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Abstract

This paper deals with the existence and uniqueness of solutions for a class of state-

dependent sweeping processes with constrained velocity in Hilbert spaces without

using any compactness assumption, which is known to be an open problem. To over-

come the difficulty, we introduce a new notion called hypomonotonicity-like of the

normal cone to the moving set, which is satisfied by many important cases. Combin-

ing this latter notion with an adapted Moreau’s catching-up algorithm and a Cauchy

technique, we obtain the strong convergence of approximate solutions to the unique

solution, which is a fundamental property. Using standard tools from convex analysis,

we show the equivalence between this implicit state-dependent sweeping processes

and quasistatic evolution quasi-variational inequalities. As an application, we study the

state-dependent quasistatic frictional contact problem involving viscoelastic materials

with short memory in contact mechanics.
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1 Introduction

In the seventies, J. J. Moreau introduced and thoroughly studied the so-called sweeping

processes [1–3], which have a particular form of differential inclusions (5) involving

the outward normal cone to a moving closed and convex set in a Hilbert space. The

original motivation is to model quasistatic evolution in elastoplasticity, friction dynam-

ics, granular material, contact dynamics. However, many applications of the sweeping

processes can be also found nowadays in nonsmooth mechanics, convex optimization,

modeling of crowd motion, mathematical economics, dynamic networks, switched

electrical circuits, etc (see, e.g., [4–8] and the references therein). Existence and

uniqueness of solutions of such systems and their classical variants (subjected to

perturbation forces, state-dependent, second order sweeping processes, etc) have been

studied fruitfully in the literature (see, e.g., [2,3,6,8–11]).

Recently in [6], the authors proposed a new variant with velocity in the constraint

(6) and provided various applications in electrical circuits. Under the coercivity of the

bounded symmetric linear monotone involved operators and the Lipschitz continuity

of the moving set (assumed to be bounded) with respect to the Hausdorff distance, the

authors showed in [6] an existence and uniqueness of solution of problem (6). Later the

case of unbounded moving set is relaxed in [12], by assuming only the semicoercivity

of the involved linear operators. Continuing the idea, in [13] the authors showed the

existence and uniqueness of solutions for a new variant (7), by taking into account a

linear combination of the velocity and state in Hilbert spaces. As an application, the

quasistatic antiplane frictional contact problem for linear elastic materials with short

memory was formulated as an implicit sweeping process with velocity constraint.

This work creates a bridge between the different mathematical abstract results in

the literature and their applications in nonsmooth mechanics, which was the initial

motivations of Moreau [1].

In this paper, we are interested in a generalization of the variant studied in [13] to the

case of a state-dependent moving set (11) without using any compactness assumption,

which is known to be an open problem. The additional initial viability condition (8) is

no longer required here, which allows nonzero initial velocity. The set of constraints is

supposed to move in an absolutely continuous way with respect to time and Lipschitz

continuous with respect to the state. The normal cone to the moving set is assumed

to be hypomonotone-like (see Assumption 2 for the definition). Let us mention that

the class of set-valued maps satisfying the latter property is very large for applications

(see Lemmas 3.1, 3.2 for more details).

To conclude this introduction, we mention that the present work can be considered

as an improvement and an extension of the research initiated by the authors in [13]. In

fact, the technique utilized in the current paper differs from the one used in [13]. The

proof here is based on an implicit time discretization combined with the construction

of a Cauchy sequence of functions via linear interpolation that converges strongly to

a unique solution of (11). Clearly, the uniqueness of a solution as well as the strong

convergence of approximate solutions to the unique solution, obtained in this paper, are

important properties, compared to the weak convergence of a subsequence obtained

in [6,12,13]. Note that the compatibility condition (8) is no longer necessary here,
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which is in concordance with the result obtained in [14] for the quasistatic antiplane

frictional contact problem (see Theorem 10.3 page 193 and Remark 4.6 in [13]).

The paper is organized as follows. We recall in Sect. 2 some basic notation, defini-

tions and results which are used throughout the paper. In Sect. 3, the well-posedness

of (11) is thoroughly studied by using an implicit time discretization. An application

to the quasistatic frictional contact problem is given in Sect. 4. Finally, Sect. 5 closes

the paper with some concluding remarks.

2 Notation, Preliminaries and General Framework

We begin with some notation used in the paper. Let H be a Hilbert space. Denote by

‖ · ‖ the norm in H , by 〈·, ·〉 the scalar product and by B the closed unit ball in H . Let

be given a closed, convex set C ⊂ H . The distance from a point s to C is defined by

d(s, C) := inf
x∈C

‖s − x‖.

The Hausdorff distance between two closed, convex sets C1, C2 ⊂ H is defined by

dH (C1, C2) := max{ sup
x1∈C1

d(x1, C2), sup
x2∈C2

d(x2, C1)}.

It is easy to see that

dH (C1, C2) = ε ⇒ C1 ⊂ C2 + εB and C2 ⊂ C1 + εB.

The normal cone of a closed and convex set S is defined as follows

NS(x) := {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0, ∀y ∈ S}.

It is not difficult to see that

x∗ ∈ NS(x) ⇔ σ(S, x∗) = 〈x∗, x〉 and x ∈ S, (1)

where σ is the support function, defined by

σ(S, x∗) := sup
ξ∈S

〈x∗, ξ 〉, x∗ ∈ H .

Given a continuous function v : R → R, the modulus of continuity of v is the function

ω : [0,+∞] → [0,+∞], defined by

ω(h) := sup
|x−y|≤h

|v(x) − v(y)|, h > 0.

In the following, we summarize some known definitions and results concerning maxi-

mally monotone operators. The domain and graph of a set-valued operator T : H ⇒ H

are defined, respectively, by
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D(T ) := {x ∈ H : T (x) �= ∅}, gph(T ) := {(x, y) : x ∈ H , y ∈ T (x)}.

The inverse of T is defined by

T −1(x∗) := {x ∈ H : x∗ ∈ T (x)}, x∗ ∈ H .

The operator T is said to be monotone, if for all x, y ∈ H , x∗ ∈ T (x), y∗ ∈ T (y), we

have

〈x∗ − y∗, x − y〉 ≥ 0.

In addition, if there is no monotone mapping T ′ such that gph(T ) is contained strictly

in gph(T ′), then T is called maximally monotone.

The operator T is said to be coercive, if for all (xn, yn) ∈ gph(T ) such that

limn→+∞ ‖xn‖ = +∞, we have

lim
n→+∞

〈xn − x0, yn〉

‖xn‖
= +∞,

for some x0 ∈ H . It is known that coercive maximally monotone operators in reflexive

Banach spaces are surjective (see, e.g, [17]). We close this section with some versions

of discrete and continuous Gronwall’s inequalities [18].

Lemma 2.1 Let α > 0 and (un), (βn) be nonnegative sequences satisfying

un ≤ α +

n−1
∑

k=0

βkuk ∀n = 0, 1, 2, . . . (with β−1 := 0). (2)

Then, for all n, we have

un ≤ α exp

(

n−1
∑

k=0

βk

)

.

Lemma 2.2 Let T > 0 be given and a(·), b(·) ∈ L1([0, T ]; R) with b(t) ≥ 0 for

almost all t ∈ [0, T ]. Let the absolutely continuous function w : [0, T ] → R+ satisfy

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0, T ], (3)

where 0 ≤ α < 1. Then for all t ∈ [0, T ], one has

w1−α(t) ≤ w1−α(0)exp
(

∫ t

0

a(τ )dτ
)

+

∫ t

0

exp
(

∫ t

s

a(τ )dτ
)

b(s)ds. (4)

The mathematical formulation of the sweeping process introduced by J.J. Moreau is

given by
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ẋ(t) ∈ −NC(t)(x(t)) a.e. t ∈ [0, T ],

x(0) = x0 ∈ C(0),
(5)

where NC(t)(·) denotes the normal cone operator associated to the closed and convex

set C(t) in a Hilbert space H .

In [6], the authors studied the following new variant

A1u̇(t) + A0u(t) − f (t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(6)

where C(·) is a bounded moving set, A1, A0 : H → H are two bounded, symmetric,

linear and monotone operators and f : [0, T ] → H is a continuous mapping.

In [13], the authors proposed the following model

u̇(t) ∈ −NC(t)(Au̇(t) + Bu(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(7)

with additional initial condition

Bu0 ∈ C(0) (8)

where A, B : H → H are two linear, bounded, symmetric and monotone operators

and A is coercive, i.e., there exists some β > 0 such that

〈Ax, x〉 ≥ β‖x‖2, ∀x ∈ H . (9)

The moving set t �→ C(t) varies in an absolutely continuous way, i.e., there exists

some absolutely continuous function v : [0, T ] → R such that

dH (C(s), C(t)) ≤ |v(s) − v(t)| for all s, t ∈ [0, T ], (10)

where dH denotes the Hausdorff distance.

In this paper, we are interested in a generalization of the variant studied in [13] to the

case of a state-dependent moving set without requiring the additional initial viability

condition, which allows nonzero initial velocity. More precisely, let A, B : H → H be

two linear, bounded and symmetric operators with coercive A and C : [0, T ]×H ⇒ H

be a set-valued mapping with nonempty, closed and convex values. Our aim is to study

the well-posedness of the following sweeping process

u̇(t) ∈ −NC(t,u(t))(Au̇(t) + Bu(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(11)

without requiring the additional initial viability condition Bu0 ∈ C(0, u0), which

allows nonzero initial velocity.
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3 Main Result

In this section, the well-posedness (in the sense of existence and uniqueness of solu-

tions) of the state-dependent sweeping processes in Hilbert spaces is studied. Note

that the generalization for reflexive Banach spaces can be done in a similar way. First,

let us make the following assumptions.

Assumption 1 The set-valued mapping C : [0, T ] × H ⇒ H has nonempty, closed

and convex values and there exists an absolutely continuous function v : [0, T ] → R

and L ≥ 0 such that for all s, t ∈ [0, T ] and u, w ∈ H

dH

(

C(s, u), C(t, w)
)

≤ |v(s) − v(t)| + L‖u − w‖. (12)

Assumption 2 The normal cone of C is hypomonotone-like, in the sense that for given

R > 0, there exist L̃ ≥ 0 and an absolutely continuous function ṽ : [0, T ] → R such

that if

ai ∈ NC(ti ,ui )(bi ) for ai ∈ H , ui , bi ∈ RB, ti ∈ [0, T ], i = 1, 2

then

〈a1 − a2, b1 − b2〉 ≥ −L̃‖a1 − a2‖‖u1 − u2‖ − (‖a1‖ + ‖a2‖)|ṽ(t1) − ṽ(t2)|. (13)

Assumption 3 Let A, B : H → H be symmetric, linear and bounded operators

satisfying

〈Ax, x〉 ≥ β‖x‖2 and 〈Bx, x〉 ≥ 0 for some β > 0.

Remark 3.1 If C(t, u) ≡ C is a constant, closed and convex set, then the normal

cone of C is monotone and obviously is hypomonotone-like. Now we provide some

important non-constant cases to show that the class of the moving set C satisfying

Assumptions 1 and 2 is large for applications.

Lemma 3.1 Let C(t, u) = f (t, u) + C1(t) for all t ∈ [0, T ], x ∈ H, where

C1:[0, T ] ⇒ H has nonempty, closed and convex values, v1-absolutely continu-

ous and f : [0, T ] × H → H is v2-absolutely continuous with respect to time,

L-Lipschitz continuous with respect to state, i.e., there exist absolutely continuous

functions v1, v2 : [0, T ] → R and L ≥ 0 such that

dH

(

C1(t), C1(s)
)

≤ |v1(t) − v1(s)| and

‖ f (t, u) − f (s, w)‖ ≤ |v2(t) − v2(s)| + L‖u − w‖,
(14)

for all t, s ∈ [0, T ] and u, w ∈ H. Then Assumptions 1 and 2 are satisfied.

Proof It is easy to see that C has nonempty, closed and convex values and

dH

(

C(s, u), C(t, w)
)

≤ |v(s) − v(t)| + L‖u − w‖, for all s, t ∈ [0, T ], u, w ∈ H ,
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where v(t) :=

∫ t

0

(|v̇1(s)| + |v̇2(s)|)ds. To check the hypomonotonicity-like of the

normal cone of C , let us note that

ai ∈ NC(ti ,ui )(bi ) = NC1(ti )+ f (ti ,ui )(bi ) = NC1(ti )(bi − f (ti , ui )), i = 1, 2. (15)

Hence

〈a1, z − b1 + f (t1, u1)〉 ≤ 0, for all z ∈ C1(t1). (16)

In addition, one has b2 ∈ C1(t2)+ f (t2, u2) ⊂ C1(t1)+|v1(t1)−v1(t2)|B+ f (t2, u2).

Combining with the last inequality, we obtain

〈a1, b2 − b1 + f (t1, u1) − f (t2, u2)〉 ≤ |v1(t1) − v1(t2)|‖a1‖. (17)

Similarly, one has

〈a2, b1 − b2 + f (t2, u2) − f (t1, u1)〉 ≤ |v1(t1) − v1(t2)|‖a2‖. (18)

From (17) and (18), we deduce that

	 = 〈a1 − a2, b1 − b2〉

≥ 〈a1 − a2, f (t1, u1) − f (t2, u2)〉 − (|v1(t1) − v1(t2)|)(‖a1‖ + ‖a2‖)

≥ −L‖a1 − a2‖‖u1 − u2‖ − (|v1(t1) − v1(t2)| + (|v2(t1) − v2(t2)|)(‖a1‖ + ‖a2‖)

≥ −L‖a1 − a2‖‖u1 − u2‖ − (|v(t1) − v(t2)|)(‖a1‖ + ‖a2‖),

which completes the proof of Lemma 3.1. ⊓⊔

Lemma 3.2 Let C(t, u) = f1(t, u) + f2(t, u)B, where f1 : [0, T ] × H → H , f2 :

[0, T ]× H → [α,+∞), (t, u) �→ fi (t, u) is supposed to be vi -absolutely continuous

in t , L i -Lipschitz continuous in u for some L i ≥ 0, i = 1, 2 and for some α > 0. Then

Assumptions 1 and 2 are satisfied.

Proof Clearly C has nonempty, closed and convex values and

dH

(

C(s, u), C(t, w)
)

≤ |v(s) − v(t)| + L‖u − w‖, for all s, t ∈ [0, T ], u, w ∈ H ,

where v(t) :=

∫ t

0

(|v̇1(s)| + |v̇2(s)|)ds and L = L1 + L2. It remains to check the

hypomonotonicity-like property. Let be given R > 0 and

ai ∈ N f1(ti ,ui )+ f2(ti ,ui )B(bi ) = N f2(ti ,ui )B(bi − f1(ti , ui )), bi , ui ∈ RB, i = 1, 2.

Hence

a1 ∈ N f2(t1,u1)B(b1 − f1(t1, u1)), (19)
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a2 ∈ N f2(t2,u2)B(b2 − f1(t2, u2))

= N f2(t1,u1)B

( (b2 − f1(t2, u2)) f2(t1, u1)

f2(t2, u2)

)

, (20)

where the second part follows from the fact that f2(t1, u1) > 0, f2(t2, u2) > 0 and

the definition of the normal cone. From (19) and (20), we obtain

〈a1 − a2, b1 − f1(t1, u1) −
(b2 − f1(t2, u2)) f2(t1, u1)

f2(t2, u2)
〉 ≥ 0,

which implies that

〈a1 − a2, b1 − f1(t1, u1)〉 ≥

〈

a1 − a2,
(b2 − f1(t2, u2)) f2(t1, u1)

f2(t2, u2)

〉

.

Hence

Φ = 〈a1 − a2, b1 − f1(t1, u1) − b2 + f1(t2, u2)〉

≥

〈

a1 − a2,
(b2 − f1(t2, u2)) f2(t1, u1)

f2(t2, u2)

〉

−

〈

a1 − a2,
(b2 − f1(t2, u2)) f2(t2, u2)

f2(t2, u2)

〉

=

〈

a1 − a2,
(b2 − f1(t2, u2))( f2(t1, u1) − f2(t2, u2))

f2(t2, u2)

〉

≥ −k‖a1 − a2‖‖ f2(t1, u1) − f2(t2, u2)‖

where k :=

R+ sup
t∈[0,T ],u∈RB

‖ f1(t, u)‖

α
< +∞. Thus

〈a1 − a2, b1 − b2〉 ≥ −‖a1 − a2‖(k‖ f2(t1, u1) − f2(t2, u2)‖ + ‖ f1(t1, u1) − f1(t2, u2)‖)

≥ −L̃‖a1 − a2‖‖u1 − u2‖ − (‖a1‖ + ‖a2‖)|ṽ(t1) − ṽ(t2)|,

where L̃ := L1 + kL2 and ṽ(t) :=

∫ t

0

(|v̇1(s)| + k|v̇2(s)|)ds. ⊓⊔

The following lemma is a consequence of a general chain rule concerning the

composition of a convex function with a linear operator (see, e.g., [15, Theorem

4.13]). For this particular case, we can provide a simple and direct proof.

Lemma 3.3 Let Assumption 3 hold. Then for a given closed and convex set D ⊂ H,

one has

AND(Ax) = NA−1(D)(x), ∀x ∈ A−1(D). (21)

Proof For a given x ∈ A−1(D), we have

ζ ∈ AND(Ax) ⇔ ∃ζ ′ ∈ ND(Ax) s.t . ζ = Aζ ′

⇔ ζ = Aζ ′ and 〈ζ ′, y − Ax〉 ≤ 0, ∀y ∈ D
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⇔ ζ = Aζ ′ and 〈ζ ′, Ay′ − Ax〉 ≤ 0, ∀y′ ∈ A−1(D)

⇔ 〈ζ, y′ − x〉 ≤ 0, ∀y′ ∈ A−1(D)

⇔ ζ ∈ NA−1(D)(x),

and the proof is thereby completed. ⊓⊔

The next result extends [16, Proposition 1] toward the infinite dimensional setting

of this paper. Let us note that the surjectivity of the operator ND + A plays an important

role in the well-posedness of the algorithm proposed in Theorem 3.1.

Lemma 3.4 Let Assumption 3 hold. Then for a given closed and convex set D ⊂ H,

the set-valued mapping x �→ ND(x) + Ax is surjective. In addition, the mapping

(ND + A)−1 is single-valued and 1/β-Lipschitz continuous, with β is the coercivity

constant of A.

Proof Note that the set-valued mapping ND + A is maximally monotone and coercive.

Hence, it is surjective (see, e.g, [17]). Let xi ∈ (ND + A)−1(yi ), i = 1, 2. Then, one

has yi ∈ ND(xi ) + Axi and thus

〈y2 − y1, x2 − x1〉 ≥ 〈A(x1 − x2), x1 − x2) ≥ β‖x1 − x2‖
2,

which implies that

‖x1 − x2‖ ≤
1

β
‖y1 − y2‖.

Therefore, (ND + A)−1 is single-valued and 1/β-Lipschitz continuous. ⊓⊔

Lemma 3.5 Assume Assumption 1. Then, there exists a constant c > 0 which depends

only on the initial data such that for all t ∈ [0, T ], u ∈ H, we can find some y ∈ C(t, u)

satisfying ‖y‖ ≤ c + L‖u − u0‖.

Proof Fix some y0 ∈ C(0, u0). From Assumption 1, one has

y0 ∈ C(0, u0) ⊂ C(t, u) + (|v(t) − v(0)| + L‖u − u0‖)B.

Hence, we can choose some y ∈ C(t, u) such that

‖y − y0‖ ≤ |v(t) − v(0)| + L‖u − u0‖.

By setting c := |v(0)| + maxt∈[0,T ] |v(t)| + ‖y0‖, the conclusion follows. ⊓⊔

Now, we are ready to state the main result.

Theorem 3.1 Assume Assumptions 1, 2 and 3 satisfied. Then problem (11) has a

unique solution which is Lipschitz continuous.
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Proof Let be given some positive integer n ≥ 1, define hn := T /n and tn
i := ih for

0 ≤ i ≤ n − 1. We approximate (11) by the following adapted Moreau’s catching-up

algorithm:

– Set un
0 = u0.

– For 0 ≤ i ≤ n − 1, we want to find vn
i+1 and un

i+1 such that

vn
i+1 ∈ −NC(tn

i+1,u
n
i )

(

Avn
i+1 + Bun

i

)

,

un
i+1 = un

i + hnv
n
i+1. (22)

The first line of (22) can be rewritten as follows

vn
i+1 ∈ −NC(tn

i+1,u
n
i )−Bun

i

(

Avn
i+1

)

, (23)

or equivalently by using Lemma 3.3,

Avn
i+1 ∈ −AND(Avn

i+1) = −NA−1(D)

(

vn
i+1

)

, (24)

where D = C(tn
i+1, un

i ) − Bun
i . Thanks to Lemma 3.4, one can compute uniquely

vn
i+1 by

vn
i+1 = (NA−1(D) + A)−1(0), (25)

and the algorithm is well defined.

(a) Boundedness of the iterates

From (22) and the coerciveness of A, one has, for all v ∈ C(tn
i+1, un

i ), that

β‖vn
i+1‖

2 ≤
〈

Avn
i+1, v

n
i+1

〉

≤
〈

Avn
i+1 + Bun

i − v + v − Bun
i , vn

i+1

〉

≤
〈

v − Bun
i , vn

i+1

〉

= ‖v − Bun
i ‖‖vn

i+1‖

which implies that

‖vn
i+1‖ ≤

1

β
‖v − Bun

i ‖ =
1

β
‖v − Bu0 − hn

i
∑

k=1

Bvn
k ‖. (26)

Using Lemma 3.5, we can always choose v ∈ C(tn
i+1, un

i ) such that ‖v‖ ≤ c+ L‖un
i −

u0‖ ≤ c + hn L
∑i

k=1 ‖vn
k ‖ for some constant c > 0. The last inequality allows us to

deduce

‖vn
i+1‖ ≤

1

β
(c + ‖Bu0‖) +

1

β
hn(‖B‖ + L)

i
∑

k=1

‖vn
k ‖. (27)

By using a discrete version of Gronwall’s inequality, one has

‖vn
i+1‖ ≤

1

β
(c + ‖Bu0‖)exp

(

1

β
(‖B‖ + L)ihn

)

. (28)
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Consequently, the sequence (vn
i )1≤i≤n is uniformly bounded by

M :=
1

β
(c + ‖Bu0‖)exp

(

1

β
(‖B‖ + L)T

)

.

(b) Convergence of the approximate solutions

Now we construct the functions un(·), θn(·), ηn(·) as follow: on [tn
i , tn

i+1] for 0 ≤

i ≤ n − 1, we set

un(t) := un
i +

un
i+1 − un

i

hn

(

t − tn
i

)

, θn(t) := tn
i , ηn(t) := tn

i+1.

Then, for all t ∈]tn
i , tn

i+1[

u̇n(t) =
un

i+1 − un
i

hn

= vn
i+1, with Avn

i+1 + Bun
i ∈ C

(

tn
i+1, un

i

)

due to (22),

and

max
{

sup
t∈[0,T ]

|θn(t) − t |, sup
t∈[0,T ]

|ηn(t) − t |
}

≤ hn → 0 as n → +∞. (29)

It is easy to see that un(·) is M-Lipschitz continuous with un(0) = u0. Now let us

prove that the sequence of functions (un(·))n is a Cauchy sequence in C(0, T ; H).

Let be given some positive integer m, n. Let t ∈]0, T [ at which um(·) and un(·) are

differentiable. There exist i ∈ {1, . . . , m − 1} and j ∈ {1, . . . , n − 1} such that

t ∈ [tm
i , tm

i+1[ and t ∈ [tn
j , tn

j+1[, i.e., max{|t − tm
i |, |t − tm

i+1|} ≤ hm and max{|t −

tn
j |, |t − tn

j+1|} ≤ hn .

Note that −vm
i+1 ∈ NC(tm

i+1,u
m
i )(Avm

i+1 + Bum
i ) and −vn

j+1 ∈ NC(tn
j+1,u

n
j )
(Avn

j+1 +

Bun
j ) and the sequences (um

i )1≤i≤m, (un
j )1≤ j≤n, (Avm

i+1 + Bum
i )1≤i≤m, (Avn

j+1 +

Bun
j )1≤ j≤n are uniformly bounded. From the hypomonotonicity-like of the normal

cone of C in Assumption 2, there exist L̃ > 0 and an absolutely continuous function

ṽ : [0, T ] → R such that

Σ =
〈

vn
j+1 − vm

i+1, Avn
j+1 + Bun

j − Avm
i+1 − Bum

i

〉

=
〈

vn
j+1 − vm

i+1, A(vn
j+1 − vm

i+1)
〉

+
〈

vn
j+1 − vm

i+1, B(un
j − um

i )
〉

≤ |ṽ
(

tm
i+1

)

− ṽ
(

tn
j+1

)

|
(

‖vm
i+1‖ + ‖vn

j+1‖
)

+ L̃‖um
i − un

j ‖‖v
m
i+1 − vn

j+1‖

≤ |ṽ
(

tm
i+1

)

− ṽ(t) + ṽ(t) − ṽ(tn
j+1)|(‖vm

i+1‖ + ‖vn
j+1‖) + L̃‖um

i − un
j ‖‖v

m
i+1 − vn

j+1‖

≤ 2M(ω(hm) + ω(hn)) + L̃‖um
i − un

j ‖‖v
m
i+1 − vn

j+1‖

= ε1(hm , hn) + L̃‖um
i − un

j ‖‖v
m
i+1 − vn

j+1‖

where ε1(hm, hn) := 2M(ω(hm)+ω(hn)) and ω(·) denotes the modulus of continuity

of ṽ(·). Using the coerciveness of A, the last inequality allows us to deduce that

11



△ =
β

2
‖vm

i+1 − vn
j+1‖

2

≤ ε1(hm, hn) + (L̃ + ‖B‖)‖um
i − un

j‖‖v
m
i+1 − vn

j+1‖ −
β

2
‖vm

i+1 − vn
j+1‖

2

≤ ε1(hm, hn) +
L̃2

1

2β
‖um

i − un
j‖

2 where L̃1 = L̃ + ‖B‖

(use the fact that x �→ αx − βx2 is concave and reaches its maximum at x =
α

2β
)

≤ ε1(hm, hn) +
L̃2

1

2β
(‖um(θm(t)) − um(t) + um(t) − un(t) + un(t) − un(θn(t))‖)2

≤ ε1(hm, hn) +
3L̃2

1

2β
(‖um(θm(t)) − um(t)‖2 + ‖um(t) − un(t)‖2 + ‖un(t)

−un(θn(t))‖2)

(use the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), ∀a, b, c ∈ R)

≤ ε1(hm, hn) +
3M2 L̃2

1

2β
(h2

m + h2
n) +

3L̃2
1

2β
‖um(t) − un(t)‖2. (30)

Let

ε2(hm, hn) := ε1(hm, hn) +
3M2 L̃1

2

2β
(h2

m + h2
n)

then ε2(hm, hn) → 0 as m, n → +∞ since ω(hn) → 0 as n → +∞. Hence, from

(30), we obtain

β

2
‖u̇m(t) − u̇n(t)‖2 ≤ ε2(hm, hn) +

3L̃2
1

2β
‖um(t) − un(t)‖2 (31)

which implies that

‖u̇m(t) − u̇n(t)‖ ≤ ε(hm, hn) +
2L̃1

β
‖um(t) − un(t)‖

where

ε(hm, hn) :=

√

2ε2(hm, hn)

β
.

By using Gronwall’s inequality, one has

‖um(t) − un(t)‖ ≤ exp(
2L̃1T

β
)ε(hm, hn)t ≤ exp(

2L̃1T

β
)ε(hm, hn)T .

12



Hence the sequence of functions (un(·))n is a Cauchy sequence in C(0, T ; H) and

there exists u ∈ C(0, T ; H) such that un converges to u uniformly.

c) u is a solution of (11)

Clearly, u(0) = u0 and u(·) is M-Lipschitz continuous since for all s, t ∈ [0, T ],

we have

‖u(t) − u(s)‖ = lim
n→+∞

‖un(t) − un(s)‖ ≤ M |t − s|.

Consequently, u(·) is differentiable for almost every t ∈ [0, T ]. By using Banach–

Alaoglu theorem, there exist some ξ(·) in L2(0, T ; H) and a subsequence, still denoted

by (u̇n(·))n such that u̇n(·) converges weakly to ξ(·) in L2(0, T ; H).

Fix t ∈ [0, T ] and let z(t) := u(t) − u0 −

∫ t

0

ξ(s)ds. We have

〈

z(t), u(t) − u0 −

∫ t

0

ξ(s)ds

〉

= lim
n→+∞

〈

z(t), un(t) − u0 −

∫ t

0

ξ(s)ds

〉

= lim
n→+∞

〈

z(t),

∫ t

0

(u̇n(s) − ξ(s))ds

〉

= lim
n→+∞

∫ T

0

〈

1[0,t](s)z(t), u̇n(s) − ξ(s)
〉

ds = 0.

It implies that u(t) = u0 +

∫ t

0

ξ(s)ds for all t ∈ [0, T ] and hence u̇(t) = ξ(t) for

almost every t ∈ [0, T ]. Now, we prove that Au̇(t) + Bu(t) ∈ C(t, u(t)) for almost

all t ∈ [0, T ]. Given ε > 0, let us define the set

Dε :=
{

ϕ ∈ L2(0, T ; H) : Aϕ(t) + Bu(t) ⊂ C(t, u(t)) + εB a.e. t ∈ [0, T ]
}

.

It is easy to see that Dε is a weakly closed set in L2(0, T ; H) since it is closed and

convex. Note that, we have

Au̇n(t) + Bun(θn(t)) ∈ C(ηn(t), u(θn(t)))

⊂ C(t, u(t)) + (|v(ηn(t)) − v(t)| + L‖u(θn(t)) − u(t)‖)B.

Since ‖u(θn(t)) − u(t)‖ → 0 and |v(ηn(t)) − v(t)| → 0 as n → +∞, one deduces

that u̇n ∈ Dε for n large enough. Thus u̇ ∈ Dε since u̇n converges weakly to u̇ in

L2(0, T ; H). As a result, we obtain that

Au̇(t) + Bu(t) ⊂ C(t, u(t)) + εB for every ε > 0.

Since C(t, u(t)) is closed and convex, we get Au̇(t) + Bu(t) ∈ C(t, u(t)). Now it

remains to prove that

u̇(t) ∈ −NC(t,u(t))(Au̇(t) + Bu(t)) a.e. t ∈ [0, T ].

13



Given v ∈ C(t, u(t)), since C(t, u(t)) ⊂ C(ηn(t), u(θn(t))) + (|v(ηn(t)) − v(t)| +

L‖u(θn(t))−u(t)‖)B, we can find some v′ ∈ C(ηn(t), u(θn(t))) such that ‖v−v′‖ ≤

|v(ηn(t)) − v(t)| + L‖u(θn(t)) − u(t)‖. From (22), we have

u̇n(t) ∈ −NC(ηn(t),un(θn(t)))(Au̇n(t) + Bun(θn(t))) a.e. t ∈ [0, T ],

which implies that

〈−u̇n(t), v′ − Au̇n(t) − Bun(θn(t))〉 ≤ 0.

Thus

〈−u̇n(t), v − Au̇n(t) − Bun(t)〉 ≤ 〈−u̇n(t), v − v′−Bun(t) + Bun(θn(t))〉 ≤ αn(t),

where

αn(t) = M(|v(ηn(t)) − v(t)| + L‖u(θn(t)) − u(t)‖

+‖B‖M |θn(t) − t |) → 0 as n → +∞.

Since it is true for all v ∈ C(t, u(t)), we deduce that

σ(C(t, u(t)),−u̇n(t)) + 〈u̇n(t), Au̇n(t) + Bun(t)〉 ≤ αn(t).

Integrating both sides of the last inequality from 0 to T and taking the lower limit, one

obtains

lim inf
n→∞

∫ T

0

{σ(C(t, u(t)),−u̇n(t)) + 〈u̇n(t), Au̇n(t) + Bun(t)〉}dt ≤ 0. (32)

Let D(t) = C(t, u(t)) for each t then D has nonempty, closed convex values and

varies in an absolutely continuous way. Recall that the convex mapping

x �→

∫ T

0

σ(D(t), x(t))dt is also weakly lower semicontinuous on L2(0, T ; H)

([19], see also [6]). Therefore,

∫ T

0

σ(D(t),−u̇(t))dt ≤ lim inf
n→∞

∫ T

0

σ(D(t),−u̇n(t))dt . (33)

In addition, the function x �→

∫ T

0

〈x(t), Ax(t)〉dt is also weakly lower semicontinu-

ous on L2(0, T ; X) and u̇n converges weakly to u̇ in L2(0, T ; X). Thus, we have

∫ T

0

〈u̇(t), Au̇(t)〉dt ≤ lim inf
n→∞

∫ T

0

〈u̇n(t), Au̇n(t)〉. (34)
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We note that B = ∇ϕB where the function ϕB(x) := 1
2
〈Bx, x〉 is convex and contin-

uous. Therefore, one has

∫ T

0

〈u̇(t), Bu(t)〉dt =

∫ T

0

d

dt
ϕB(u(t))dt = ϕB(u(T )) − ϕB(u(0))

= lim
n→+∞

(ϕB(un(T )) − ϕB(un(0)))

= lim
n→+∞

∫ T

0

d

dt
ϕB(un(t))dt

= lim
n→+∞

∫ T

0

〈u̇n(t), Bun(t)〉dt . (35)

From (32), (33), (34), (35), we obtain that

∫ T

0

σ(D(t),−u̇(t)) + 〈u̇(t), Au̇(t) + Bu(t)〉dt ≤ 0. (36)

Since Au̇(t) + Bu(t) ∈ D(t) for almost t ∈ [0, T ], we have

σ(D(t),−u̇(t)) + 〈u̇(t), Au̇(t) + Bu(t)〉 ≥ 0, a.e. t ∈ [0, T ]. (37)

From (36) and (37), one gets

σ(D(t),−u̇(t)) + 〈u̇(t), Au̇(t) + Bu(t)〉 = 0, a.e. t ∈ [0, T ],

or equivalently,

u̇(t) ∈ −ND(t)(Au̇(t) + Bu(t)), a.e. t ∈ [0, T ].

Therefore, u(·) is a solution of (11).

d) Uniqueness: Let u1(·), u2(·) be two solutions of (11) with the same initial condition

u1(0) = u2(0) = u0. First, we prove that u̇i (·) is uniformly bounded, i = 1, 2. Indeed,

since u̇i (t) ∈ −NC(t,ui (t))(Au̇i (t) + Bui (t)), one has

〈u̇i (t), y − Au̇i (t) − Bui (t))〉 ≥ 0, ∀y ∈ C(t, ui (t)), a.e. t ∈ [0, T ] (38)

which implies that

β‖u̇i (t)‖
2 ≤ 〈u̇i (t), Au̇i (t)〉 ≤ ‖u̇i (t)‖‖y − Bui (t))‖. (39)

Lemma 3.5 allows us to choose some yt ∈ C(t, ui (t)) such that ‖yt‖ ≤ c+ L‖ui (t)−

u0‖. Combining with (39), we deduce that

‖u̇i (t)‖ ≤
1

β
‖yt − Bui (t))‖ ≤

1

β
[(L + ‖B‖)

∫ t

0

‖u̇i (s)‖ds + c + (L + ‖B‖)‖u0‖].

(40)
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Using Gronwall’s inequality, one obtains that

‖u̇i (t)‖ ≤
1

β
[(L + ‖B‖)(c + (L + ‖B‖)‖u0‖)exp

(

(L + ‖B‖)T

β

)

.

Therefore, ui (t) and Au̇i (t) + Bui (t) are uniformly bounded by some R > 0. From

the hypomonotonicity-like of the normal cone of C , there exists L̃ ≥ 0 such that

〈u̇1(t) − u̇2(t), Au̇1(t) + Bu1(t) − Au̇2(t) − Bu2(t)〉

≤ L̃‖u1(t) − u2(t)‖‖u̇1(t) − u̇2(t)‖ a.e. t ∈ [0, T ].

Using the coerciveness of A, the last inequality implies that

β

2
‖u̇1(t) − u̇2(t)‖

2

≤ (L̃ + ‖B‖)‖u1(t) − u2(t)‖‖u̇1(t) − u̇2(t)‖ −
β

2
‖u̇1(t) − u̇2(t)‖

2

≤
L̃2

1

2β
‖u1(t) − u2(t)‖

2 where L̃1 := L̃ + ‖B‖. (41)

Hence

‖u̇1(t) − u̇2(t)‖ ≤
L̃1

β
‖u1(t) − u2(t)‖.

From the Gronwall’s inequality, we obtain that

‖u1(t) − u2(t)‖
2 ≤ ‖u1(0) − u2(0)‖2exp

(

L̃1t

β

)

= 0 for all t ∈ [0, T ].

Consequently, one has u1 ≡ u2 and the uniqueness of solutions is obtained. ⊓⊔

Remark 3.2 (i) The existence and uniqueness result in Theorem 3.1 can be generalized

similarly for reflexive Banach spaces without any difficulty. In this case, the set-valued

mapping C : [0, T ] × X ⇒ X∗ and the linear operators A, B : X → X∗, where X is

a reflexive Banach space with its dual X∗.

(ii) If H ≡ R
n or if some compactness assumption is supposed, then Assumption 2

and the Cauchy convergence can be skipped since in these cases, the boundedness of

the iterates is sufficient to obtain the strong convergence of certain subsequence of the

approximate solutions.

(iii) Although our assumptions are more general than the ones used in [13] (we consider

the state-dependent case without using the additional initial viability condition), we

even get the strong convergence of the approximate solutions comparing with the weak

convergence of a sub-approximate solutions obtained in [13]. The coerciveness of A

plays an essential role in the Cauchy property of the approximate solutions.
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4 Application to Quasistatic Frictional Contact Problem

Let us consider the following evolution variational inequality

Find u : [0, T ] → H such that u̇(t) ∈ K a.e. t ∈ [0, T ] and ∀v ∈ K

a(u̇(t), v − u̇(t)) + b(u(t), v − u̇(t)) + j(v) − j(u̇(t)) ≥ 〈 f (t, u(t)), v − u̇(t)〉.

u(0) = u0 ∈ H .

(42)

Suppose that the following assumptions hold:

(A1) K ⊂ H is a nonempty, closed and convex cone.

(A2) a(·, ·), b(·, ·) : H × H → R are two real continuous bilinear and symmetric

forms satisfying for all x ∈ H

a(x, x) ≥ β‖x‖2, and b(x, x) ≥ 0 for some β > 0.

(A3) j : K → R is convex, positively homogeneous of degree 1 (i.e., j(λx) =

λ j(x),∀λ > 0) and Lipschitz continuous with j(0) = 0.

(A4) f : [0, T ] × H → H satisfies

‖ f (t, u) − f (s, w)‖ ≤ |v(t) − v(s)| + L‖u − w‖ ∀t, s ∈ [0, T ] and u, w ∈ H ,

for some L ≥ 0 and some absolutely continuous function v : [0, T ] → R.

Now, we define the functional J : H → R ∪ {+∞} as follows:

J (x) =

{

j(x), if x ∈ K,

+∞, otherwise.
(43)

Then J is proper, positively homogeneous of degree 1, convex, and lower semicon-

tinuous with J (0) = 0. Let A, B : H → H be the linear bounded and symmetric

operators such that

〈Au, v〉 = a(u, v), 〈Bu, v〉 = b(u, v).

Then (42) becomes

Find u : [0, T ] → H such that for a.e. t ∈ [0, T ] and ∀v ∈ H

〈Au̇(t), v − u̇(t)〉 + 〈Bu(t), v − u̇(t)〉 + J (v) − J (u̇(t)) ≥ 〈 f (t, u(t)), v − u̇(t)〉,

u(0) = u0 ∈ H ,

(44)

which is equivalent to the following differential inclusion:

f (t, u(t)) − Au̇(t) − Bu(t) ∈ ∂ J (u̇(t)) ∀v ∈ H ,

u(0) = u0 ∈ H .
(45)

Proposition 4.1 Let Assumptions (A1)–(A4) satisfied. Then for each u0 ∈ H, problem

(42) has a unique solution.
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Proof First we note that the problem (42) is equivalent to (45) and (45) can be rewritten

into the form of (11). Indeed, since J is proper convex lower semicontinuous, positively

homogeneous of degree 1 with J (0) = 0, it is easy to see that

J (y) = σ(C, y) = I ∗
C (y),

where C = ∂ J (0) is a closed, convex set. Thus

y ∈ ∂ J (w) ⇔ w ∈ ∂ J ∗(y) = ∂ IC (y) = NC (y).

Consequently, one has

f (t, u(t)) − Au̇(t) − Bu(t) ∈ ∂ J (u̇(t))

⇔ u̇(t) ∈ NC ( f (t, u(t)) − Au̇(t) − Bu(t)) = NC− f (t,u(t))(−Au̇(t) − Bu(t))

⇔ u̇(t) ∈ −NC(t,u(t))(Au̇(t) + Bu(t)),

where C(t, u) := f (t, u) − C = f (t, u) − ∂ J (0), which is a particular case of

Lemma 3.1. Therefore, all assumptions of Theorem 3.1 are satisfied and the conclusion

follows. ⊓⊔

Now we give an example for the quasistatic frictional contact problem involving

viscoelastic materials with short memory under state-dependent perturbation forces.

Example 4.1 The physical setting consists of a deformable body Ω ⊂ R
d (d = 2, 3)

which is in contact with a rigid foundation. The boundary Ŵ = ∂Ω is supposed to be

piecewise smooth composed of three parts:

Ŵ = ŴU ∪ŴN ∪ŴC , with ŴU ∩ŴN = ŴU ∩ŴC = ŴN ∩ŴC = ∅ (see Fig. 1). On the

boundary ŴU , the body is assumed to be fixed, which means that the displacement is

given and on ŴC the body is in bilateral frictional contact with a foundation, i.e., there

is no loss of contact between the body and the foundation. The tractions act on ŴN . In

the quasistatic case, where all acceleration effects are neglected, the equilibrium of the

body in this physical setting is based on the following constitutive law and boundary

conditions: find a displacement field u : [0, T ] × Ω → R
d and stress field such that:

−
∂

∂t

∂

∂x j

ai jkhεkh(u) −
∂

∂x j

bi jkhεkh(u) = f0i (t, u), in ]0, T [×Ω (46)

ui = 0 on ]0, T [×ŴU (47)

σν = f2 on ]0, T [×ŴN (48)

|στ | ≤ g on ŴC , uν = 0 on ŴC (49)

|στ | < g �⇒
∂uτ

∂t
= 0, |στ | = g �⇒ ∃λ > 0 such that

∂uτ

∂t
= −λστ (50)

u(0, x) = u0(x), x ∈ Ω. (51)

In the equilibrium Eq. (46), f0(t, u) represents the density of a body forces, assumed

to be dependent on t and u. We suppose that the coefficients (ai jkh) and (bi jkh) have
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Fig. 1 A body in contact with a rigid foundation

properties of symmetry and ellipticity (see [20] for more details). Condition (48)

represents the traction surface condition in which act the surface tractions density

forces f2 depending on time t on the boundary ŴN . Using the classical notation,

we denote by εi j (u) and σi j (u) the components of the strain and the stress tensor,

respectively. Here ˚ = (νi ) denotes the outward unit normal at the boundary Ŵ. For

anyv ∈ H , we denote byvτ andvν the tangential and normal components, respectively.

Moreover, στ and σν denote the tangential and normal stress on Ŵ. In (49) and (50),

g ∈ L∞(ŴC ) is a nonnegative function representing a friction bound.

For the variational formulation, we introduce the following notations:

H = (H1(Ω))3 (52)

K = {v ∈ (H1(Ω))3 : v = 0 on ŴU and vν = 0 on ŴC }, (53)

a(u, v) =

∫

Ω

ai jkhεkh(u)εi j (v)dx, u, v ∈ H (54)

b(u, v) =

∫

Ω

bi jkhεkh(u)εi j (v)dx, u, v ∈ H (55)

J (v) =

∫

ŴC

g|vτ |dŴ, v ∈ H (56)

〈 f (t, u), v〉 =

∫

Ω

f0(t, u)vdx +

∫

ŴN

f2(t)vdŴ. (57)

Using standard arguments, we are led to the following variational formulation, which

consists of finding u(t) such that

Find u : [0, T ] → H such that u̇(t) ∈ K a.e. t ∈ [0, T ] and ∀v ∈ K

a(u̇(t), v − u̇(t)) + b(u(t), v − u̇(t)) + J (v) − J (u̇(t)) ≥ 〈 f (t, u(t)), v − u̇(t)〉,

u(0) = u0 ∈ H .

(58)
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For more details about the variational formulation of problem (46)–(51), we refer to

[20–22] for more details. We recall that if Ω is a bounded open set with a piecewise

smooth boundary Ŵ, then the following Korn’s inequality holds:

∫

Ω

εi j (v)εi j (v)dx +

∫

Ω

vivi dx ≥ c‖v‖2
H , ∀v ∈ H , (59)

where c > 0 is a constant depending only on Ω . Hence, the coercivity of the bilinear

forms a and b is a consequence of the Korn’s inequality. The symmetry of a and b

follows also from the symmetry of the corresponding elasticity coefficients in (46).

We suppose that (t, u) �→ f0(t, u) is absolutely continuous with respect to the time t

and Lipschitz continuous with respect to u and that t �→ f2(t) is absolutely continuous.

The following result is a consequence of Proposition 4.1.

Corollary 4.1 Under the above assumptions, for each u0 ∈ H, problem (58) has a

unique solution which is Lipschitz continuous.

5 Conclusions

In this paper, we study the existence and the uniqueness of solution for a class of

state-dependent implicit sweeping process in Hilbert spaces without any compactness

assumption. The new notion, introduced in this paper, of hypomonotonicity-like of

the normal cone to the moving set turns out to be a fundamental property, which is

satisfied in many concrete situations. By using an implicit time discretization and a

Cauchy technique, we obtain the strong convergence of approximate functions to the

unique solution, which is an important property in view of the construction of adequate

numerical algorithms. The equivalence between such implicit state-dependent sweep-

ing processes and quasistatic evolution quasi-variational inequalities is also shown.

The theoretical result is applied to analyze the state-dependent quasistatic frictional

contact problem in nonsmooth mechanics. Many other open questions need further

investigations. The numerical analysis of the quasistatic evolution quasi-variational

inequalities using the discretization scheme studied in this paper could be also of

great interest. Quasi-variational inequalities are also used to formulate many other

problems in many areas such as for instance traffic transportation, Nash equilibrium

in game theory and impulse control problems. It would be interesting to investigate

other applications in this context. This is out of the scope of the current version and

will be carried out in a future study. We expect that the ideas and tools developed in

this paper will be applied in the same manner to other fields, where problems can be

modeled as state-dependent implicit sweeping process with constrained velocity.
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