P -1 χ,x,y ) (v ′ -v) + Df (x) (Σ χ,y,x (v ′ ) -Σ χ,y,x (v)) R n ∥G χ,y,x ∥ P -1 χ,x,y ∥v ′ -v∥ y + ∥Df (x)∥ ∥Σ χ,y,x (v ′ ) -Σ χ,y,x (v)∥ x λ ′ ∥v ′ -v∥ y + µ x λ ∥v ′ -v∥ y .
Hence, the conclusion of Lemma 3.2 follows.

Proof of Proposition 3.1. Pick (v, w) ∈ V y . We have to establish the estimation

dist ( v, Φ -1 y (w) ) τ dist ( w, Φ y (v) ) . ( 16 
)
We omitted the subscripts of spaces in [START_REF] Papadopoulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF], since these ones are determined by the objects upon which the corresponding distances act. Here and in what follows, we will use the common notation dist(•, •) for distance on any arbitrary metric space. The set Φ y (v) is obviously closed. So, ( 16) is easy when dist ( w, Φ y (v)

) = 0. Consider the case η = dist ( w, Φ y (v) ) > 0. First, we set v 0 = v and y 0 = R y (v 0 ). Note that v = R -1 y (R x (ū)) ∈ C R (x)B y ,

the triangle inequality and Assumption 2.2 give us

∥v∥ y ρ -1 1 d ( y, R y (v) ) = ρ -1 1 d ( y, R x (ū) ) ρ -1 1 ( d(y, x) + d ( x, R x (ū) )) ρ -1 1 (d(x, y) + ρ 2 ∥ū∥ x ) ρ -1 1 σ + ρ -1 1 ρ 2 ∥ū∥ x . This implies ∥v 0 ∥ y ∥v 0 -v∥ y + ∥v∥ y < r ′ + ρ -1 1 σ + ρ -1 1 ρ 2 ∥ū∥ x < δ. Since R ∈ URC (ρ 1 , ρ 2 , δ, W x ), we have d ( y 0 , x ) d ( y 0 , R y (v) ) + d ( R y (v), x ) = d ( R y (v 0 ), R y (v) ) + d ( R x (ū), x ) ρ 2 ∥v 0 -v∥ y + ρ 2 ∥ū∥ x < ρ 2 r ′ + ρ 2 ∥ū∥ x < ρ 2 ∥ū∥ x + ρ 2 [ ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ ] r x .
Thus,

y 0 = R y (v 0 ) ∈ W x ⊂ R x (δB x ).
Let us choose u 0 ∈ δB x with R x (u 0 ) = y 0 and put

w 0 = w + Df (x)(u 0 ) -Df (y)(v 0 ) ∈ R n .
We claim that (u 0 , w 0 ) ∈ V x . Indeed, due to Assumption 2.2 and the choice of

u 0 we get ∥u 0 -ū∥ x ρ -1 1 d ( R x (u 0 ), R x (ū) ) = ρ -1 1 d ( R y (v 0 ), R y (v) ) ρ -1 1 ρ 2 ∥v 0 -v∥ y , (17) 
which yields ∥u 0 -ū∥

x < ρ -1 1 ρ 2 r ′ < r. Taking into account R x (u 0 ) = R y (v 0 ) and R x (ū) = R y (v), we deduce ∥w 0 -p∥ R n = ∥w -Ψ y,x (v 0 ) -[q -Ψ y,x (v)]∥ R n ∥Ψ y,x (v 0 ) -Ψ y,x (v)∥ R n + ∥w -q∥ R n (λ ′ + λµ x ) ∥v 0 -v∥ + ∥w -q∥ R n . (18) 
In view of [START_REF] Sakai | Riemannian Geometry[END_REF], we obtain

∥w 0 -p∥ R n < (λ ′ + λµ x )r ′ + s ′ < ( ρ -1 1 ρ 2 ) 2 (λ ′ + λµ x ) ( 1 + 1 + θ 1 -θ ) r ′ + ( 1 + θ 1 -θ ) s ′ s.
Hence, the inclusion

(u 0 , v 0 ) ∈ V x is clear. By invoking the fact κ ∈ REG(Φ x , V x ), we find dist ( u 0 , Φ -1 x (w 0 ) ) κdist ( w 0 , Φ x (u 0 ) ) = κdist ( w 0 , Df (x)(u 0 ) + (F • R x ) (u 0 ) ) = κdist ( w, Df (y)(v 0 ) + (F • R y ) (v 0 ) ) = κdist ( w, Df (y)(v) + (F • R y ) (v) ) = κη.
So we can select a vector u 1 in Φ -1 x (w 0 ) which satisfies

∥u 0 -u 1 ∥ x = dist ( u 0 , Φ -1 x (w 0 ) ) κη.
To continue, let us set y 1 = R x (u 1 ). Inasmuch as κ ∈ REG(Φ x , V x ), one has

dist ( ū, Φ -1 x (w 0 ) ) κdist ( w 0 , Φ x (ū) ) κ ∥w 0 -p∥ R n .
Consequently,

∥u 1 -u 0 ∥ x = dist ( u 0 , Φ -1 x (w 0 ) ) ∥u 0 -ū∥ x + dist ( ū, Φ -1 x (w 0 ) ) ∥u 0 -ū∥ x + κ ∥w 0 -p∥ R n . (19) 
By induction hypothesis, suppose that the tangent vectors u 0 , . . . , u k ∈ B x (ū, r), v 0 , . . . , v k-1 ∈ δB y ⊂ T y M are given, and they obey the following conditions

• R y (v j ) = R x (u j ), j = 0, 1, . . . , k -1; • u j+1 ∈ Φ -1 x (w j ), with w j = w+Df (x)(u j )-Df (y)(v j ), j = 0, 1, . . . , k-1; • ∥u j -u j+1 ∥ x θ j ∥u 1 -u 0 ∥ x , for θ = ρ -1 1 ρ 2 κ(λ ′ + λµ x ) < 1 and j = 0, 1, . . . , k -1.
Thanks to the triangle inequality, we can write

∥u j -ū∥ x j-1 ∑ i=0 ∥u i -u i+1 ∥ x + ∥u 0 -ū∥ x j-1 ∑ i=0 θ i ∥u 1 -u 0 ∥ x + ∥u 0 -ū∥ x = 1 -θ j 1 -θ ∥u 1 -u 0 ∥ x + ∥u 0 -ū∥ x 1 1 -θ ∥u 1 -u 0 ∥ x + ρ -1 1 ρ 2 ∥v 0 -v∥ y .
Since ρ -1 1 ρ 2 1, from ( 17), ( 18) and ( 19) we obtain

∥u j -ū∥ x { ρ -1 1 ρ 2 + 1 1 -θ [ ρ -1 1 ρ 2 + κ(λ ′ + λµ x ) ] } ∥v 0 -v∥ x + κ 1 -θ ∥w -q∥ R n ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) ∥v 0 -v∥ x + κ 1 -θ ∥w -q∥ R n .
The latter implies

∥u j ∥ x ∥u j -ū∥ x + ∥ū∥ x ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) ∥v 0 -v∥ x + κ 1 -θ ∥w -q∥ R n + ∥ū∥ x < ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ + ∥ū∥ x δ.
Next, involving again Assumption 2.2, we derive

d ( R x (u k ), x ) d ( R x (u k ), R x (ū) ) + d ( R x (ū), x ) ρ 2 ∥u k -ū∥ x + ρ 2 ∥ū∥ x ρ 2 [ ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) ∥v 0 -v∥ x + κ 1 -θ ∥w -q∥ R n ] + ρ 2 ∥ū∥ x < ρ 2 [ ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ ] + ρ 2 ∥ū∥ x r x .
This means

y k = R x (u k ) ∈ W x . Selecting v k ∈ δB y with R y (v k ) = R x (u k )
and

w k = w + Df (x)(u k ) -Df (y)(v k ) = w -Ψ y,x (v k ),
we get

∥w k -p∥ R n = ∥w -Ψ y,x (v k ) -[q -Ψ y,x (v)]∥ R n ∥Ψ y,x (v k ) -Ψ y,x (v)∥ R n + ∥w -q∥ R n (λ ′ + λµ x ) ∥v k -v∥ y + ∥w -q∥ R n < (λ ′ + λµ x ) ∥v k -v∥ y + s ′ .
Moreover, it holds that

∥v k -v∥ y ρ -1 1 d ( R y (v k ), R y (v) ) = ρ -1 1 d ( R x (u k ), R x (ū) ) ρ -1 1 ρ 2 ∥u k -ū∥ x ρ -1 1 ρ 2 { ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) ∥v 0 -v∥ x + κ 1 -θ ∥w -q∥ R n } < ρ -1 1 ρ 2 { ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ } .
Hence,

∥w k -p∥ R n < ρ -1 1 ρ 2 (λ ′ + λµ x ) { ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ } + s ′ = ( ρ -1 1 ρ 2 ) 2 (λ ′ + λµ x ) ( 1 + 1 + θ 1 -θ ) r ′ + ( 1 + θ 1 -θ ) s ′ s.
In other words, (u k , w k ) belongs to V x . Including the hypothesis of metric regularity property once more, we find

dist ( u k , Φ -1 x (w k ) ) κdist ( w k , Φ x (u k ) ) κ ∥w k -w k-1 ∥ R n = κ ∥w -Ψ y,x (v k ) -[w -Ψ y,x (v k-1 )]∥ R n = κ ∥Ψ y,x (v k ) -Ψ y,x (v k-1 )∥ R n κ(λ ′ + λµ x ) ∥v k -v k-1 ∥ y .
On the other hand,

∥v k -v k-1 ∥ y ρ -1 1 d ( R y (v k ), R y (v k-1 ) ) = ρ -1 1 d ( R x (u k ), R x (u k-1 ) ) ρ -1 1 ρ 2 ∥u k -u k-1 ∥ x , which implies that dist ( u k , Φ -1 x (w k ) ) θ ∥u k -u k-1 ∥ x θ k ∥u 1 -u 0 ∥ x .
However, Φ -1 x (w k ) is a closed subset of a finite dimension space, so it must contain at least a vector u k+1 such that

∥u k -u k+1 ∥ x = dist ( u k , Φ -1 x (w k ) ) θ k ∥u 1 -u 0 ∥ x .
As a result,

∥u k+1 -ū∥ x k ∑ j=0 ∥u j+1 -u j ∥ x + ∥u 0 -ū∥ x k ∑ j=0 θ j ∥u 1 -u 0 ∥ x + ∥u 0 -ū∥ x 1 1 -θ ∥u 1 -u 0 ∥ x + ∥u 0 -ū∥ x .
According to [START_REF] Sakai | Riemannian Geometry[END_REF] and ( 19) it is possible to write

∥u 1 -u 0 ∥ x ∥u 0 -ū∥ x + κ ∥w 0 -p∥ R n [ρ -1 1 ρ 2 + κ(λ ′ + λµ x )] ∥v 0 -v∥ y + κ ∥w -q∥ R n < ρ -1 1 ρ 2 (1 + θ)r ′ + κs ′ . Notice that ∥u 0 -ū∥ x ρ -1 1 ρ 2 ∥v 0 -v∥ y < ρ -1 1 ρ 2 r ′ , we deduce ∥u k+1 -ū∥ x < ρ -1 1 ρ 2 ( 1 + 1 + θ 1 -θ ) r ′ + κ 1 -θ s ′ r.
In particular, u k+1 ∈ B x (ū, r), the sequences (u k ) and (v k ) are now well-defined by induction.

From the construction above, both (u k ) and (v k ) are Cauchy sequences. Thus, there are u * ∈ T x M and v * ∈ T y M such that u k → u * and v k → v * . Passing to the limit in the inclusion

w + Df (x)(u k ) -Df (y)(v k ) = w k ∈ Φ x (u k+1 ) we conclude w + Df (x)(u * ) -Df (y)(v * ) ∈ Φ x (u * ). Equivalently, w ∈ Df (y)(v * ) + (F • R x ) (u * ). But from R x (u k ) = R y (v k ) we also get R x (u * ) = R y (v * ), which gives us w ∈ Df (y)(v * ) + (F • R y ) (v * ) = Φ y (v * ). Consequently, dist ( v, Φ -1 y (w) ) ∥v -v * ∥ y = ∥v 0 -v * ∥ y = ∑ k 0 (v k -v k+1 ) y ∑ k 0 ∥v k -v k+1 ∥ y ∑ k 0 ρ -1 1 ρ 2 ∥u k -u k+1 ∥ x ρ -1 1 ρ 2 ∑ k 0 θ k ∥u 1 -u 0 ∥ x = ρ -1 1 ρ 2 1 1 -θ ∥u 1 -u 0 ∥ x ρ -1 1 ρ 2 1 1 -θ κη.
This is exactly [START_REF] Papadopoulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF]. The proof is thereby complete.

A semi-local version of Proposition 3.1 will be useful for the study of algorithm [START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF]. The next statement is in this sense.

Proposition 3.3 (stability of semi-local metric regularity).

Let M, R, r x , W x , δ = C R (x) and ρ 1 , ρ 2 be as in the statement of Proposition 3.1. Let f : M -→ R n be a given smooth map and F : M ⇒ R n be a multivalued mapping having closed graph. Fix a point x ∈ M. Suppose that the mapping

Φ x (•) := Df (x)(•) + (F • R x ) (•) is metrically regular on the set V r,s (Φ x ) := { (u, w) ∈ T x M × R n : ∥u∥ x r, dist ( w, Φ x (u) ) s }
with a modulus κ > 0. Consider some positive numbers r ′ , s ′ , σ, λ and λ ′ such that

         θ = ρ -1 1 ρ 2 κ(λ ′ + λµ x ) < 1, ρ -1 1 σ + ρ -1 1 ρ 2 r ′ + κ 1-θ s ′ < min {δ, r} , s ′ s, ρ -1 1 ρ 2 σ + ρ -1 1 ρ 2 2 r ′ + ρ 2 κ 1-θ s ′ < r x . ( 20 
)
Pick some y ∈ W x so that d(y, x) σ and the conditions (i) and (ii) of Proposition 3.1 hold. Then the multivalued mapping

Φ y (•) := Df (y)(•) + (F • R y ) (•) satisfies τ ∈ REG ( Φ y , V r ′ ,s ′ (Φ y ) ) for τ = ρ -1 1 ρ 2 κ 1-θ and V r ′ ,s ′ (Φ y ) := { (v, w) ∈ T y M × R n : ∥v∥ x r ′ , dist ( w, Φ y (v) ) s ′ } . Proof. We fix some (v, w) ∈ V r ′ ,s ′ (Φ y ) with η = dist ( w, Φ y (v) ) > 0 and look for a point v * ∈ Φ -1 y (w) such that ∥v -v * ∥ x τ η. (21) 
For this goal, let us set v 0 = v, and y 0 = R y (v 0 ). Since ∥v 0 ∥ y r ′ ρ -1 1 ρ 2 r ′ < δ, the fact R ∈ URC(ρ 1 , ρ 2 , δ, W x ) can be used. This yields

d(R y (v 0 ), x) d(R y (v 0 ), y) + d(y, x) ρ 2 ∥v 0 ∥ y + σ ρ 2 r ′ + σ < ρ -1 1 ρ 2 σ + ρ -1 1 ρ 2 2 r ′ + ρ 2 κ 1 -θ s ′ < r x ,
which implies y 0 = R y (v 0 ) ∈ W x . Thus, there exists (unique) u 0 ∈ δB x with R x (u 0 ) = R y (v 0 ). By setting

w 0 = w + Df (x)(u 0 ) -Df (y)(v 0 ) ∈ R n ,
we are going to verify (u 0 , w 0 ) ∈ V r,s (Φ x ). Indeed, according to Assumption 2.2

∥u 0 ∥ x ρ -1 1 d ( R x (u 0 ), x ) = ρ -1 1 d ( R y (v 0 ), x ) ρ -1 1 ( d ( R y (v 0 ), y ) + d ( y, x )) ρ -1 1 ( ρ 2 ∥v 0 ∥ y + σ ) = ρ -1 1 ρ 2 ∥v 0 ∥ y + ρ -1 1 σ, (22) 
and therefore

∥u 0 ∥ x ρ -1 1 ρ 2 r ′ + ρ -1 1 σ < ρ -1 1 σ + ρ -1 1 ρ 2 r ′ + κ 1 -θ s ′ r.
In addition, one has

dist ( w 0 , Φ x (u 0 ) ) = dist ( w 0 -Df (x)(u 0 ), (F • R x ) (u 0 ) ) = dist ( w -Df (y)(v 0 ), (F • R y ) (v 0 ) ) = dist ( w, Df (y)(v 0 ) + (F • R y ) (v 0 ) ) = dist ( w, Φ y (v) ) s ′ s.
So, the inclusion

(u 0 , w 0 ) ∈ V r,s (Φ x ) is now clear. Since κ ∈ REG ( Φ x , V r,s (Φ x ) ) , we get dist ( u 0 , Φ -1 x (w 0 ) ) κdist ( w 0 , Φ x (u 0 ) ) = κdist ( w, Φ y (v) ) = κη.
Selecting

u 1 ∈ Φ -1 x (w 0 ) that ∥u 0 -u 1 ∥ x = dist ( u 0 , Φ -1 x (w 0 )
) , we conclude

∥u 0 -u 1 ∥ x κη.
With respect to the inductive step, assume that for some k 1 we have found

u 1 , . . . , u k in T x M and v 0 , . . . , v k-1 in δB y ⊂ T y M such that • R x (u j ) = R y (v j ), j = 0, 1, . . . , k -1; • u j+1 ∈ Φ -1 x (w j ) for w j = w + Df (x)(u j ) -Df (y)(v j ) and j k -1; • ∥u j -u j+1 ∥ x θ j ∥u j -u j+1 ∥ x , j k -1.
In the tangent space T x M the triangle inequality tells us

∥u j -u 0 ∥ x j-1 ∑ i=0 ∥u i+1 -u i ∥ x j-1 ∑ i=0 θ i ∥u 1 -u 0 ∥ x = 1 -θ j 1 -θ ∥u 1 -u 0 ∥ x 1 1 -θ ∥u 1 -u 0 ∥ x , j = 1, . . . , k.
Taking into account (22), ∥u 0 ∥ x ρ -1 1 ρ 2 ∥v 0 ∥ y + ρ -1 1 σ, which yields

∥u j ∥ x ∥u j -u 0 ∥ x + ∥u 0 ∥ x 1 1 -θ κη + ρ -1 1 ρ 2 ∥v 0 ∥ y + ρ -1 1 σ ρ -1 1 σ + ρ -1 1 ρ 2 r ′ + κ 1 -θ s ′ < min {δ, r} , j = 1, . . . , k.
From Assumption 2.2, we find

d ( R x (u k ), x ) ρ 2 ∥u k ∥ x ρ -1 1 ρ 2 σ + ρ -1 1 ρ 2 2 r ′ + ρ 2 κ 1 -θ s ′ < r x .
Hence, there exists v k ∈ δB y with R y (v k ) = R x (u k ). By setting

w k = w + Df (x)(u k ) -Df (y)(v k ) ∈ R n , we claim (u k , w k ) ∈ V r,s (Φ x ).
In fact, we have known ∥u k ∥ x r. Besides that, let us now estimate the quantity dist

( w 1 , Φ x (u k ) ) as follows dist ( w k , Φ x (u k ) ) ∥w k -w k-1 ∥ R n = ∥w -Ψ y,x (v k ) -[w -Ψ y,x (v k-1 )]∥ R n = ∥Ψ y,x (v k ) -Ψ y,x (v k-1 )∥ R n (λ ′ + λµ x ) ∥v k -v k-1 ∥ y .
In the preceding estimations, we used the relations

Ψ y,x (v j ) = Df (y)(v j ) -Df (x)(u j ), j = 0, 1, . . . , k.
On the other hand, we conclude from the fact R ∈ URC(ρ 1 , ρ 2 , δ, W x ) that

∥v k -v k-1 ∥ y ρ -1 1 d ( R y (v k ), R y (v k-1 ) ) ρ -1 1 ρ 2 ∥u k -u k-1 ∥ x . Hence, dist ( w k , Φ x (u k ) ) (λ ′ + λµ x )ρ -1 1 ρ 2 ∥u k -u k-1 ∥ x (λ ′ + λµ x )ρ -1 1 ρ 2 θ k-1 ∥u 1 -u 0 ∥ x (λ ′ + λµ x )ρ -1 1 ρ 2 θ k-1 κη = θ k η θ k s ′ < s. Invoking the hypothesis κ ∈ REG ( Φ x , V r,s (Φ x ) ) , we obtain dist ( u k , Φ -1 x (w k ) ) κdist ( w k , Φ x (u k ) ) κ(λ ′ + λµ x )ρ -1 1 ρ 2 θ k-1 ∥u 1 -u 0 ∥ x = θ k ∥u 1 -u 0 ∥ x .
Since the tangent space T x M is finite dimensional, the projection u k+1 ∈

Φ -1 x (w k ) of u k onto Φ -1 x (w k ) satisfies ∥u k -u k+1 ∥ x = dist ( u k , Φ -1 x (w k ) ) θ k ∥u 1 -u 0 ∥
x , and the construction goes on. So, (u k ) and (v k ) are totally defined. The rest of the proof is similar to the one of Proposition 3.1.

Remark 3.4. In the case when the set-valued part F (x) does not depend on x (i.e., F (x) ≡ K), one has

Φ y • P χ,x,y = G χ,x,y + Φ x , (23) 
for any arbitrary geodesic segment χ : [0, 1] -→ M such that χ(0) = x and χ(1) = y. Inasmuch as P χ,x,y is linearly isometric, for each subset

V ⊂ T y M × R n the fact τ ∈ REG ( Φ y , V ) is equivalent to τ ∈ REG ( Φ y •P χ,x,y , V ′ ) , in which V ′ = { (u, w) ∈ T x M × R n : (P χ,x,y u, w) ∈ V } .
It is well-known from the literature that under condition imposed on Φ x and Lipschitz modulus of G χ,x,y , the right-hand side of (23) is also metrically regular. Therefore, the suppositions related to the maps Σ χ,y,x in both Propositions 3.1 and 3.3 might be omitted. And we simply need ∥G χ,x,y ∥ λ ′ < κ -1 . Of course, the corresponding parameters as well as the region of metric regularity may be different from the old ones in Propositions 3.1 and 3.3 above.

Convergence of Newton-type algorithms

We begin with some crucial hypotheses.

Standing assumptions.

Let L 1 , L 2 : [0, +∞) -→ [0, +∞) be some nondecreasing continuous function with L 1 (0) = L 2 (0) = 0 and Ω be a nonempty open subset of M. We consider the conditions below:

(A1) Given x ∈ Ω and a geodesic χ : [0, 1] -→ Ω with χ(0) = x. If (r x , C R (x)) is a normal pair, and χ([0, 1]) ⊂ B M (x, r x ) one has Σ χ,y,x ∈ L ip L 1 (ℓ(χ)) ( C R (x)B y
) , where y = χ(1) and

Σ χ,y,x = R -1 x • R y -P χ,y,x . (A2) If Θ : [0, 1] -→ M is a geodesic in Ω joining z = Θ(0) to z ′ = Θ(1)
and

G Θ,x,y := Df (x) -Df (y) • P Θ,x,y , then ∥G Θ,x,y ∥ L 2 (ℓ(Θ)).
Under the conditions (A1) and (A2) we have the following statement.

Proposition 4.1. Given z ∈ Ω and one R-normal pair (r, C) at z. Suppose that

• the retraction segment c(t) = R z (tu) belongs to B M (z, r), • B M (z, r) is a convex neighborhood at z (cf. [7, 15]). Define Λ R (f, x, u) = f ( R x (u) ) -[f (x) + Df (x)(u)] R n , (24) 
then one has

Λ R (f, z, u)) ∥u∥ z ∫ 1 0 { μL 1 ( d(z, c(t)) ) + [ L 1 ( d(z, c(t)) ) + 1 ] L 2 ( d(z, c(t)) ) } dt, (25) 
where μ = ∥Df (z)∥.

Proof. Denoting Θ t , χ t : [0, 1] -→ M the minimizing geodesics with Θ t (0) = z, Θ t (1) = R z (tu), χ t (0) = z and χ t (1) = R z (tu). For simplicity we will use the notation c t = c(t), Q t = (dR z ) tu , P t = P Θt,z,c(t) , P t = P χt,z,c(t) . Then

Σ Θt,z,ct = R -1 c(t) • R z -P t and G Θt,z,ct = Df (x) -Df (c t )P t . Note that tu = R -1 z (c(t)) ∈ CB z , from (A1) and (A2) one gets d (Σ Θt,z,ct ) tu L 1 ( ℓ(Θ t ) ) , ∥G Θt,z,ct ∥ L 2 ( ℓ(Θ t ) ) .
As a consequence of the choice of

Θ t it holds that ℓ(Θ t ) = d ( z, c (t) 
) . Combining this with the following relation

d (Σ Θt,z,ct ) tu = ( dR -1 c(t) ) c(t) • (dR z ) tu -P t = Q t -P t , we obtain Q t -P t L 1 ( ℓ(Θ t ) ) = L 1 ( d ( z, c(t) ))
.

Thanks to the expressions G χt,z¯,ct = Df(z¯) -Df(c t )P χt,z¯,ct , we obtain

∥Df (c t )∥ ∥-G χt,z,ct + Df (z)∥ (P χt,z,ct ) -1 ∥G χt,z,ct ∥ + ∥Df (z)∥ L 2 ( ℓ(χ t ) ) + ∥Df (z)∥ = L 2 ( d ( z, c(t) )) + μ.
The map h = f • c is smooth and

h ′ (t) = Df (c t ) ( Q t (u) ) = Df (c t ) ( Q t (u) -P t (u) ) + Df (c t ) ( P t u ) = Df (c t ) ( Q t (u) -P t (u) ) -G Θt,x,ct (u) + Df (x)(u).
Consequently,

Λ R (f, z, u) = ∥h(1) -h(0) -Df (x)(u)∥ = ∫ 1 0 h ′ (t) dt -Df (x)(u) ∫ 1 0 ( ∥Df (c t )∥ Q t -P t + ∥G Θt,x,ct ∥ ) ∥u∥ z dt.
Hence, the conclusion of Proposition 4.1 follows.

We are now ready to present the main theorems of this section. (iii) the mapping

Φ * := Df (x * )(•) + (F • R x * ) (•) satisfies τ ∈ REG ( Φ * , V * ) where V * = rB x * × B R n ( -f (x * ), s ) ; (iv) L 1 and L 2 are of class C 1 ; (v) 2K * r 1, with        K * = (ρ -1 1 ρ 2 ) 2 { µ * K 1 (r) + [L 1 (r) + 1]K 2 (r) } , K j (r) = sup 0 t r L ′ j (t) , j = 1, 2, µ * = ∥Df (x * )∥ .
We also assume in addition that W * is a convex neighborhood at x * . Set

σ = min { ρ 1 ρ 2 r, ρ 1 r, ρ 1 τ * 2K * r s, ρ 1 1 + 2K * r C * , ρ 2 2ρ 1 K * r r * } > 0, (26) 
then for any x ∈ B M (x * , σ), there is a sequence (x k ) generated by scheme (2) which starts at x 0 = x and converges quadratically to x * . More precisely, one has

d(x k+1 , x * ) ρ 2 2ρ 1 r [ d(x k , x * ) ] 2 , k = 0, 1, . . . (27) 
Under the suppositions of Theorem 4.2

L j (t) L j (0) + K j (r)t = K j (r)t, j = 1, 2 (28) 
for every t in the interval [0, r].

Proof. Pick x ∈ B M (x * , σ) and we set x 0 = x, σ 0 = d(x * , x 0 ) < σ. If x = x * , then the proof is trivial. We focus on the case where x ̸ = x * . To find the next iteration, we shall make use of Proposition 3.1. Let χ 0 : [0, 1] -→ W * be a minimizing geodesic which links x * = χ 0 (0) and x 0 = χ 0 (1). The hypothesis (ii) of Theorem 4.2 tells us

Σ χ 0 ,x 0 ,x * ∈ L ip L 1 (σ 0 ) (W * ), ∥G χ 0 ,x * ,x 0 ∥ L 2 (σ 0 ). Choose ū = 0 x * , p = -f (x * ), v = R -1 x 0 (x * ) ∈ C * B x 0 and q = -f (x * ) + Df (x 0 )(v). Using condition (i) of Theorem 4.2 ∥v∥ x 0 ρ -1 1 d ( R x 0 (v), x 0 ) = ρ -1 1 d(x * , x 0 ) = ρ -1 1 σ 0 < ρ -1 1 σ r. Since d ( x * , R x 0 (tv) ) = d ( R x 0 (v), R x 0 (tv) ) ρ 2 ∥(1 -t)v∥ x 0 ρ 2 ρ -1 1 σ r whenever 0 t 1, the retraction segment Θ 0 (t) = R x 0 (tv) lies into W * . Moreover, d ( x 0 , Θ 0 (t)
) ρ 2 t ∥v∥ x 0 by assumption (i). Thus, applying Proposition 4.1 for z = x * and z = x 0 Λ R (f, x 0 , v)

∥v∥ x 0 ∫ 1 0 { µ * L 1 ( ρ 2 t ∥v∥ x 0 ) + [ L 1 ( ρ 2 t ∥v∥ x 0 ) + 1 ] L 2 ( ρ 2 t ∥v∥ x 0 ) } dt = 1 ρ 2 ∫ ρ 2 ∥v∥ x 0 0 { µ * L 1 (t) + [L 1 (t) + 1] L 2 (t) } dt 1 ρ 2 ∫ ρ -1 1 ρ 2 σ 0 0 { µ * L 1 (t) + [L 1 (t) + 1] L 2 (t) } dt.
Taking into account ρ -1 1 ρ 2 σ 0 < ρ -1 1 ρ 2 σ r, we get L j (t) K j (r)t for j = 1, 2

and t ∈ [0, ρ -1 1 ρ 2 σ 0 ]. As a result, Λ R (f, x 0 , v) 1 ρ 2 ∫ ρ -1 1 ρ 2 σ 0 0 { µ * L 1 (t) + [L 1 (t) + 1] L 2 (t) } dt 1 ρ 2 { µ * K 1 (r) + [L 1 (r) + 1]K 2 (r) } ∫ ρ -1 1 ρ 2 σ 0 0 t dt = ρ 2 ρ 2 1 { µ * K 1 (r) + [L 1 (r) + 1]K 2 (r) } σ 2 0 = 1 2ρ 2 τ * K * σ 2 0 .
Hence

∥f (x * ) -f (x 0 ) -Df (x 0 )(v)∥ R n = Λ R (f, x 0 , v) 1 2ρ 2 τ * K * σ 2 0 . (29) 
Let us now test the following evaluations

                       θ 0 = ρ -1 1 ρ 2 τ * [L 2 (σ 0 ) + L 1 (σ 0 )µ * ] < 1, τ * 1-θ 0 [ 1 2ρ 1 τ * K * σ 2 0 ] < r, ( 1 
+ θ 0 1-θ 0 ) [ 1 2ρ 1 τ * K * σ 2 0 ] < s, ρ -1 1 σ 0 + τ * 1-θ 0 [ 1 2ρ 1 τ * K * σ 2 0 ] < C * , ρ 2 τ * 1-θ 0 [ 1 2ρ 1 τ * K * σ 2 0 ] < r x . (30) 
Indeed, the first relation in ( 30) is valid from the hypothesis, because of

θ 0 ρ -1 1 ρ 2 τ * σ 0 [K 2 (r) + K 1 (r)µ * ] K * σ 0 K * r 1 2 .
Besides that, one has

K * σ 0 K * r, 1 1-θ 0 1 1-K * r 2 and θ 0 1-θ 0 K * r 1-K * r 1.
So, (30) follows from the suppositions (26) and (v).

Returning to the main proof: From (30), we can take some constants r 0 > 0 and s

0 > 1 2ρ 1 τ * K * σ 2 0 with                  ρ -1 1 ρ 2 ( 1 + 1+θ 0 1-θ 0 ) r 0 + τ * 1-θ 0 s 0 < r, ( ρ -1 1 ρ 2 ) 2 [L 2 (σ 0 ) + L 2 (σ 0 )µ * ] ( 1 + 1+θ 0 1-θ 0 ) r 0 + ( 1 + θ 0 1-θ 0 ) s 0 < s, ρ -1 1 σ 0 + ρ -1 1 ρ 2 ( 1 + 1+θ 0 1-θ 0 ) r 0 + τ * 1-θ 0 s 0 < C * , ρ 2 [ ρ -1 1 ρ 2 ( 1 + 1+θ 0 1-θ 0 ) r 0 + τ * 1-θ 0 s 0 ] < r x .
Now, applying Proposition 3.1 for data ū, p, v and q above, the mapping

Φ 0 (•) = Df (x 0 )(•) + (F • R x 0 ) (•) satisfies the relation τ 0 ∈ REG ( Φ 0 , V 0 ) , where τ 0 = ρ -1 1 ρ 2 τ * 1-θ 0 and V 0 = B x 0 (v, r 0 ) × B R n (q, s 0 ). If we pick w 0 = -f (x 0 ), then w 0 -q = f (x * ) -[f (x 0 ) + Df (x 0 )(v)] .
It follows from (29) that (v, w 0 ) ∈ V 0 . Thus, we deduce

dist ( v, Φ -1 0 (w 0 ) ) τ 0 dist ( w 0 , Φ 0 (v) ) τ 0 ∥w 0 -q∥ R n = Λ R (f, x 0 , v) ρ -1 1 ρ 2 τ * 1 -θ 0 [ 1 2ρ 2 τ * K * σ 2 0 ] ρ -1 1 K * σ 2 0 .
From this, the closed set Φ -1 0 (w 0 ) contains a vector v 0 such that

∥v -v 0 ∥ x 0 = dist ( v, Φ -1 0 (w 0 ) ) ρ -1 1 K * σ 2 0
. By the triangle inequality in T x 0 M, we find

∥v 0 ∥ x 0 ∥v -v 0 ∥ x 0 + ∥v∥ x 0 ρ -1 1 K * σ 2 0 + ρ -1 1 σ 0 ρ -1 1 ( K * σ + 1 ) σ 0 < ρ -1 1 ( K * r + 1 ) σ < C * . Consequently, d(x 1 , x * ) = d ( R x 0 (v 0 ), R x 0 (v) ) ρ 2 ∥v 0 -v∥ x 0 ρ 2 ρ -1 1 K * σ 2 0 ρ 2 2ρ 1 r [d(x 0 , x * )] 2 .
Taking into account σ ρ 1 ρ 2 r and d(x 0 , x * ) < σ, we get ρ 2 2ρ 1 r d(x 0 , x * ) 1 2 . This tells us x 1 ∈ B M (x * , σ). Therefore, we can use x 1 as a new starting point, and go on.

Repeating this procedure, the sequence (x k ) generated by ( 2) is well-defined for which (27) is fulfilled. Exploiting (27) many times, we arrive at

d(x k , x * ) [ ρ 2 2ρ 1 r d(x 0 , x * ) ] 2 k -1 d(x 0 , x * ) ( 1 
) 2 k -1 d(x 0 , x * ), 2 
which means x k → x * quadratically. Hence, the proof is done.

In the statement of Theorem 4.2, the behavior of f and F around the solution

x * is a key point. There are many situations in practice where the informations around x * are not available. So, a global version might be quite useful and significant. The next theorem will be in this sense.

Theorem 4.3 (global analysis).

Let M, R, f and F as in Theorem 4.2.

Given a point x ∈ M and let (r x , C x ) be a R-normal pair at x so that

W x = B M (x, r x ) is a convex neighborhood. We require in addition that R ∈ URC ( ρ 1 , ρ 2 , C x , W x ) with 0 < ρ 1 ρ 2 .
Assume the following statements are fulfilled:

(i) Φ(•) := Df (x)(•) + (F • R x ) (•) satisfying τ ∈ REG ( Φ, V r,s (Φ) ) for some τ > 0, r > 0, s > 0; (ii) dist ( 0, f (x) + F (x) ) < min { s, 1 2ρ 1 τ C x } ;
(iii) the assumptions (A1) and (A2) are valid with some C 1 functions L 1 , L 2 ;

(iv) α = 2Kβ 1, where

       K = ( ρ -1 1 ρ 2 ) 2 τ { µ x K 1 (r) + [L 1 (r) + 1]K 2 (r) } > 0, β = ρ 1 τ dist ( 0, f (x) + F (x) ) , K 1 (r) = sup 0 t r |L ′ 1 (t)| , K 2 (r) = sup 0 t r |L ′ 2 (t)| , and µ x = ∥Df (x)∥; (v) ηβ min { ρ 2 1 ρ -1 r, ρ 1 ρ -1 2 r, ρ 2 1 ρ -1 2 C x , ρ 2 1 ρ -2 2 r x } , for η = 2 1+ √ 1-α . Then, there exists a solution x * of problem 0 ∈ f (x) + F (x) such that d(x, x * ) ρ 2 ρ -1 1 βη r. ( 31 
)
For such a solution, it has a selection of sequence (x k ) generated by (2) and converges to x * . More precisely, one has

{ d(x k , x * ) ρ 2 ρ -1 1 ( 4 √ 1-α α λ 2 k 1-λ 2 k ) β, if α < 1, d(x k , x * ) ρ 2 ρ -1 1 2 -k+1 β if α = 1, (32) 
where λ = 1-

√ 1-α 1+ √ 1-α 1.
It is clear to see that the case β(τ, x) = 0 is trivial. From now, we assume β > 0.

In order to prove Theorem 4.3, the next technical lemma will be essential.

Lemma 4.4. Let us consider the quadratic polynomial ω(t) = 1 2 Kt 2t + β. The Newton iterative sequence applied for the equation ω(t) = 0 reads t 0 = 0, t k+1 = t kω(t k ) -1 ω(t k ).

(33)

Then (t k ) is well-defined, strictly increasing and converges to the smallest root

t * = 1- √ 1-α K
of ω. Furthermore, the error bounds below are inherited:

• if α < 1, then    t * -t k 4 √ 1-α α λ 2 k 1-λ 2 k (t 1 -t 0 ) = 4 √ 1-α α λ 2 k 1-λ 2 k β, 2(t k+1 -t k ) 1+ √ 1+4λ 2 k (1+λ 2 k ) -2 t * -t k λ 2 k-1 (t k -t k-1 ); (34) 
• if α = 1, then { t * -t k 2 -k+1 (t 1 -t 0 ) = 2 -k+1 β, 2 (√ 2 -1 ) (t k+1 -t k ) t * -t k t k -t k-1 . ( 35 
) dist ( 0 x k , Φ -1 k (z k ) ) τ k dist ( z k , Φ k (0 x k ) ) ρ -1 1 ρ 2 τ 1 -Kt k ρ 2 2ρ 2 1 { µ x K 1 (r) + [L 1 (r) + 1]K 2 (r) } δ 2 k-1 = ρ -1 1 ( 1 1 -Kt k 1 2 Kδ 2 k-1 ) = ρ -1 1 [ -ω ′ (t k ) -1 ω(t k ) ] = ρ -1 1 (t k+1 -t k ). Because T x k M is finite dimensional, there exists v k ∈ Φ -1 k (z k ) with ∥v k ∥ x k = dist ( 0 x k , Φ -1 k (z k )
) ρ -1 1 (t k+1t k ). And we update now x k+1 = R x k (v k ) as the next iteration. The selection of v k tells us -f (x k ) = z k ∈ Φ k (v k ), which is equivalent to

-f (x k ) ∈ Df (x k )(v k ) + (F • R x k ) (v k ).
As a consequence, (x k , v k ) is generated by [START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF]. Using (38) once more, from hypothesis (ii) we arrive at (t j+1t j ) = ρ 2 ρ -1 1 (t *t k ) .

∥v k ∥ x k 1 + √ 2 2 τ ρ 1 dist ( 0, f (x) + F (x) ) < C x ,
To finish the proof, we claim that x * solves (1). In fact, it follows from the preceding construction that So, by removing all conditions related to L 1 and putting L instead of L 2 in both Theorems 4.2 and 4.3, we obtain Kantorovich-type results for algorithm [START_REF] Adler | Newton's method on Riemannian manifolds and a geometric model for the human spine[END_REF], which might be viewed as extensions of the corresponding ones studied in [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF].

0 ∈ f (x k ) + Df (x k )(v k ) + F (x k+1 ). (44 

Concluding Remarks

In this paper, we have studied a Newton-type algorithm for solving generalized equations in a finite dimensional Riemannian manifold. We provided sufficient conditions that guaranteed the existence and the quadratic convergence of the sequence generated by the extended Newton's method. This work can be considered one of the first that studied Newton's type algorithms for set-valued of the form [START_REF] Absil | Sepulchre: Optimization Algorithms on Matrix Manifolds[END_REF], where the metric regularity concept plays an important role. Due to the large number of applications in the calculus of variations or PDE's e.g., it would be interesting to consider the infinite dimensional Riemannian manifolds modeled on a Banach or a Hilbert space.
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 42 local convergence). Given a complete Riemannian manifold M of dimension m and a retraction R : T M -→ M. Let f : M -→ R n be a smooth map, and F : M ⇒ R n be a closed multivalued mapping. Let x * ∈ M be a solution of problem (1), and (r * , C * ) be a R-normal pair at x * . Assume that (i) R ∈ URC ( ρ 1 , ρ 2 , C * , W * ) for some 0 < ρ 1 ρ 2 and W * = B M (x * , r * ); (ii) the statements (A1) and (A2) hold for some real functions L 1 , L 2 together with Ω = W * ;

  k+1 , x k ) = d (R x k (v k ), x k ) ρ 2 ∥v k ∥ x k ρ 2 ρ -1 1 (t k+1t k ) .The construction of sequence (x k ) is now completed by induction. Since (t k ) is convergent, and d(x k , x k+1 ) ρ 2 ρ -1 1 (t k+1t k ), the sequence (x k ) is Cauchy. So, x k must converge to some x * in M. The error bounds in (31) and (32) follows from (34), (35) and the followingd(x k , x * ) ∑ j k d(x j , x j+1 ) ρ 2 ρ -1

)

  Fixing an index k which is large enough. Ifχ k : [0, 1] -→ W x is a minimizing geodesic joining x * = χ k (0) to x k = χ k (1), then ℓ(χ k ) = d(x * , x k ). Using the hypothesis (iii) of Theorem 4.3, ∥G χ k ,x * ,x k ∥ L 2 (ℓ(χ k )) = L 2 ( d(x * , x k ) ) K 2 (r)d(x * , x k ).

Proof of Lemma 4.4. The existence of (t k ) and the error bounds (34), (35) can be found in [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF]. For the monotonicity, let us define the function φ : t ∈ (-∞, t * ) -→ tω ′ (t) -1 ω(t). By a simple computation φ ′ (t) = ω ′′ (t)ω (t) [ω ′ (t)] 2 = K ω (t) [ω ′ (t)] 2 . The polynomial ω is positive on the interval I = (-∞, t * ), so φ ′ (t) > 0. Since t k+1 = φ(t k ), we obtain the necessary conclusion by induction. Remark 4.5. From Lemma 4.4 we have

for all k. Moreover, if α = 1, error bounds in (35) yield

When α < 1, taking into account (34), we deduce

In particular,

Now, we begin to prove Theorem 4.3.

Proof of Theorem 4.3. We shall construct by induction the sequence (x k ) satisfying

At the initial step, we set

To continue, we pick

Therefore, x 1 verifies (2). Furthermore, note that η

which means that (39) is valid for k = 0.

Passing to the inductive step, given k (k

So, by (36

We are now going to estimate the value of quantity dist

But by the induction hypothesis

This suggests using Proposition 4.1. We can see that for t ∈ [0, 1]

Invoking Proposition 4.1 and taking into account

As a result,

For the goal of applying Proposition 3.3, let us check that

Indeed, since t k < t * = ηβ r (see (36)), it holds that L 1 (t k ) K 1 (r)t k and

and the first r elation i n ( 43) i s d one. F or t he s econd o ne, w e e xpand the polynomial ω with center at t k-1

Consequently,

Next, we use (38) and combine this relation with the initial condition (ii)

Finally, since

1 ηβ r x , the last inequality in (43) is valid due to the supposition (v) of Theorem 4.3. In summary, (43) is completely fulfilled.

According to (43), we can select some positive numbers r k and s k such that

, where

Thanks to (42), the inclusion (0

Thus, we obtain

Finally, by passing to the limit in (44), we get 0 ∈ f (x * ) + F (x * ). Remark 4.6. In the proofs of Theorems 4.2 and 4.3, the existence and the convergence of a Newton sequence (x k ) require the assumptions (A1) and which are imposed on covariant derivative Df as well as the retraction R. Assumption (A2) usually concerns with the so-called "Lipschitz continuity" for Df (see, e.g., [START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF][START_REF] Ferreira | Local convergence of Newton's method under a majorant condition in Riemannian manifolds[END_REF]). If the higher order covariant derivatives D k f (cf. [START_REF] Dedieu | Newton's method on Riemannian manifolds: covariant alpha theory[END_REF][START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF]) are involved in the hypotheses of those theorems, we obtain (A2) from the informations on D k f . Therefore, we can achieve some new versions of Theorems 4.2 and 4.3 under conditions of type Kantorovich and/or Smale. On the other hand, if we restrict our consideration on the case F (x) ≡ C, and R = exp is the exponential, then Theorems 4.2 and 4.3 can be slightly improved. Indeed, as noticed in Remark 3.4, the stability of metric regularity property can be obtained by using only (A2). Besides that, when R = exp, the essential Proposition 4.1 holds with L 1 (t) ≡ 0 and L 2 (t) is the function in (A2) since P χ,χ(0),χ(t) (χ ′ (0)) = χ ′ (t) for any arbitrary geodesic χ. Consequently, Kantorovich-type versions of Theorems 4.2 and 4.3 like in [START_REF] Wang | Extended Newton's method for mappings on Riemannian manifolds with values in a cone[END_REF] can be recovered. Now, we keep assuming F (x) ≡ C, while (A2) is replaced by the following (A3) For each x and y in Ω so that R -1

x (y) is a singleton, one has

where T R x,y is the vector transport defined by

x (y).

We refer to [1, Section 8.1] and [START_REF] Ring | Optimization methods on Riemannian manifolds and their application to shape space[END_REF] for more details about transportation of the form T R x,y . Then, by considering f along the retraction curve χ(t) = R z (tu), the estimation (25) in Proposition 4.1 simply reads Λ R (f, z, u) ∥u∥ z