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aXLIM UMR-CNRS 7252, Université de Limoges, 87060 Limoges, France
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Abstract

The main concern of this paper is the study of degenerate sweeping process in-

volving uniform prox-regular sets via an unconstrained differential inclusion by

showing that the sets of solutions of the two problems coincide. This principle

of reduction to unconstrained evolution problem can be seen as a penalization of

the subdifferential of the distance function. Using this reduction technique, an

existence and uniqueness result of a Lipschitz perturbed version of the degener-

ate sweeping process is proved in the finite dimensional setting. An application

is given to quasistatic unilateral dynamics in nonsmooth mechanics where the

moving set is described by a finite number of inequalities. We provide suffi-

cient verifiable conditions ensuring both the prox-regularity and the Lipschitz

continuity with respect to the Hausdorff distance of the moving set.

Keywords: Degenerate sweeping process, prox-regular sets, differential

inclusions, quasistatic frictional contact problems, nonsmooth mechanics
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1. Introduction

Moreau’s sweeping process appears as a model in several contexts [3, 8,

14, 17]. Its importance comes from the study of elastoplasticity in nonsmooth
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mechanics [18], modeling and simulation of switched electrical circuits [2], crowd

motion modeling [15], etc. The main subject of investigation continues to be

the existence of solutions, under increasing degrees of generality.

In this paper, we consider the evolution differential inclusion −u̇(t) ∈ NC(t)

(
Au(t)

)
a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0)
(1)

where A : H → H is a possibly nonlinear Lipschitz and strongly monotone

operator in a real Hilbert space H, and C : [0, T ] ⇒ H, t 7−→ C(t) is a set-

valued mapping, the precise assumptions will be described below. Moreover,

for any subset S in H the set NS(v) denotes the Clarke normal cone to S

at v ∈ S. Inclusion of type (1) arise in plastic flow problems, in quasistatic

elastoplasticity [18]. It has been introduced and studied by M. Kunze and

M.D.P. Monteiro Marques [13] for the convex case i.e. when the set-valued

map C(·) has a nonempty closed and convex values. This kind of dynamic (1)

could be considered as a hybrid system since when Au(t) lies in the interior of

C(t), the velocity u̇(t) = 0 and when Au(t) touches the boundary of C(t), a

discrete event occurs which corresponds to choosing a selection in the normal

cone (a Lagrange multiplier) so that Au(t) remains in C(t). The presence of the

operator A in (1) is more complicated than the classical case where A = Id (see

[12, 13] for more details). The authors in [13] proved the existence of solutions

of (1) where C(t) is a closed and convex subset of the Hilbert space H moving

in a Lipschitz continuous way and A is a maximal strongly monotone operator.

The method in [13] used a discretization technique based on a surjectivity of

the sum of two maximal monotone operators (one of these operators being the

normal cone NC(t)(.). In the nonconvex setting, the existence of solutions for

(1) when C(t) is an uniformly prox-regular set of the Hilbert space H moving

in an absolutely continuous way is still an open problem. The method used in

[13] can’t be applied in the nonconvex setting since the normal cone NC(t)(.) is

not a maximal monotone operator.

In the present paper, using ideas from [20] for the classical sweeping process
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(A = Id), we study the relationship between the constrained evolution problem

(1) , and the following unconstrained differential inclusion −u̇(t) ∈ |ζ̇(t)|β ∂dC(t)

(
Au(t)

)
a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0)
(2)

where ∂dS(v) denotes the Clarke subdifferential of the distance function dS by

assuming that ∣∣dC(t)(x)− dC(s)(x)
∣∣ ≤ |ζ(t)− ζ(s)| (3)

for all x ∈ H and t, s ∈ [0, T ] with ζ is an absolutely continuous nonnegative

function and A is β−coercive operator. We show in Theorem 3.1 the coinci-

dence between the solution sets of (1) and (2) under the r-prox-regularity of

the moving set C(·). The coerciveness of the operator A will play an important

role in our analysis. The principle of reduction to unconstrained problem can

be seen as a penalization of the subdifferential of the distance function with an

appropriate rate depending on the velocity of the absolute continuous function

ζ and the coerciveness coefficient β of the operator A. Thanks to this reduction

technique, an existence and uniqueness result of the Lipschitz perturbed version

of problem (1) is showed in Theorem 4.1 in the finite dimensional setting. An

application is given to quasistatic unilateral dynamics in nonsmooth mechanics

where the moving set is described by a finite number of inequalities. We pro-

vide new sufficient verifiable conditions ensuring both the prox-regularity and

the Lipschitz continuity with respect to the Hausdorff distance of the moving

set (see Proposition 5.1).

This work owes its originality to overcome the difficulty of the presence of the

operator A inside the normal cone and to the extension to the prox-regularity of

the moving set with the reduction to unconstrained differential inclusion. This

unifies and extends some known results in the literature [12, 13, 20] which paves

the way for new research and applications such as the study the Bolza problem

in optimal control with dynamic constraint governed by degenerate sweeping

process [9].

The paper is organized as follows. Section 2 is devoted to some definitions
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and important results needed later. Section 3 provides the reduction result.

It is applied in Section 4 to prove an existence and uniqueness result for (1)

and its Lipschitz perturbation form ( see (16) after) in the finite dimensional

framework when the sets C(t) are uniformly prox-regular. Section 5 is dedicated

to an application of the degenerate sweeping process to quasistatic unilateral

dynamics involving a moving set described by a finite number of inequalities.

2. Notations and preliminaries

Throughout the paper, H is a real Hilbert space whose inner product is

denoted by 〈., .〉 and the associated norm by ‖.‖. For any x ∈ H and r > 0 the

closed ball (respectively, open ball) centered at x with radius r will be denoted

by B[x, r] (respectively, B(x, r)). For x = 0 and r = 1 we set B the closed unit

ball in H. Let C be a nonempty closed subset of H. We denote by dC(x) the

usual distance function associated with C, i.e.,

dC(x) := inf {‖y − x‖ , y ∈ C}

and the metric projection of x onto C is the set of points in C which realize the

infimum. When this set is a singleton, we denote this point by ProjC(x).

We will reduce the differential inclusion related to the normal cone to a

differential inclusion involving the subdifferential of the distance function. For

a function f : H → R∪ {+∞}, a vector ζ ∈ H is a proximal subgradient of f at

a point x with f(x) < +∞ (see, e.g., [16, 8]) if there exist some reals σ ≥ 0 and

δ > 0 such that

〈ζ, y − x〉 ≤ f(y)− f(x) + σ‖y − x‖2 for all y ∈ B(x, δ).

The set ∂P f(x) of all proximal subgradients of f at x is the proximal subdiffer-

ential of f at x. Of course, ∂P f(x) = ∅ if f(x) = +∞.

Taking the proximal subdifferential ∂PψC(x) of the indicator function ψC

(with ψ(y) = 0 if y ∈ C and ψ(y) = +∞ if y /∈ C) we obtain the proximal

normal cone NP
C(x) of C et the point x ∈ C. Equivalently, a vector ζ ∈ H is a
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proximal normal vector of C at x ∈ C if and only if there are reals σ ≥ 0 and

δ > 0 such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 for all y ∈ C ∩ B(x, δ). (4)

The proximal normal cone can be described in the following geometrical way

(see, e.g., [8])

NP
C(x) = {ζ ∈ H : ∃ρ > 0 such that x ∈ ProjC(x+ ρζ)},

where

ProjC(u) := {y ∈ S : dC(u) = ‖u− y‖}.

The proximal normal cone is also connected with the distance function to C

through the equalities (see e.g. [8, 16, 19])

∂P dC(x) = NP
S (x) ∩ BH and NP

C(x) = R+∂
P dC(x),

where R+ := [0,+∞[.

Besides the concept of proximal subdifferential, we need to recall the concept

of the Fréchet subdifferential. A vector ζ ∈ H is a Fréchet subgradient of f at

x (where f is finite) provided, for each real ε > 0, there exists a neighborhood

U of x such that

〈ζ, y − x〉 ≤ f(y)− f(x) + ε‖y − x‖, for all y ∈ U.

The set of all Fréchet subgradients of f at x is the Fréchet subdifferential ∂F f(x)

of f at x and one set ∂F f(x) = ∅ whenever f(x) is not finite. The cone

NF
S (x) = ∂FψS(x) is the Fréchet normal cone of S at x. For x ∈ S, it is known

that (see [16, 8, 19])

∂F dS(x) = NF
S (x) ∩ BH , NF

S (x) = R+∂
F dS(x). (5)

Prox-regular sets will play an important role in the sequel. The definition was

first given by Federer, under the name of sets which positive reach, and later

studied by several authors (see for instance [8])
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Definition 2.1. The set C ⊂ H is said to be r-prox-regular (or uniformly prox-

regular with constant r > 0) whenever, for all x ∈ C, for all ζ ∈ NP
C(x) ∩ BH

and for all α ∈]0, r[, one has x ∈ ProjC(x+ αζ).

The following proposition summarizes some important consequences of prox-

regularity needed in the paper. For the proof of these results, we refer the reader

to [8].

Proposition 2.1. Let C be a nonempty closed subset in H and let r ∈]0,+∞].

Then the following are equivalent:

(i) The subset C is (uniformly) r-prox-regular;

(ii) For any point x′ in the open enlargement Ur(C) = {x ∈ H : dC(x) < r},

the set ProjC(x′) is a singleton and the mapping ProjC(.) is continuous

on Ur(C);

(iii) The equality ∂P dC(x) = ∂dC(x) for all x ∈ H satisfying dC(x) < r;

(iv) The distance function dC(.) is continuously Fréchet differentiable on the

open tube {x ∈ H : 0 < dC(x) < r};

(v) The normal cone NP
C(.) satisfies the hypomonotonicity condition

〈y1 − y2, x1 − x2〉 ≥ −‖x1 − x2‖2

for all xi ∈ C and all yi ∈ NP
C(xi) with ‖yi‖ ≤ r where i ∈ {1, 2} .

At any x ∈ H with 0 < dC(x) < r, by the Fréchet differentiability of dC(.) we

have

‖∇dC(x)‖ = 1 (6)

Remark 2.1. (i) As a consequence of (iii) in Proposition 2.1, for uniformly

prox-regular sets C, the Fréchet and the proximal normal cones coincide,

i.e. NP
C(x) = NF

C(x).

(ii) The closed r-prox-regular set C is convex if and only if r = +∞. Some

familiar examples of prox-regular sets can be found in [8].

(iii) The finite union of disjoint intervals is nonconvex but r-prox-regular where

r depends on the distances between the intervals (see e.g. [8]).
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Figure 1: A prox-regular set with its enlargement Ur(C) in R2.

(iv) More generally, any finite union of disjoint convex subsets in H is noncon-

vex but r-prox-regular where r depends on the distances between the sets

(see e.g. [8]).

3. Reduction result

In this section, we prove the coincidence between the solution sets of (1)

and (2) under the r-prox-regularity assumption. First let us introduce the set-

valued mapping C : [0, T ] ⇒ H and the mapping A : H → H with the following

assumptions:

(H1) For all t ∈ [0, T ], C(t) is a nonempty closed and uniformly r-prox-regular

subset of H;

(H2) There exists an absolutely continuous nonnegative function ζ : [0, T ] −→

R+ (with ζ(0) = 0) such that

∣∣dC(t)(x)− dC(s)(x)
∣∣ ≤ |ζ(t)− ζ(s)| , for all s, t ∈ [0, T ] and all x ∈ H;
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(H3) A : H −→ H is a (possibly) nonlinear, Lipschitz and strongly monotone

operator, i.e. satisfying

‖Ax−Ay‖ ≤ L‖x− y‖, for all x, y ∈ H, for some constant L > 0.

and

〈Ax−Ay, x− y〉 ≥ β ‖x− y‖2 , for all x, y ∈ H, for some constant β > 0.

Remark 3.1. Note that, if there is an absolutely continuous function γ : [0, T ]→

R+ satisfing (H2), then by setting ζ(t) =
t∫
0

(|γ̇(z)+ε)dz, the function ζ(·) fulffils

the same inequality i.e. (H2) as well as the condition ζ(0) = 0 and ζ̇(·) ≥ ε > 0.

Using some ideas from [20] for the classical sweeping process and adapted in our

context to the degenerate sweeping process, the following theorem states the

coincidence between the solution sets of (1) and (2) under the r-prox-regularity

assumption.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold. A mapping u(.) is a

solution of the constrained evolution inclusion (1) if and only if it is a solution

of the unconstrained differential inclusion (2).

Proof. Put v(t) = Au(t) for all t ∈ [0, T ]. Note first that v is differentiable a.e.,

since A is Lipschitz continuous and a mapping u(·) : [0, T ] → H is absolutely

continuous. Let h > 0 and t ∈ [0, T ] such that u̇(t) and v̇(t) exist. It follows

from the strong monotonicity of A by taking x = u(t+h) and y = u(t) that a.e.

〈v(t+ h)− v(t), u(t+ h)− u(t)〉 ≥ β ‖u(t+ h)− u(t)‖2

or 〈
v(t+ h)− v(t)

h
,
u(t+ h)− u(t)

h

〉
≥ β

∥∥∥∥u(t+ h)− u(t)

h

∥∥∥∥2
and let h→ 0+

〈v̇(t), u̇(t)〉 ≥ β ‖u̇(t)‖2 . (7)
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• (1) =⇒ (2). Let u(.) be any solution of the constrained differential inclusion (1) .

Let t ∈ ]0, T [ be fix such that u(.), v(.) and ζ(.) are derivable at t with u̇(t) 6= 0

and −u̇(t) ∈ NC(t)(v(t)). Using Remark 2.1 (i), we have: NF
C(t)

(
v(t)

)
=

NC(t)

(
v(t)

)
. Therefore,

− u̇(t)

‖u̇(t)‖
∈ NF

C(t)

(
v(t)

)
and so by (5), we obtain

− u̇(t)

‖u̇(t)‖
∈ ∂F dC(t)

(
v(t)

)
. (8)

Also, the absolute continuity of u(.) and the Lipschitz continuity of A give

‖v(t)− v(s)‖ ≤ L
t∫
s

‖u̇(τ)‖ dτ.

From the definition of Fréchet subdifferential, we have for any ε > 0 and for

s < t sufficiently close to t,〈
− u̇(t)

‖u̇(t)‖
, v(s)− v(t)

〉
≤ dC(t) (v(s)) + ε ‖v(t)− v(s)‖

= dC(t) (v(s))− dC(s) (v(s)) + ε ‖v(t)− v(s)‖

≤ |ζ(t)− ζ(s)|+ ε ‖v(t)− v(s)‖ ,

and hence〈
− u̇(t)

‖u̇(t)‖
,
v(s)− v(t)

t− s

〉
≤
∣∣∣∣ζ(t)− ζ(s)

t− s

∣∣∣∣+ ε

∥∥∥∥v(t)− v(s)

t− s

∥∥∥∥ .
By passing to the limit as s ↑ t, we get for any ε > 0,〈

u̇(t)

‖u̇(t)‖
, v̇(t)

〉
≤
∣∣∣ζ̇(t)

∣∣∣+ ε ‖v̇(t)‖ ,

and using (7), we get

‖u̇(t)‖ ≤

∣∣∣ζ̇(t)
∣∣∣

β
. (9)

So, the inequality (9) holds when u̇(t) = 0, we get ‖u̇(t)‖ ≤ |ζ̇(t)|β for almost all

t ∈ [0, T ] and hence by the definition of the Fréchet subdifferential

u̇(t) ∈ −‖u̇(t)‖ ∂F dC(t)

(
Au(t)

)
⊂ −

∣∣∣ζ̇(t)
∣∣∣

β
∂F dC(t)

(
Au(t)

)
.
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Consequently,

−u̇(t) ∈

∣∣∣ζ̇(t)
∣∣∣

β
∂dC(t)

(
Au(t)

)
,

and hence any solution of (1) is a solution of (2).

• (2) =⇒ (1). Let u(.) be any solution of the unconstrained differential inclusion (2) .

We know that ∂dC(x) ⊂ NC(x) for all x ∈ C, so it is enough to show that

v(t) ∈ C(t) for all t ∈ [0, T ]. As ζ̇(.) ∈ L1([0, T ] ,R), then

lim
λ(S)−→0

∫
S

∣∣∣ζ̇(t)
∣∣∣ dt = 0,

where λ is the Lebesgue measure in R and S is a measurable set of R.

We can fixe some real α > 0 such that

[1 +
L

β
]

∫
S

∣∣∣ζ̇(t)
∣∣∣ dt < r, (10)

for all Lebesgue measurable sets S ⊂ [0, T ] satisfying λ(S) < α.

Let us denote, for r ∈ ]0,+∞], by Ur(C), the open r−tube around the set C

involved in (ii) of Proposition 2.1, that is

Ur(C) = Ur(C) \ C.

The proof is divided into two steps.

1. First, we suppose that T < α. We prove that u(.) is a solution of (1), that is,

v(t) ∈ C(t), for all t ∈ [0, T ].

Let ψ : [0, T ] −→ R be the function defined by

ψ(t) := dC(t)

(
v(t)

)
.

The function ψ is absolutely continuous since, by (H2) and (H3), we have

|ψ(t)− ψ(s)| ≤ L ‖u(t)− u(s)‖+ |ζ(t)− ζ(s)|

for all s, t ∈ [0, T ]. So the set

Ω := {t ∈ [0, T ] : v(t) 6∈ C(t)} = ψ−1 (]0,+∞])
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is open in [0, T ]. We claim that this set Ω is in fact empty. Indeed, let us suppose

that Ω 6= ∅. As 0 6∈ Ω, there exists a nonempty open interval ]a, b[ such that

ψ(a) = 0. Indeed, we can write Ω = ∪i≥1]ai, bi[ with ]ai, bi[∩]aj , bj [= ∅,∀i 6= j

and a1 < a2 < a2 < ... and b1 < b2 < b3 < .... As Ω ⊂]0, T [, if a1 = 0, then we

take a := 0 and b := b1. If a1 6= 0, i.e., a1 > 0, then [0, a1] 6⊂ Ω. So ψ(a1) = 0

and we take a := a1 and b := b1.

Let s be any point of ]a, b[ where ψ̇(s), u̇(s), v̇(s), ζ̇(s) exist, with u̇(s) satisfies

the inclusion (2). Then for some mapping ε(δ)→0 as δ ↓ 0, we can write

v(s+ δ) = v(s) + δv̇(s) + δε(δ).

So for some δ > 0 sufficiently small, by (H2) and (H3) we obtain

δ−1 [ψ(s+ δ)− ψ(s)] = δ−1
[
dC(s+δ) (v(s+ δ))− dC(s) (v(s))

]
= δ−1

[
dC(s+δ) (v(s) + δv̇(s) + δε(s))− dC(s+δ) (v(s) + δv̇(s))

]
+

+ δ−1
[
dC(s+δ) (v(s) + δv̇(s))− dC(s) (v(s) + δv̇(s))

]
+

+ δ−1
[
dC(s) (v(s) + δv̇(s))− dC(s) (v(s))

]
≤ ‖ε(δ)‖+ δ−1 |ζ(s+ δ)− ζ(s)|+

+ δ−1
[
dC(s) (v(s) + δv̇(s))− dC(s) (v(s))

]
. (11)

Since ζ̇(s) > 0 (see Remark 3.1), then u̇(s) satisfies (2) and v(s) 6∈ C(s). We

get by (H2), (H3) and v(0) ∈ C(0),

dC(s) (v(s)) = dC(s) (v(s))− dC(0) (v(0))

≤ L ‖u(s)− u0‖+ |ζ(s)− ζ(0)|

= L

∥∥∥∥∥∥
s∫
0

u̇(τ)dτ

∥∥∥∥∥∥+

∣∣∣∣∣∣
s∫
0

ζ̇(τ)dτ

∣∣∣∣∣∣ .
Using the fact that

‖u̇(τ)‖ ≤

∣∣∣ζ̇(τ)
∣∣∣

β
, for a.e. τ ∈ [0, T ] ,
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we have

dC(s) (Au(s)) ≤ L
s∫
0

‖u̇(τ)‖ dτ +

s∫
0

∣∣∣ζ̇(τ)
∣∣∣ dτ

≤ L

β
.

s∫
0

∣∣∣ζ̇(τ)
∣∣∣ dτ +

s∫
0

∣∣∣ζ̇(τ)
∣∣∣ dτ

≤
(
L

β
+ 1

)
.

s∫
0

∣∣∣ζ̇(τ)
∣∣∣ dτ. (12)

Taking into account (10), (12) and the inequality T < α, we have

0 < dC(s) (v(s)) < r, i.e. v(s) ∈ Ur(C(s)). (13)

By (H1) and (iv) of Proposition (2.1), the function dC(s)(.) is Fréchet differ-

entiable at v(s). Then the inclusion (2) for u̇(s) means that
(
−β. u̇(s)

ζ̇(s)

)
is the

Fréchet derivative at v(s) of the function dC(s)(.), which combined with the fact

that v(s) 6∈ C(s), entails that

β ‖u̇(s)‖ =
∣∣∣ζ̇(s)

∣∣∣ . (14)

As ζ̇(s) > 0 (see Remark 3.1), then v̇(s) 6= 0. Indeed, suppose the contrary, i.e.,

v̇(s) = 0 then (7) implies that u̇(s) = 0 and hence we get from β > 0 and (14)

that ζ̇(s) = 0. Then we have v̇(s) 6= 0 and

lim
x→v(s)

1

‖x− v(s)‖

[
dC(s)(x)− dC(s)(v(s)) + β〈 u̇(s)

ζ̇(s)
, x− v(s)〉

]
= 0.

In particular, for x = v(s) + δv̇(s) and for some function η(δ) −→ 0 we get

δ−1
[
dC(s) (v(s) + δv̇(s))− dC(s) (v(s))

]
= −β

〈
u̇(s)∣∣∣ζ̇(s)

∣∣∣ , v̇(s)

〉
+ η(δ)

=
−β∣∣∣ζ̇(s)
∣∣∣ 〈u̇(s), v̇(s)〉+ η(δ).
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The differential inequality in (7) permits us to write

δ−1
[
dC(s) (v(s) + δv̇(s))− dC(s) (v(s)))

]
≤ − β∣∣∣ζ̇(s)

∣∣∣β ‖u̇(s)‖2 + η(δ)

= −
∣∣∣ζ̇(s)

∣∣∣+ η(δ). (15)

Inequalities (11) and (15) permit us to write

ψ̇(s) ≤
∣∣∣ζ̇(s)

∣∣∣− ∣∣∣ζ̇(s)
∣∣∣ = 0.

Therefore, for almost every s ∈ ]a, b[, we have ψ̇(s) ≤ 0 and so for every t ∈ ]a, b[,

we get

ψ(t) = ψ(a) +

t∫
a

ψ̇(s)ds =

t∫
a

ψ̇(s)ds ≤ 0,

which constitutes a contradiction with ]a, b[ ⊂ Ω. Consequently, Ω = ∅ and the

proof of the first step is completed.

2. Consider now the case where no restriction on the length of the interval [0, T ]

is assumed.

Taking an integer N such that T
N < α and consider the subdivision of [0, T ]

given by 0 = T0, T1, ..., TN = T with

Tk = T0 + k
T

N
, for k = 0, 1, ..., N.

For each k = 1, ..., N denote by uk(.) the restriction of u(.) to [Tk−1, Tk], that

is

uk := u |[Tk−1,Tk]

It suffices to apply step 1 to the restriction u |[Tk−1,Tk] on [Tk−1, Tk] of the

solution of (2) to conclude.

4. Existence and Uniqueness Result with Lipschitz perturbation

In this section, and under the assumptions (H1), (H2) and (H3), we derive

from the above section the existence and uniqueness of solution to the evolution
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inclusion  −u̇(t) ∈ NC(t)

(
Au(t)

)
+ f(t, u(t)) a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0)
(16)

with the Lipschitz perturbation f : [0, T ]×H → H.

Theorem 4.1. Assume that (H1), (H2) and (H3) hold. Let f : [0, T ]×H → H

be a single-valued mapping such that the mapping t 7→ f(t, v(t)) is Lebesgue

measurable for each Lebesgue measurable mapping v(·) from [0, T ] into H and

Lipschitz continuous with respect to the second variable i.e. there exists κ(.) ∈

L1([0, T ],R+) such that

‖f(t, x)− f(t, y)‖ ≤ κ(t)‖x− y‖, for all x, y ∈ H and t ∈ [0, T ]. (17)

(a) If the mapping f satisfies, for some nonnegative Lebesgue integrable function

γ(·) the boundedness condition ‖f(t, x)‖ ≤ γ(t) for all t ∈ [0, T ] and all x ∈ H,

then any solution of the unconstrained evolution inclusion −u̇(t) ∈ |ζ̇(t)|+Lγ(t)β ∂dC(t)

(
Au(t)

)
+ f(t, u(t)) a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0)
(18)

is a solution of (16).

(b) Let γ(·) and σ(·) be non negative Lebesgue integrable functions for which the

mapping f fulfills the linear growth condition

‖f(t, x)‖ ≤ γ(t) + σ(t)‖x‖

for all (t, x) ∈ [0, T ] × H. Then any solution of the unconstrained evolution

inclusion −u̇(t) ∈ |ζ̇(t)|+Lṁ(t)
β ∂dC(t)

(
Au(t)

)
+ f(t, u(t)) a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0)
(19)

is a solution of (16), where m(·) : [0, T ] −→ R is the absolutely continuous

solution of the ordinary differential equation
ṁ(t) =

[
γ(t) + σ(t)(‖u0‖+ exp(

∫ t
0
γ(s) ds)

∫ t
0
( |ζ̇(s)|β + γ(s))ds

]
+

+L
β σ(t) exp(

∫ t
0
γ(s) ds)m(t),

m(0) = 0.

(20)
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If H is finite dimensional, then (16) has at least one solution u(.) which satisfies

‖u̇(t) + f(t, u(t))‖ ≤
[
|ζ̇(t)|+Lṁ(t)

β

]
for almost all t ∈ [0, T ] . If the operator

A : H → H is linear and symmetric , then the solution is unique.

Proof. (a) We suppose that u(.) is a solution of (18). For all t ∈ [0, T ], let us

define

z(t) :=
t∫
0

f(s, u(s))ds, D(t) := C(t) +Az(t) and v(t) := u(t) + z(t).

Clearly, D(t) is r− prox-regular. Further, for x ∈ H and t, s ∈ [0, T ] with s ≤ t

by one has

|d(x,D(t))− d(x,D(s))| ≤ |d(x−Az(t), C(t))− d(x−Az(s), C(s))|

≤ L‖z(t)− z(s)‖+ |ζ(t)− ζ(s)|

≤ |ξ(t)− ξ(s)|,

where

ξ(t) :=

t∫
0

[
Lγ(s) + |ζ̇(s)|

]
ds.

Hence D(·) satisfies also (H2) with the absolutely continuous function ξ(·). As

Au0 ∈ C(0) = D(0), we can rewrite the evolution inclusion (18) as −v̇(t) ∈ ξ̇(t)
β ∂dD(t)

(
Av(t)

)
a.e. t ∈ [0, T ]

v(0) = u0, Av(0) ∈ D(0), .

According to Theorem (3.1), the map v(·) satisfies also the evolution inclusion −v̇(t) ∈ ND(t)

(
Av(t)

)
a.e. t ∈ [0, T ]

v(0) = u0, Av(0) ∈ D(0),

and so  −u̇(t) ∈ NC(t)

(
Au(t)

)
+ f(t, u(t)) a.e. t ∈ [0, T ]

u(0) = u0, Au(0) ∈ C(0),

that is, u(·) is a solution of (16).

(b) Let u(·) be a solution of (19) with m(·) as given in (20) . According to

the Linear growth condition that

‖u̇(t)‖ ≤ |ζ̇(t)|+ Lṁ(t)

β
+ γ(t) + σ(t)‖u(t)‖. (21)
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Putting θ(t) := ‖u0‖+
∫ t
0
‖u̇(s)‖ ds and δ(t) :=

|ζ̇(t)|+ Lṁ(t)

β
+ γ(t). We note

that by the triangular inequality we have ‖u(t)‖ ≤ θ(t). The inequality (21)

ensures us that θ̇(t) ≤ δ(t) + σ(t)θ(t) for a.e. t ∈ [0, T ]. The Gronwall lemma

yields for every t ∈ [0, T ] that

θ(t) ≤ θ(0) + exp(

∫ t

0

σ(s) ds)

∫ t

0

δ(s) ds,

which implies

‖u(t)‖ ≤ ‖u0‖+ exp(

∫ t

0

σ(s) ds)

∫ t

0

δ(s) ds.

Taking into account this inequality and the linear growth condition we obtain

‖f(t, u(t))‖ ≤ γ(t) + σ(t)
(

(‖u0‖+ exp(

∫ t

0

γ(s) ds)

∫ t

0

(
|ζ̇(s)|+ Lṁ(s)

β
+ γ(s))ds

)
=
(
γ(t) + σ(t)

(
‖u0‖+ exp(

∫ t

0

γ(s) ds)

∫ t

0

(
|ζ̇(s)|
β

+ γ(s))ds
)

+

+
L

β
σ(t) exp(

∫ t

0

γ(s) ds)m(t),

which gives by (20)

‖f(t, u(t))‖ ≤ ṁ(t).

Since t 7→ ṁ(t) is integrable as an absolutely continuous function and nonnega-

tive on [0, T ], we then apply (a) to obtain that u(·) is a solution of (16), which

completes the proof.

Now we prove in the finite dimensional setting, the existence of solutions for

(16) . So, from above, it is enough to prove that the unconstrained evolution

inclusion (19) has a solution. Putting for all (t, x) ∈ [0, T ]×H

(t, x) 7→ G(t, x) := −
[ |ζ̇(t)|+ Lṁ(t)

β

]
∂dC(t)

(
Ax
)

+ f(t, x).

Then, the evolution inclusion (19) appears as a classical evolution inclusion

u̇(t) ∈ G(t, u(t)) with u(0) = u0.

Indeed, the right hand side is given by a set-valued mapping with compact

convex values that is measurable and upper semicontinuous with respect to x.
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Also we have G(t, x) ⊂
[
|ζ̇(t)|+Lṁ(t)

β + ṁ(t)
]
BH . Then, it follows from Theorem

VI-13 in [10] that the evolution inclusion (19) has at least one solution.

Suppose now that A : H → H is linear, symmetric and that ui, i = 1, 2 are two

solutions of (16) such that

−u̇i(t) ∈ NC(t)(Aui(t)) + f(t, ui(t)), i = 1, 2.

Let ξ̇(·) := Lṁ(·) + |ζ̇(·)| ∈ L1(0, T ) such that ‖u̇i(t) + f(t, ui(t))]‖ ≤ ξ̇(t)
β we

have

‖ rβ
ξ̇(t)

[−u̇i(t)− f(t, ui(t))]‖ ≤ r, i = 1, 2.

Therefore using the hypomonotonicity of the normal cone for r-prox-regular

sets, we have

〈u̇1(t)−u̇2(t)+f(t, u1(t))−f(t, u2(t)), Au1(t)−Au2(t)〉 ≤ ξ̇(t)

rβ
‖Au1(t)−Au2(t)‖2.

On the other hand, using the Lipschitz assumption (17) on f , we obtain

〈u̇1(t)− u̇2(t), Au1(t)−Au2(t)〉 ≤ ξ̇(t)L2

rβ
‖u1(t)− u2(t)‖2

− 〈f(t, u1(t))− f(t, u2(t)), Au1(t)−Au2(t)〉

≤ [
ξ̇(t)L2

rβ
+ κ(t)L]‖u1(t)− u2(t)‖2.

Therefore

1

2

d

dt
〈u1(t)− u2(t), Au1(t)−Au2(t)〉 = 〈u̇1(t)− u̇2(t), Au1(t)−Au2(t)〉

≤ α(t)‖u1(t)− u2(t)‖2,

where α(t) := [
ξ̇(t)L2

rβ
+ κ(t)L]. By integrating, using the initial conditions

u1(0) = u2(0) = u0 and the strong monotonicity of A, we get

β‖u1(t)− u2(t)‖2 ≤ 〈u1(t)− u2(t), Au1(t)−Au2(t)〉

≤
t∫
0

2α(s)‖u1(s)− u2(s)‖2ds.

Gronwall’s Lemma permits us to obtain that ‖u1(t) − u2(t)‖2 = 0. Therefore

u1 = u2. Which completes the proof.
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Remark 4.1. (i) We note that for the perturbed problem (16) the penalization

parameter in both (18) and (19) depends not only on the derivative ζ̇(t) and

the coefficient β but also on the Lipschitz constant L of the operator A and the

coefficients of the linear growth of f(t, x).

(ii) The result obtained by L. Thibault in [20] can be derived as a particular

case by setting A = Id (and so β = 1) in Theorem 4.1(a).

5. Application to nonsmooth mechanical systems

Many mechanical systems can be formulated by Lagrangian equations. The

Lagrangian function is defined by

L(q, q̇) = T (q, q̇)− V(q),

where T (q, q̇) = 1
2 〈M(q)q̇, q̇〉 is the kinetic energy and V(q) the potential energy.

The matrix M(q) ∈ Rn×n is the usual inertia matrix, which is symmetric and

supposed to be positive definite and analytic with respect to q. With the gener-

alized coordinates q ∈ Rn, an external force t 7→ f0(t) ∈ Rn and a perturbation

F (·, q, q̇), the Lagrange equations have the following form

d

dt

(∂L
∂q̇

)
− ∂L
∂q

+ F (·, q, q̇) = f0. (22)

Using classical arguments, we can rewrite (22) in the form

M(q)q̈ +N(q, q̇) +∇V(q) + F (·, q, q̇) = f0, (23)

where N(q, q̇) is the nonlinear inertial terms called the gyroscopic accelerations.

In the setting of unilateral constraints described by a set of m inequalities, we

defined the feasible set by

C(t) = {q ∈ Rn : gi(t, q) ≤ 0, i = 1, 2, . . . ,m}, (24)

where gi : [0, T ] × Rn → R, (t, q) 7→ gi(t, q) are given functions (assumed

to be continuously differentiable and not necessarily convex). The unilateral
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C(t)

g1(t,x) = 0

g2(t,x) = 0

g3(t,x) = 0

NC(t)(x̄)

x̄

Figure 2: A moving feasible set in R2 and its normal cone at a point.

constraints will generate a generalized reaction force R such that the equation

of motion is given by

M(q)q̈ +N(q, q̇) +∇V(q) + F (·, q, q̇) = f0 +R (25)

−R ∈ NC(t)(q(t)). (26)

Assume that the Mangasarian-Fromovitz qualification condition is satisfied at a

point x̄, that is: there is a vector v̄ ∈ Rn such that: 〈∇gk(·, x̄), v̄〉 < 0 for all k ∈

I(x̄), where I(x̄) := {k ∈ {1, . . . ,m} : gk(·, x̄) = 0}. Then the Clarke and the

Fréchet normal cones of C(·) at x̄ coincide and

NC(t)(x̄) =
{ m∑
k=1

λk(t)∇gk(t, x̄) : λk(t) ≥ 0, λk(t)gk(t, x̄) = 0, gk(t, x̄) ≤ 0, k = 1, 2, . . . ,m
}
.

At this stage two main questions arise:

Question 1: under which conditions on the data gk, the set of constraints C(·)

defined in (24) is prox-regular? and how to estimate the parameter of prox-

regularity r > 0?

Question 2: under which conditions on the data gk, the set of constraints C(·)
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defined in (24) is Lipschitz-continuous with respect to the Hausdorff distance?

The main concern is to give for each case some sufficient conditions verifiable

in practice.

The answer to the first question is given in the following Theorem (see [5]).

Theorem 5.1. Let C(t) defined as in (24) and assume that, there exists an

extended real ρ ∈]0,+∞] such that:

(i) for all t ∈ [0, T ], for all k ∈ {1, . . . ,m}, gk(t, ·) is continuously differen-

tiable on Uρ(C(t)) = {q ∈ Rn : dC(t)(q) < ρ};

(ii) there exists a real γ ≥ 0 such that, for all t ∈ [0, T ], for all k ∈ {1, . . . ,m},

for all x, y ∈ Uρ(C(t)),

〈∇gk(t, ·)(x)−∇gk(t, ·)(y), x− y〉 ≥ −γ ‖x− y‖2 , (27)

that is, ∇gk(t, ·) is γ-hypomonotone on Uρ(C(t)).

(iii) there is a real δ > 0 such that, for all (t, x) ∈ [0, T ] × Rn with x ∈

bdry(C(t)), there exists v ∈ B satisfying, for all k ∈ {1, . . . ,m},

〈∇gk(t, ·)(x), v〉 ≤ −δ. (28)

Then, for all t ∈ [0, T ], the set C(t) is r-prox-regular with r = min
{
ρ, δγ

}
.

Proof. For the proof of this result see Theorem 4.1 in [5].

Let specify here some assumptions under which the set-valued map C : [0, T ] ⇒

Rn is Lipschitz continuous with respect to the Hausdorff distance and answer

the second question.

Proposition 5.1. Let C(t) defined as in (24). Assume that there exist reals

γ ≥ 0, δ > 0 and v ∈ H with ‖v‖ = 1 such that for each i = 1, · · · ,m

gi(t, u) ≤ gi(s, u) + γ|t− s| for all u ∈ Ur
(
C(s)

)
; (29)

〈∇gi(t, .)(u), v〉 ≤ −δ for all t ∈ I, u ∈ Ur
(
C(t)

)
, (30)

where r denotes the prox-regularity constant of all sets C(t).

Then C(·) is λ-Lipschitzian on [0, T ], with λ ≥ γ
δ .
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Proof. Let I := [0, T ] and fix a real λ ≥ δ−1γ and choose a subdivision

0 < T1 < · · · < Tp = T such that Tk − Tk−1 < λr. Fix any k = 1, · · · , p and

s, t ∈ Ik := [Tk−1, Tk]. Take any i = 1, · · · ,m. Putting µ(s, t) := λ|t − s|, for

any x ∈ C(s) we can write by (29)

gi(t, x+ µ(s, t)v) =
(
gi(t, x+ µ(s, t)v)− gi(s, x+ µ(s, t)v)

)
+ gi(s, x+ µ(s, t)v)

≤ γ|t− s|+ gi(s, x+ µ(s, t)v)

= γ|t− s|+ gi(s, x) + µ(s, t)

∫ 1

0

∇2g(s, x+ θµ(s, t)v) · v dθ.

According to (30) and to the inclusion x ∈ C(s) it ensues that

gi(t, x+ µ(s, t)v) ≤ γ|t− s| − µ(s, t)δ = (γ − λδ)|t− s| ≤ 0,

where the last inequality is due to the choice choise of λ. This being true for

every i = 1, · · · ,m, it follows that x+ µ(s, t)v = x+ λ|t− s|v belongs to C(t),

otherwise stated, x ∈ C(t) + λ|t− s|(−v). It results that

C(s) ⊂ C(t) + λ|t− s|BH ,

Since the variables s and t play symmetric roles, the set-valued mapping C(·)

is λ-Lipschitzian on [Tk−1, Tk]. From this we clearly derive that C(·) is λ-

Lipschitzian on I = [0, T ].

In this paper, we concentrate on quasistatic problems which can be formulated

as a degenerate sweeping process of the form (1) or its equivalent Lipschitz

perturbation form (16). More precisely, we assume that the applied forces vary

slowly with a relatively slow system response such that the inertial terms in

the equation of motion (25) can be neglected. In this case problem (25)-(26)

reduces to

F (t, q(t), q̇(t)) = f0(t)−∇V(q) +R a.e. t ∈ [0, T ] (31)

−R ∈ NC(t)(q(t)). (32)

The linear time invariant case is given when

F (t, q, q̇) = Dq̇ +Kq,
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where D ∈ Rn×n and K ∈ Rn×n are the viscosity (damping) and the stiffness

matrices respectively. We note that usually in mechanical systems these two

matrices contain viscous and stiffness coefficients respectively and are symmetric

and positive definite matrices. Therefore, in this case problem (25)-(26) takes

the form

Dq̇(t) +Kq(t) +∇V (q(t)) + NC(t)(q(t)) 3 f0(t) a.e. t ∈ [0, T ]. (33)

We note that problem (33) could be reduced to a classical sweeping process if

we assume that the matrix D is positive definite.

The nonlinear time-invariant case is given when

F (t, q, q̇) = ∇D(q)q̇,

where D : Rn → Rn, q 7→ D(q) is a mapping of class C1. In this case problem

(25)-(26) takes the form

∇D(q(t))q̇(t) +∇V (q(t)) + NC(t)(q(t)) 3 f0(t) a.e. t ∈ [0, T ]. (34)

We have the following existence result for quasistatic nonsmooth systems with

unilateral constraints.

Definition 5.1. A mapping D : Rn → Rn is said to be

(i) α-expansive if there exists a constant α > 0 such that

‖D(q1)−D(q2)‖ ≥ α‖q1 − q2‖, ∀q1, q2 ∈ Rn.

(ii) β-cocoercive if there exists β > 0 such that

〈D(q1)−D(q2), q1 − q2〉 ≥ β‖D(q1)−D(q2)‖2, ∀q1, q2 ∈ Rn.

Remark 5.1. We note that if D : Rn → Rn is β-cocoercive, then it is both

monotone and 1
β -Lipschitz continuous. However, a β-cocoercive map is not

necessarily strongly monotone. On the other hand, a strongly monotone and

Lipschitz continuous map is cocoercive.
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Proposition 5.2. Assume that for each k = 1, . . . ,m, the functions gk(t, ·)

satisfies the assumption (i)-(ii) and (iii) in Theorem 5.1 and that the assump-

tions (29) and (30) in Proposition 5.1 are satisfied. Moreover, suppose that the

potential q ∈ Rn 7→ V (q) is a continuously differentiable function with an L-

Lipschitz continuous gradient, t 7→ f0(t) ∈ L1([0, T ];Rn) and that D : Rn → Rn

is bijective, α-expansive and β-cocoercive, then the quasistatic problem (34) with

unilateral constraints has at least one solution.

Proof. By setting f(t, q) = ∇V (q)− f0(t), u = D(q) and A = D−1, it is easy

to see that (34) is equivalent to

−u̇(t) ∈ f(t, Au(t)) + NC(t)(Au(t)),

which is exactly of the form defined in (16).

Since D is β-cocoercive and α-expansive, then A is β-strongly monotone and 1
α -

Lipschitz continuous. By Theorem 5.1 and Proposition 5.1, C(t) is prox-regular

and Lipschitz continuous and hence absolutely continuous. To conclude, we

apply Theorem 4.1(b).

Example 5.1. Let us consider for t ∈ [0, 2π], the following set

C(t) = {x = (x1, x2) ∈ R2 : g1(t, x) ≤ 0, g2(t, x) ≤ 0},

where g1(t, x) = (x1 cos(t)− x2 sin(t))2 + 3(x1 sin(t) + x2 cos(t))2 − 5

g2(t, x) = −25(x1 cos(t)− x2 sin(t))2 − 49(x1 sin(t) + x2 cos(t))2 + 80x1 + 2x2 + 25

The moving set C(t) is given by the blue shaded part in Figure 3. The condition

(iii) in Theorem 5.1 is important for proving the uniform prox-regularity of the

set C(·). The red shad part in Figure 3 gives the set of vectors v satisfying (28).
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Figure 3: A moving set with the set of v satisfying (28).
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