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Corresponding author: matteo.conforti@univ-lille1.fr
(Dated: July 28, 2017)

We develop a model for the description of nonlinear pulse propagation in multimode optical fibers
with a parabolic refractive index profile. It consists in a 1+1D generalized nonlinear Schrödinger
equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient
way. The model is able to quantitatively reproduce recently observed phenomena like geometric
parametric instability and broadband dispersive wave emission. We envisage that our equation will
represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of
multimode fiber optics.

Nonlinear pulse propagation in multimode fibers
(MMFs) is focusing a tremendous research interest [1] .
Even if graded index (GRIN) MMFs have been invented
long ago [2], it is only very recently that the systematic
and in depth study of the complex nonlinear spatiotem-
poral effects that can take place in these fibers has began
[3]. The experimental observations of multimode solitons
[4, 5], ultrabroadband dispersive waves [6, 7], geometric
parametric instability (GPI) [8–10], beam self-cleaning
[11–13], and novel forms of supercontinuum [14, 15] are
striking examples of the incredibly rich and complex sce-
nario offered by nonlinear propagation in GRIN fibers.
The reason why these observations took so long to ap-
pear is that the study of spatiotemporal effect in MMFs
is an intrinsically hard task from the experimental, the-
oretical and numerical point of view.

The description of pulse propagation in MMFs must
consider the three spatial and the temporal dimensions
at the same time, because spatial and temporal effects
cannot, in principle, be decoupled. Essentially two mod-
els are exploited for the mathematical description of
propagation in MMFs: the 3+1D Generalized Nonlinear
Schrödinger Equation (GNLSE) with a spatial potential,
also named Gross-Pitaevskii Equation (GPE) in the con-
text of Bose-Einsten condensates [4, 5, 8, 17], and the
multi-mode GNLSE (MM-GNLSE) [18]. In the GPE the
transverse dimensions are accounted for in the propaga-
tion equation through the potential describing the refrac-
tive index profile of the fiber. In the MM-GNLSE the
transverse dimensions are described indirectly, through
the projection over the different fiber modes, which are
coupled by the nonlinearity. GPE is the most direct tool,
but also the most computationally expensive: for exam-
ple, the simulation of the propagation of multimode soli-
tons over a few meters of fiber requires several days of
computation [4]. The computational complexity can be
partially reduced by considering exclusively radially sym-
metric modes [19]. The MM-GNLSE, consisting in N
coupled 1+1D GNLSE, permits to reduce the computa-
tional time only if a limited number of modes are excited
(typically N < 10), because the number of nonlinear cou-

pling terms grows as N4. When considering beams with
a relative large size, taking into account only a few modes
may lead to inaccurate results.

In this Letter we develop a model for the description
of nonlinear pulse propagation in parabolic GRIN fibers.
The model is derived from the 3+1D GPE with a spatial
parabolic potential. It describes all the scenarios where
a stable self-imaging pattern is generated, which is nor-
mally the case in parabolic MMFs. We obtain a 1+1D
GNLSE with a periodic nonlinear coefficient, which can
be solved in an extremely efficient way by standard split-
step methods and requires very modest computational
resources. We show that our model accurately repro-
duces different phenomena peculiar to parabolic GRIN
fibers, like geometric parametric instability and broad-
band dispersive wave emission.

We start from the following form of Gross-Pitaevskii
equation [4, 5, 8, 17]

i∂zE+
1

2β0
∇2

TE+d(i∂t)E−
β0∆

r2c
r2E+

ω0n2
c

fNL(E) = 0,

(1)
where r2 = x2 + y2, ∇2

T = ∂2x + ∂2y is the transverse

Laplacian, E is the field envelope expressed in
√

W/m,
β0 = ω0n0/c, n0 = nco is the core refractive index (at the
center of the fiber), d(i∂t) =

∑
n≥2(i∂t)

nβn/n! is the dis-
persion operator, βn being the derivatives of the propa-
gation constant at the carrier frequency ω0. The function
fNL(E) = (1 + iτs∂t)[(1− fr)|E|2E + frE

∫
hr(t′)|E(t−

t′)|2dt′] describes the Kerr and Raman nonlinear re-
sponses, and τs ≈ 1/ω0 is the self-steepening time.

If we consider continuous-wave (cw) excitations, the
propagation of a beam in a parabolic GRIN fiber ex-
periences self-imaging, due to the equal spacing of the
propagation constant of the modes [3]. Self-imaging is a
linear effect, but it is preserved also in presence of non-
linearity [16]. Remarkably, it can be proved that there
exist exact nonlinear and periodic propagation modes,
which can be found as a self-similar transformation of
any stationary nonlinear mode. The self-similar solution
constructed from the fundamental fiber mode is linearly
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FIG. 1. Gaussian solution of Eq. (1). (a) Relative peak
intensity a20/a

2(z) and (b) beam radius a(z). Red curve, ex-
act solution; black dashed curve, approximate linear solution;
blue circles, numerical solution of GPE Eq. (1) with fr = 0,
τs = 0, ∂t = 0. Self-imaging period zSI = 0.6155 mm.

stable [20]. If the injected field is a Gaussian beam, in the
weakly or moderate nonlinear regime, the field remains
approximately Gaussian and the periodic variation of the
beam parameters along the propagation coordinate can
be calculated by exploiting a variational approach [16].
The amplitude of the solution takes the following form
(the phase, which is not exploited in our derivation, is
not reported)

|Es(x, y, z)| = As |Fs(x, y, z)| = As
a0
a(z)

exp

[
−1

2

r2

a2(z)

]
,

(2)

a2(z) = a20[cos2(
√
gz) + C sin2(

√
gz))], (3)

where a0 is the beam spot size in z = 0, g = 2∆/r2c , ∆ =
(n2co−n2cl)/2n2co is the relative refractive index difference,
A2

s = 2pn0/(n2β
2
0a

2
0), C = (1 − p)/(β2

0a
4
0g), p being a

dimensionless number measuring the distance from beam
collapse.

We make now two fundamental assumptions: (i) the
self-imaging pattern remains stable during propagation
[20], and (ii) it is only slightly affected by nonlinearity.
We thus write the solution of Eq. (1) as

E(x, y, z, t) = A(z, t) · Fs(x, y, z), (4)

where we have approximated the stationary self-imaging
field with its linear shape [p ≈ 0, C ≈ 1/(β2

0a
4
0g) in Eq.

(3)], and accounted for all the temporal and nonlinear
effects in the envelope A(z, t). By inserting the Ansatz
(4) into Eq. (1), multiplying by F ∗s , and integrating over
the transverse plane x, y, we get

i∂zψ + d(i∂t)ψ + γ(z)fNL(ψ) = 0, (5)

γ(z) =
ω0n2

cAeff (z)
=

ω0n2
2πc a2(z)

, (6)

where ψ(z, t) = A(z, t)
√
S is the envelope normalized to

the area S =
∫ ∫
|Fs(x, y, z)|2dxdy = πa20, so that |ψ|2

represents the optical power expressed in Watts [21], and
a2(z) is given by Eq. (3). Equation (5) constitutes a
1+1D GNLSE where the spatial effects are summarized
by the periodic nonlinear coefficient Eq. (6). Physically,
the self-imaging pattern generates a z-varying effective
area Aeff (z), due to the periodic beam focusing, which
thus couples the spatial evolution to the temporal enve-
lope ψ(z, t).

Equations (5-6) are the main result of this Letter and
in the following we show that they give a faithful repro-
duction of spatiotemporal effects in GRIN fibers.

For definiteness, in all the reported examples, we
consider a standard GRIN MMF with a core radius
rc = 26µm, core and cladding refractive index nco =
1.470, ncl = 1.457, giving a relative refractive index
difference ∆ = 0.088, and a nonlinear refractive index
n2 = 3.2 · 10−20 m2/V [8]. We first show that the self-
imaging pattern is not significanlty affected by the non-
linearity, in the range of powers typically exploited in
the experiments, namely a few hundreds of kilowatts
[5–10]. We consider the propagation of a cw Gaussian
beam at 1064 nm centered on the input face of the fiber
with a full width at half maximum (FWHM) intensity
size of 30µm, and a peak power of Pp = 500 kW. For
the moment we neglect Raman and self-steepening ef-
fects (fr = 0, τs = 0). The relative peak intensity
|E(0, 0, z)|2/|E(0, 0, 0)|2 and the beam radius a(z) are
plotted in Fig. 1, calculated from analytical solution Eqs.
(2-3) and from numerical solution of stationary (∂t = 0)
GPE Eq. (1). We first note that the Gaussian approxi-
mation [16] (solid red curve) perfectly agrees with numer-
ical solution of GPE (blue circles) over arbitrarily long
distances [20] (a zoom over two self-imaging recurrences
of period zSI = πrc/

√
2∆ = 0.6155 mm is shown in Fig.

1). Moreover, the approximate linear solution (dashed
black curve) reproduces with great accuracy the exact
one, proving the validity of our assumptions.

Equations (5-6) perfectly reproduce complex spa-
tiotemporal phenomena like GPI [8, 17]. In order to
show this, we consider the evolution of a cw Gaussian
beam at 1064 nm with a FWHM beam size of 30µm
and peak power Pp = 125 kW, in a fiber with dispersion
β2 = 16.55 · 10−27 s2/m and a pure Kerr nonlinearity,
similarly to the conditions considered in [8]. GPI is a
form of spatiotemporal modulation instability, which en-
tails the generation of multiple sidebands at frequencies
fm ≈ ±

√
m/(2πzSIβ2), m = 1, 2, . . . [17]. In exper-

iments GPI spontaneously emerges from random noise.
Here, in order to facilitate a quantitative comparison and
to get rid of any randomness in the initial condition, we
seed GPI by adding a broadband coherent seed to the cw
(a short hyperbolic secant pulse of duration 1 fs and one
tenth of the cw amplitude). Figure 2(a) shows the spec-
trum after a propagation distance z = 5 cm simulated by
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FIG. 2. GPI arising after a propagation distance z = 5cm of
a Gaussian beam of 30 µm FWHM size and 125 kW peak-
power. Output spectrum (a) and output temporal profile (b).
Dashed green lines in (a) represent the GPI frequencies fm ≈√
m/(2πzSIβ2). Solid red curves, 1+1D GNLSE Eq. (5);

Dashed blue curves GPE Eq. (1). Thin black line in (b) is
the initial temporal profile. Here fr = 0, τs = 0.

GPE (dashed blue curve) and 1+1D GNLSE (solid red
curve). We first note that both methods reproduce the
generation of GPI sidebands at the frequencies predicted
by the theory (highlighted by dashed green lines). Most
importantly, we point out the perfect agreement between
the full GPE and the simple 1+1D GNLSE. The striking
accuracy of our simplified model is confirmed by the com-
parison of the output temporal power profile reported in
Fig. 2(b). As for the simulation time, GPE took roughly
one hour, whereas 1+1D GNLSE only a few seconds (700
times faster).

Another spatiotemporal effect peculiar to GRIN fibers
is the emission of ultrabroadband dispersive radiation
from multimode solitons [6, 7]. We consider the prop-
agation of a Gaussian pulse at 1550 nm with a FWHM
size of 30 µm, FWHM duration of 25 fs and peak power
Pp = 500 kW. We consider second and third order dis-
persion β2 = −22 · 10−27 s2/m, β3 = 1.32 · 10−40 s3/m,
Kerr and Raman nonlinearity (fr = 0.18, τs = 0). Fig-
ure (3)(a,b) shows the temporal evolution of the pulse
power. A soliton is generated in the first millimeters
of propagation, which sheds a dispersive wave packet
and decelerates due to the Raman self-frequency shift.
By looking at the spectrum [Fig. (3)(c-e)], it is evident
that the dispersive wave is constituted by several spec-
tral lines. Indeed, the spatiotemporal pulsation of the
soliton, which induces the nonlinear grating γ(z), gener-
ates the polycromatic dispersive radiation according to

FIG. 3. Emission of broadband dispersive radiation from a
multimode soliton. (a-d) False color plots of the temporal
(a,b) and spectral (b,d) evolution from 1+1D GNLSE (a,c)
and GPE (b,d). (e) Input (thin black line) and output spec-
trum from 1+1D GNLSE (solid red curve) and GPE (dahsed
blue curve). Vertical dashed green lines indicate the frequen-
cies of the dispersive radiations from the Eq. (7). The in-
verse group velocity difference is estimated from (a) to be
δβ1 = 1.09 ps/m.

the phase-matching relation [22, 23]

D(ω)− δβ1 ω =
2π

zSI
m+ γav

Ps

2
, m = 0,±1,±2, . . . (7)

where δβ1 arises from the deviation of the actual group-
velocity of the soliton from the natural one [24], D(ω) =
β2ω

2/2 + β2ω
3/6 is the dispersion operator in the fre-

quency domain and γav = n2ω0β0
√
g/(2πc) is the average

nonlinear coefficient. This interpretation is well proved
by Fig. (3)(e), where the spectral position of the disper-
sive waves at the end of the fiber is well predicted by Eq.
(7). It is worth noting the impressive agreement between
1+1D GNLSE [Fig. (3)(a,c)] and GPE [Fig. (3)(b,d)],
which permits the perfect superposition the output spec-
tra shown in Fig. 3(e). We would like to stress again
that the reduction of simulation time is dramatic: GPE
tooks several hours, whereas 1+1D GNLSE less than one
minute (500 times faster).

To conclude, we have derived a new model for the
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description of nonlinear propagation in parabolic GRIN
fibers. We demonstrated that our model is as accurate
as the full GPE for the simulation of complex spatiotem-
poral nonlinear dynamics such as geometric parametric
instability and polychromatic dispersive wave emission
from multimode solitons. In general, it is able to de-
scribe all the scenarios where a stable self-imaging pat-
tern is generated inside the fiber. Given the drastic re-
duction of computational time of two orders of magni-
tude with respect to the full 3+1D equation, we expect
that our model will become a workhorse for the descrip-
tion of nonlinear dynamics in MMFs. We also envisage
that our equation will permit to discover new intriguing
spatiotemporal phenomena, which are currently hidden
by the computational burden required to solve GPE and
MM-GNLSE.
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