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h i g h l i g h t s

• Nonlinear inertial effects produce patterns different from DNS and experiments.
• Time evolutions of streaming cells near the wall and in the core are analyzed.
• The full streaming equations are solved numerically to obtain the established flow.
• Nonlinear inertial effects produce patterns different from DNS and experiments.
• Nonlinear inertial effects cannot explain the mutation of streaming at high levels.
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a b s t r a c t

The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is 
imposed, is investigated numerically and experimen-tally. To this effect, time evolutions of streaming cells in the near wall region 
and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze 
the physical meanings of the characteristic times.

Inertial effects on the established streaming flow pattern are then investigated numeri-cally using a code solving the time averaged 
Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms.

It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high 
acoustic levels.

1. Introduction

Acoustic streaming is often pointed out as being responsible for misunderstood thermal losses in thermoacoustic
machines [1]. Among the different streaming flows found in such devices, Rayleigh streaming consists of a mean flow,
of second order, which is produced by the interaction between the acoustic wave and a solid wall [2]. The pioneering
work of Rayleigh was continued with the studies, among others, of Schlichting [3], Nyborg [4], Westervelt [5], Rudenko
and Soluyan [6], yielding the steady streaming theory. Later, thermal effects were taken into account by Rott [7], the
compressibility of the fluid by Qi [8] and more recently semi-analytical models adapted for thermoacoustic applications
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Fig. 1. Streamlines of streaming velocity fields without (a) and with (b) the extra contra-rotating cell (results of numerical simulations N1 and N2).

were developed (see for example [9,10]). These theoretical models, used to describe the streaming flow in the slow regime,
are based on the method of successive approximations in powers of the Mach number, performed up to the second order
and followed by time averaging over the acoustic period, yielding linear equations for streaming flow.

For high intensity acoustic waves, the streaming flow is referred to as nonlinear streaming or fast streaming. In this
case, the effect of fluid inertia was first considered by [11–14] in unbounded or semi-infinite spaces, and more recently by
Menguy and Gilbert [15] in resonators and thus for Rayleigh streaming. In the weakly nonlinear study proposed by [15], the
method of successive approximations is performedup to the third order and separate solutions are obtained for the near-wall
region (inner streaming) and in the resonator core (outer streaming). The global solution is obtained by applying matching
conditions to the streaming velocity components. The inner streaming approximate equations were shown to remain linear
in the weakly nonlinear case, while the outer streaming flow is affected by inertia [15].

Numerical simulations for acoustic Rayleigh streaming can be found in the literature starting in the 1990’s. Two
approaches are used: one is based on solving the full Navier–Stokes equations for low and high intensity waves and extract
the mean flow from the instantaneous flow [16–18], and recently [19–22] and the other approach is based on solving
streaming equations for the mean flow in the linear case [23,24] or in the nonlinear case [25]. Numerical simulations as well
as experimental studies (for example [26,27]) in large resonators have shown the two regimes of streaming flows associated
with standing waves: slow streaming similar to Rayleigh type streaming or fast streaming where the mean flow is strongly
modified when the intensity of the acoustic wave is increased. The dimensionless number commonly used to differentiate
between slow and fast streaming is the nonlinear Reynolds number ReNL [15], defined by ReNL = (M×R/δν)2, whereM is the
acoustic Mach number,M = Umax/c0, with Umax the acoustic velocity amplitude at the velocity antinode and c0 the speed of
sound, R the guide radius and δν =

√
2ν/ω the acoustic boundary layer thickness,ω being the pulsation and ν the kinematic

viscosity of the gas. Fig. 1(a) shows the streaming flowpattern (i.e. the streamlines for the steadymean velocity field,with the
average performed over an acoustic period) in a half-plane containing the axis of a cylindrical waveguide of axial extension
λ/2 in the slow streaming regime (result from the numerical simulation N1 further described in this paper). This pattern is
symmetrical with respect to the guide center and is composed of four streaming cells: two inner toroidal cells close to the
tubewall and twoouter toroidal cells in the core. The established streaming flowbehavior for high acoustic amplitudes (i.e. in
the nonlinear regime of streaming) was previously analyzed numerically [19] (with a DNS code) and experimentally [28]:
additional streaming cells were observed inside the resonator [29]. Fig. 1(b) shows the distorted streaming pattern (result
from the numerical simulation N2 further described in this paper) in the fast streaming regime, when two new streaming
cells are observed in the center of the guide, near the acoustic velocity antinode (z/L = 0) [19,28,29]. Several sources could
potentially be responsible for this mutation of streaming pattern: thermal effects were considered [26], as well as nonlinear
propagation [29] and it was concluded that inertial effects on acoustic streaming could be the main source [29]. In the
literature there is no study available that allows to conclude about the role of inertia in the behavior of streaming when the
latter is ‘‘fast’’. The current study aims at investigating the hypothesis that inertia is responsible for themutation of streaming
flow at high levels by using both experimental and numerical results.

In Section 2, numerical methods and experimental setup are presented. Section 3 describes the establishment of slow
and fast streaming using numerical and experimental observations. Time evolutions of inner and outer streaming cells are
discussed. In order to analyze the associated physics, Section 4 shows the streaming flow equations and a scale analysis used
to point out the leading parameters. The characteristic time scales are estimated according to the configuration parameters
and compared with numerical and experimental results.



Fig. 2. Sketch of experimental setup and wave pattern for the working frequency.

In order to further isolate the driving effect of inner streaming on outer streaming, the problem of a flow inside a
cylindrical tube with prescribed axial velocity on the walls is solved and analyzed in Section 5. Then the role of inertia on
the established nonlinear streaming flow patterns is examined (Section 6) by solving the time-averaged isentropic Navier–
Stokes compressible equations (AMS), where a mono-frequency acoustic flow field is used to compute the different terms
that are sources of streaming flow. The effect of increasing the amplitude of the acoustic flow field on the streaming flow is
analyzed. The results are comparedwith the predictions of the asymptotic model developed in [15] for the weakly nonlinear
regime.

2. Methods and set-up

In this section, the experimental setup and the numerical configurations and methods used to investigate the effect of
inertia during the establishment of the streaming flow and on the steady state flow are presented briefly (see [29] for more
detail). The experimental and numerical configurations are very different in physical dimensions and in frequency but it
was checked in [29] that they are asymptotically similar for acoustic and streaming flow. It was shown indeed that the same

flow behavior is to be expected if M ≪ 1, Reac ≫ 1 and Sh ≪ 1 (where Reac =
1
2

(
λ

πδν

)2
, Sh =

δν
R , λ being the acoustic

wavelength). Both experimental and numerical configurations match these conditions (see Table 1 in [29]).

2.1. Experimental set-up

The set-up used to study acoustic streaming consists of a cylindrical glass tube of radius Rexp = 19.5 mm filled with air
at atmospheric pressure and at ambient temperature (Fig. 2). In order to reach high acoustic levels, the acoustic sound wave
is generated by two loudspeakers (one at each end of the guide), tuned at the same frequency, that are driven in opposite
phase. Those loudspeakers are connected to the main part of the guide via connecting tubes designed to avoid separation
effects related to the singularities in change of section. The total length of the wave guide is Lexp = 2.13 m and the system is
tuned at a frequency fexp = 240 Hz so that to excite the third mode of the system. This choice of working frequency allows
to perform measurements on a streaming cell away from singularities. The set-up geometry prevents the wave distortion
even at high levels.

A wave generator provides the loudspeakers input signal, whose frequency and amplitude are controlled, as well as a
trigger reference signal, used to synchronize the laser Doppler measurement system. Velocity measurements are started
when the acoustic field is switched on in order to measure the transient evolution of the streaming velocity field. Those
measurements are performed at different locations within the streaming cells. The laser system used and the processing of
the laser signal are described in [28].

2.2. Numerical methods

For the numerical calculation, we consider a cylindrical tube of length L and radius R, initially filled with air, considered
as an ideal gas. An acoustic standing wave is initiated by shaking the tube in the axial direction (z) with given amplitude
and frequency, so that a harmonic velocity law is imposed, V(t) = V (t)e⃗z , with V (t) = zpω cos(ωt), ω being the angular
frequency and zp the amplitude of the tube displacement.

The flow verifies the compressible Navier–Stokes equations expressed in the moving frame attached to the tube, with an
additional forcing source term depending on V:⎧⎪⎨⎪⎩

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv
∂t

+ ∇ · (ρv ⊗ v) + ∇p = ∇ · ( ¯̄τ ) − ρ
dV
dt

(1)



Table 1
Parameters of different presented cases (N: numerical, E: experimental).

Name f (Hz) R/δν R/L Umax (m/s)(z = 0) M ReNL
N1 20000 50 0.09 0.5 1.45 × 10−3 0.005
N2 20000 50 0.09 61.83 0.18 80.84
E2 240 138 0.027 23 0.067 85.22

where p is the pressure, ρ is the density, v = ue⃗z + ve⃗r is the flow velocity, ¯̄τ = −
2
3µ(∇ · v)¯̄I + 2µ ¯̄D the viscous stress tensor

of a Newtonian fluid, ¯̄D the strain tensor, µ the dynamic viscosity which is supposed to be constant. In this formulation we
have neglected the bulk viscosity since M2

Sh2Re2ac
≪ 1 [30].

We consider an isentropic state law for the ideal gas, given by

p − p0 = c20 (ρ − ρ0), (2)

where p0, ρ0 and c0 are respectively the constant initial pressure, density and sound velocity. Therefore the energy equation
is decoupled from the other equations and we only solve the mass and momentum equations (Eqs. (1) and (2)), excluding
thermal effects in our study.

No slip conditions are used on the solid boundary r = R, i.e. v(r = R, z) = 0. On the axis r = 0, symmetry conditions
are used, i.e. v(r = 0, z) = u(z)e⃗z with ∂u

∂r (r = 0, z) = 0. On the vertical boundaries z = 0, L, symmetry conditions are also
used, i.e. v(r, z = 0, L) = v(r)e⃗r with ∂v

∂z (r, z = 0, L) = 0.
Due to the geometry, shock waves are generated in the simulations but it was checked that they are of small intensity

and do not affect drastically the streaming flow [19,29]. The presence of harmonics will also be addressed in Section 6 of the
present article.

The unsteady equations (Eq. (1)) are solved numerically using third order finite difference schemes [19,29]. The mean
(streaming) flow is obtained from calculating a simple mean value for each physical quantity (velocity, pressure, density)
over an acoustic period.

For simulations, the reference air pressure is p0 = 101 325 Pa and the density is ρ0 = 1.2 kg/m3. The reference speed of
sound is c0 = 343.82 m/s. The air viscosity is µ = 1.795 × 10−5 kg m−1 s−1. Resonant conditions are imposed, for which
L = λ/2. Numerical values are fnum = 20 000 Hz, so that λ/2 = 8.396 mm and the acoustic period is Tnum = 50× 10−6 s. All
results presented below are obtained using a regular mesh of rectangular cells composed of 500 points in the axial direction,
and of 5 × R/δν points in the radial direction. The time step δt is fixed equal to 8 × 10−9 s.

3. Establishment of acoustic streaming

In order to study the establishment of the streaming flow generated by a sinusoidal standing wave independently from
the transient of its acoustic source, the numerical code described in Section 2.2 is used in the followingmodifiedmanner: for
time stepping during the transient of acoustics, at the end of each acoustic period, the instantaneous fields are reinitialized
by subtracting the mean flow over that period. Hence, the streaming flow is calculated here only once the acoustics is
established, in order to dissociate the transient of streaming from the establishment of acoustics. Of course this cannot
be done in experiments so we chose to discuss only experimental results for which the establishment of streaming has its
own time scale, which is not the case of experimental results at low levels.

The different case parameters are summarized in Table 1. Subscript 1 is used to denote slow streaming and subscript 2 is
used to denote fast streaming.

3.1. Slow streaming

Figs. 3 and 4 address the case of slow streaming flow (for N1). The established streaming flow pattern is very regular
and corresponds to the representation in Fig. 1(a). Fig. 3 shows the time evolution of the streaming pattern: contours of
axial streaming velocity are displayed (with color code) and streamlines are superimposed on the right half plane section.
On Fig. 3(b) are also displayed two specific locations that will be used for further investigations: I(r = R − 3δν, z = L/4)
representing the place of maximum inner streaming velocity and Oc(r = 0, z = −L/4) representing the center of the plane
section and the place of maximum outer streaming velocity in the slow regime. Note that the aspect ratio (height/length) of
the displayed figures is equal to 0.25 which is much larger than the actual aspect ratio (height/length = 0.09) so that both
inner and outer streaming are visible. One can observe that the establishment of the streaming flow occurs in several stages:
The inner streaming cell is established first (Fig. 3(a)) and then does not evolve very much. The magnitude of the outer
streaming velocity increases on a longer time scale (Fig. 3(b), (c) and (d)). This is in agreement with the results of previous
numerical simulations [25].

The time evolution of the streaming velocity at some specific points can also be displayed. Fig. 4(a) shows the time
evolution of the axial streaming velocity at I (see Fig. 3(b)). Fig. 4(b) shows the time evolution of the axial streaming velocity



(a) t = 5.75 × 10−3 s.

(b) t = 6.25 × 10−3 s.

(c) t = 6.75 × 10−3 s.

(d) t = 1 × 10−2 s.

Fig. 3. Contours of the axial streaming velocity (with color codes in m/s) at different times during the transient evolution of N1 . Streamlines are
superimposed on the right half plane section (real aspect ratio height/length=0.09). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

at the center of the plane section Oc (see Fig. 3(b)). In agreement with Fig. 3 the inner streaming (Fig. 4(a)) is established
much faster than outer streaming (Fig. 4(b)). As expected from Rayleigh calculations [2], the steady state values at OI and Oc
are roughly equal.

In the experiments, the establishment of acoustics at low amplitudes is very long (see Fig. 13 of [28]). In this case, the
evolution of streaming is intrinsically linked to that of acoustics and the associated establishment time scales, determined
by fitting an exp(−t/τ ) law to experimental data, are very close (τac = 190 s and τst = 233 s). As will be shown in the
next section, acoustics’ transient is much shorter for high amplitudes (τac is of the order of tenths of seconds) so that the
establishment of streaming can be observed for different locations in the wave guide.



Fig. 4. Time evolution N1 . Axial streaming velocity at (a) I and (b) Oc .

3.2. Fast streaming

Figs. 5–7 address cases of fast streaming flow (for N2 and E2 respectively). The established streaming flow pattern is
strongly distorted with respect to the slow streaming case, and two extra contra-rotating streaming cells are present near
the acoustic velocity antinode (see Fig. 5(d)), in agreement with Fig. 1(b).

Fig. 5 shows the time evolution of the streaming patterns: contours of axial velocity are displayed on the left, and
streamlines are displayed on the right. On Fig. 5(d) are also displayed two specific locations that will be used for further
investigations:Oe representing the place on the axis corresponding to themaximumvelocity inside the extra contra-rotating
cell and Oc-exp representing the location on the axis, close to the position z = L/4, where measurements were performed to
characterize the transient of the main outer streaming cell (both locations are on the right half side of the resonator). Here
also the aspect ratio of the displayed figures is increased so that both inner and outer streaming are visible. One can observe
that the establishment of the streaming flow occurs in several stages:

The inner streaming cell is established first, typically after 3×10−3 s (see Fig. 5(a)) and then does not evolve verymuch. It
is not as symmetrical as in the case of slow streaming (Fig. 3(a)), the cell centers being shifted towards the resonator closed
ends (acoustic velocity node).

The magnitude of the outer streaming velocity increases on a longer time scale, and the main outer cell centers
progressively shift towards the resonator closed ends (Fig. 5(b), (c) and (d)). Conversely to the slow streaming case, the
maximum velocity of the outer streaming cell is smaller than that of inner streaming, as can be seen on the color code.

The emergence of the extra contra-rotating cell happens last (Fig. 5(d)).
On Fig. 6 are presented numerical time evolutions of the streaming velocity at I , Oc (defined in the previous section,

Fig. 3(b)) and at the place on the axis corresponding to the maximum velocity inside the extra contra-rotating cells Oe (refer
to Fig. 5(d)). First, this figure show that the time evolution of the inner streaming velocity at I (Fig. 6(a)) is similar to the case
of slow streaming (similar time scale).

Conversely in the core, the velocity increase for the location Oc (Fig. 6(b)) depicts clearly an inflection point so that
two characteristic time scales can be distinguished. Finally for the location Oe (Fig. 6(c)) the velocity is first positive before
becoming negative meaning that the contra-rotating cell appears after a certain time. A third time scale emerges from this
time evolution. Note that the appearance of the extra cell does not modify the time evolution of streaming outside the extra
cell (see Fig. 6(a) and (b)).

On Fig. 7 are presented experimental time evolutions for inner streaming at location I (Fig. 7(a)), for outer streaming on
the axis r = 0 at location Oc-exp (Fig. 7(b)) and at the extra contra-rotating cell center Oe (Fig. 7(c)) for the fast streaming case
E2. Similar behavior to numerical results for equivalent positions can be observed on the experimental measurements and
several distinct time scales are visible. The inner streaming is established first. Time evolution of outer streaming at Oc-exp
shows a distinct time scale. Themagnitude of the contra-rotating cell maximum velocity is very small but the establishment
of the extra streaming cell at Oe is on a distinguished time scale from the last two.

In the experiment E2 the established value in the inner cell (Us ≃ 0.5m/s at I) is much greater than the established value
in the core of the guide (Us ≃ 0.01 m/s at Oc-exp), as can be seen on Fig. 7. Similar observations were made on the simulation
results in Fig. 5(b). Therefore, both experiments and numerical simulations show that nonlinear phenomena have very small
influence on the streaming velocity in the boundary layer.

In summary, for slow streaming flow, only one time scale is necessary to describe the dynamics of streaming in the core
of the waveguide. On the contrary for fast streaming flow, three different time scales were observed numerically and two
experimentally in the core of the waveguide. At this stage the results seem to indicate that inner streaming flow is hardly
modified by nonlinear effects (inertia included) at high levels. On the contrary the outer streaming is very stronglymodified.
This is in agreement with Menguy and Gilbert findings [15] which stated that inertia affects outer streaming but not inner
streaming. However, it is necessary first to clearly identify the effect of inertia on the establishment of streaming. At this
stage one cannot indeed assess whether inertial effects are truly responsible for the emergence of the new streaming cell.



(a) t = 2.75 × 10−3 s.

(b) t = 3.25 × 10−3 s.

(c) t = 3.75 × 10−3 s.

(d) t = 1 × 10−2 s.

Fig. 5. Contours of the axial streaming velocity (with color code) at different times during the transient evolution of N2 . Streamlines are superimposed on
the right half plane section (real aspect ratio height/length = 0.09). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In the next section, the equations governing the streaming flow are presented along with a scale analysis in order to
exhibit governing dimensionless numbers and time scales for the establishment of inner and outer streaming flows. The
expected time scales for the configuration under study are then calculated and compared with fits to the curves shown in
the present section.

4. Scale analysis of slow and fast streaming flow

In order to analyze the dynamics of the streaming flow and particularly the competition between diffusion at the origin
of streaming and convection associated to nonlinear inertial effects, a scale analysis based on the full equations governing



Fig. 6. Time evolution N2 . Axial streaming velocity at (a) I (b) Oc and (c) Oe .

Fig. 7. Time evolution in the fast streaming case E2 . Axial streaming velocity at (a) I (b) Oc−exp and (c) Oe .



the streaming flow is conducted below. Our approach is similar to that developed by Boufermel et al. [24] for computing the
average mass transport velocity ρv

ρ
in the slow streaming regime, as well as to that developed by Moudjed et al. [31] in the

somehow different configuration of bulk streaming.
Focus is on outer streaming, whose transient and established regimes was shown to be drastically modified in the fast

nonlinear regime.

4.1. Equations governing the streaming flow

Particle velocity v, fluid density ρ and pressure p are decomposed into a fluctuating, periodic component, and a steady
component (corresponding to the time average of the variable over the period, i.e. corresponding to the streaming flow)

(v, ρ, p) = (v′
+ v, ρ ′

+ ρ, p′
+ p), (3)

the fluctuating component being denoted by a ′ superscript and the average operator by an overline. The time average of the
fluctuating component is zero. Conversely to usualmodels of slow streaming, in the present approach no assumption is done
on the magnitude of the fluctuation with respect to the steady component. The equations are therefore correct whether the
streaming flow is slow or fast.

With this decomposition, the double and triple averaged products between any three variables f , g , h become:{
fg = f̄ ḡ + f ′g ′

fgh = f̄ ḡ h̄ + f ′g ′h̄ + f ′h′ḡ + g ′h′ f̄ + f ′g ′h′.
(4)

The equations governing the streaming flow are obtained by averaging over the acoustic period the full compressible
(isentropic) instantaneous Navier–Stokes equations (1) and the isentropic state law (2). Using the double and triple averaged
products detailed in Eq. (4) then results in the following time averaged equation system:⎧⎪⎨⎪⎩

∂ρ

∂t
+ ∇ · (ρ v) = −∇ · (ρ ′v′)

∂ρ v
∂t

+ ∇ · (ρ v ⊗ v) + ∇p = ∇ · ( ¯̄τ ) + F̄ ,

(5)

and p − p0 = c20 (ρ − ρ0), where ¯̄τ is the averaged viscous tensor and F̄ is the excitation force given by:

F̄ = −∇ · (ρ ′v′ ⊗ v + v ⊗ ρ ′v′ + ρv′ ⊗ v′ + ρ ′v′ ⊗ v′). (6)

Note that F̄ is the sum of the source terms, representing the nonlinear contribution of the imposed acoustic field.

4.2. Scale analysis

The equation system (5) is written in dimensionless form, using standard fluid mechanics scalings, detailed in the
following. As stated previously, focus is on the resonator core. In a cylindrical wave guide, streaming cells are toroidal of
axial dimension λ/4 and radial dimension R in the core of the resonator. Therefore the axial variable z is scaled with λ/4 and
the radial variable r with R.

Mean velocity is scaled with a reference value of the axial streaming velocity Us. Density is scaled with ρ0. Pressure
variations are scaled with (δp), not specified at this stage of the scale analysis. The aim of the study is to determine the role
of inertia on streaming in the fast regime. Therefore, time is scaled with the characteristic convection time scale in the axial
direction tc = λ/(4Us).

Scalings can then be summarized as follows:

r∗
=

r
R
, z∗

=
z

λ/4
, v∗

=
v
Us

, t∗ =
t
tc

, ρ∗
=

ρ

ρ0
, p∗

=
p − p0
(δp)

. (7)

Also, the fluctuation variables required to assemble the source terms are scaled with the acoustic amplitudes as follows:

v′∗
=

v′

Umax
, ρ ′∗

=
ρ ′

ρmax
, (8)

ρmax being the amplitude of density fluctuations at acoustic antinode position in the standing wave.Whenever two different
spatial derivatives are involved, the coefficient multiplying each dimensionless term is chosen with respect to the dominant
spatial derivative under plane wave assumption: R ≪ λ. In particular, scaling the viscous stress tensor yields a µUs

R2
factor,

and scaling the divergence operator∇ ·(v∗) yields a Us
λ/4 coefficient. The following dimensionless equations are deduced from

(5): ⎧⎪⎪⎨⎪⎪⎩
ρ0

tc

∂ρ∗

∂t∗
+

ρ0Us

λ/4
∇ · (ρ∗v∗) = −

ρmaxUmax

λ/4
∇ · (ρ ′∗v′∗)

ρ0Us

tc

∂ρ∗v∗

∂t∗c
+

ρ0U2
s

λ/4
∇ · (ρ∗v∗

⊗ v∗) +
(δp)
λ/4

∇p∗
=

µUs

R2 ∇ · ( ¯̄τ
∗

) + F ,

(9)



with

F = −
ρmaxUmaxUs

λ/4
∇ · (ρ ′∗v′∗ ⊗ v∗

+ v∗
⊗ ρ

′∗v′∗ +
ρ0Umax

ρmaxUs
ρ∗v′∗ ⊗ v′∗ +

Umax

Us
ρ

′∗v′∗ ⊗ v′∗). (10)

Then, multiplying the mass equation with λ/(4ρ0Us) and the momentum equation with λ/(4ρ0U2
s ) and using tc = λ/(4Us)

one can obtain:⎧⎪⎪⎨⎪⎪⎩
∂ρ∗

∂t∗
+ ∇ · (ρ∗v∗) = −

ρmax

ρ0

Umax

Us
∇ · (ρ ′∗v′∗)

∂ρ∗v∗

∂t∗
+ ∇ · (ρ∗v∗

⊗ v∗) +
(δp)
ρ0U2

s
∇p∗

=
1
Re

∇ · ( ¯̄τ
∗

) + F
∗

,

(11)

where the dimensionless excitation force, gathering all the source terms is expressed as:

F
∗

= −
ρmax

ρ0

Umax

Us
∇ · (ρ ′∗v′∗ ⊗ v∗

+ v∗
⊗ ρ

′∗v′∗)

−
U2
max

U2
s

∇ · (ρ∗v′∗ ⊗ v′∗) −
ρmax

ρ0

U2
max

U2
s

∇ · (ρ ′∗v′∗ ⊗ v′∗).
(12)

The system equations (Eq. (11)) is the dimensionless form of the general governing streaming equations (Eq. (5)). The
Reynolds number Re =

4Us
λ

R2
ν

that appears in the momentum equation is the Reynolds number characterizing the mean
flow in a thin tube, defined as the ratio between the diffusion time scale in the radial direction td = R2/ν and the convection
time scale in the axial direction tc = λ/(4Us), Re = td/tc . Note that td is equivalent (with a different length reference value)
to the characteristic time for streaming development defined by Amari et al. in [32] and used to obtain the transient linear
streaming equations. Under the assumptions that acoustic perturbations are small (i.e. of order M =

Umax
c0

≪ 1) and the

streaming field is of order M2 (Us = MUmax), this Reynolds number can be rewritten as Re =
4
π

M2

Sh2
=

4
π
ReNL, ReNL being the

commonly introduced nonlinear Reynolds number.
Under these assumptions, the Reynolds number Re and the nonlinear Reynolds number ReNL are thus of the same order of

magnitude. However, since the Reynolds number Re is defined directly with the value of the maximum streaming velocity,
it describes more accurately the influence of inertia in the nonlinear regime in the core of the wave guide than ReNL. Indeed,
previous numerical and experimental studies [29] have shown that in the nonlinear regime, themaximum value of the axial
streaming velocity on the tube axis is much smaller than slow streaming expectations 3U2

max/(8c). Therefore the nonlinear
Reynolds number ReNL overestimates the influence of inertia on the streaming flow. For example, in the numerical case
N2, the Reynolds number based on the maximum value of Us on the axis is Re = 17.1 while the corresponding nonlinear
Reynolds number is ReNL = 80.84. Nonetheless Re cannot be estimated before the simulations/experiments whereas ReNL
can be calculated from the acoustics and thus remains useful.

Another Reynolds number used in the literature to distinguish linear from nonlinear regime was the streaming Reynolds
number used by Stuart et al. [11] defined as Res =

Usλ
2πν

. It can be expressed as Res = Re λ2

R2
and also has the drawback to

overestimate the nonlinear inertial effects on Rayleigh streaming.
In the case Re ≪ 1 (which alsomeans that convection time ismuch greater than diffusion time) and under the assumption

of small perturbations (M =
Umax
c0

=
Us

Umax
≪ 1), the inertial term and the time depending term can both be neglected with

respect to the viscous term. The magnitude of source terms is then estimated :
ρac

ρ0

Uac

Us
∇ · (ρ ′∗v′∗ ⊗ v∗

+ v∗
⊗ ρ

′∗v′∗) = O
(
M ·

1
M

)
= O(1), (13)

U2
max

U2
s

∇ · (ρ∗v′∗ ⊗ v′∗) = O
(

1
M2

)
, (14)

ρmax

ρ0

U2
max

U2
s

∇ · (ρ ′∗v′∗ ⊗ v′∗) = O
(
M ·

1
M2

)
= O

(
1
M

)
. (15)

F
∗

is then of order 1
M2 . The pressure gradient must have the same order of magnitude as F

∗

which yields also the pressure
variations scale (δp) = ρ0U2

max = p0M2. The magnitude of the source term in the mass equation is estimated as previously:
ρmax
ρ0

Umax
Us

∇ · (ρ ′∗v′∗) = O(1). Finally, the steady linear equations for the streaming flow (dimensional form) are then deduced
from the first order approximation of the momentum equation and (5) gives:{

∇ · (ρv) = −∇ · (ρ ′v′)
∇p = ∇ · ( ¯̄τ ) − F,

(16)

where F̄ ≈ ∇ · (ρv′ ⊗ v′).
As the Re number is increased i.e. Re ≳ 1, inertial and time depending terms cannot be neglected anymore and the

complete unsteady form of streaming equations (5) with all the source terms should be used. In this case the diffusion time
scale becomes larger than the convection time scale, thus the overall process is faster and the steady state is reached earlier.



Table 2
Reynolds numbers of different presented cases (N: numerical, E: experimental).

Name Us (at I) (m/s) Us (at Oc ) (m/s) ReNL Re(I) Re(Oc )

N1 2.42 × 10−4 2.63 × 10−4 0.005 2.24 × 10−3 2.43 × 10−3

N2 3.18 1.84 80.84 29.44 17
E2 0.5 0.01 85.22 35.26 0.7

4.3. Reynolds numbers and time scale values for slow and fast outer streaming

Table 2 displays the values of the axial streaming velocity at points I or Oc , and of the corresponding Reynolds number of
previously described cases N1, N2 and E2.

The previous analysis can also be used to estimate quantitatively the expected time scales of the streaming time
evolutions for outer streaming, in the slow and fast streaming regime, that was described qualitatively in Section 3.

In the slow streaming case, diffusion of momentum in the radial direction is expected to be dominant. The convection
time variations take place over a very long scale and they are very small, therefore only time variations over a diffusion time
scale are significant. The associated characteristic time scale for the establishment of outer streaming is td = R2/ν, which,
using the parameter values in Table 2 forN1, amounts to td = 0.026 s. Taking into account the fact that the streaming velocity
at Oc in Fig. 4(b) is not established in 0.01 s, this is a coherent result.

Based on known analytical solutions of the unsteady pure diffusion equation, if diffusion were dominant the time
evolution curves should be in the form u(t) = u∞(1− e−t/τ ), where the time constant τ is the time needed for the value u to
reach 63% of the established value u∞ and the time constant needed to achieve 99.999% of the established value is equal to
10τ . The time evolution curve at Oc in Fig. 4(b) is actually very well fitted with such a diffusion curve, and the quantitative
fit gives τ ≃ 0.0015 s and therefore 10τ = 0.015 s, which is the same order of magnitude as td.

In the fast streaming case N2, in the core, transverse diffusion is expected to compete with convection in the axial
direction. The value of the theoretical diffusion time scale td is still the same, since it does not depend on the excitation level
(td = 0.026 s). The first velocity increase in the time evolution curve at Oc (Fig. 6(b)) can be fitted by assuming dominant
diffusion and the obtained characteristic time scale is the same as in the slow streaming case. Therefore transverse diffusion
is dominant at first in the establishment of the outer streaming, just like in the slow streaming case. Assuming next that
the second velocity increase in the time evolution curve at Oc (Fig. 6(b)) is related to convection, the theoretical time scale
associated with convection along the length λ/4 with velocity Us at the location I is tc = λ/(4Us) = 1.6 × 10−3 s based on
the parameters in Table 2. This increase is 20 times faster than that of the diffusion process. A linear fit of the second velocity
increase at Oc on Fig. 6(b) gives tc fit ≈ 10−3 s, which is of the same order as tc . This shows that the second velocity increase
is indeed related to convection in the axial direction. Note that convective transport is much faster than diffusive transport
and that the steady state is reached earlier than in the slow streaming case N1, in agreement with the analysis given at the
end of Section 4.2.

In the experimental case E2, Fig. 7 shows the evolution of streaming at the three different locations I , Oc-exp and Oe. Two
separate slopes in the time evolution of streaming at Oc-exp are also observed, but these are not due to the competition
between diffusion and convection as was the case for numerical results. Actually our experimental set up does not allow to
observe this competition: the theoretical value of the radial diffusion time scale is td = 24 s and the convection time scale in
the axial direction calculated for E2 based on the maximum value of Us at I location (read in Fig. 7(a)) is tcE2 = 0.71 s. It can
be observed that acoustics requires about 3 min to be established. The transient of acoustics is therefore too long to allow to
separately identify the establishment of streaming.Moreover onemeasurement point actually corresponds to an integration
of results of particle velocity measurements over several seconds: indeed in order to obtain converged results of the particle
velocity estimate, several thousands of seeding particles need to have crossed themeasuring volume [27,33]. The associated
measuring time depends on the data rate associated with the seeding density; in our set up this process can take as long as
10 s. Therefore it is impossible to distinguish time scales as short as td or tc . The evolution of streaming shown in Fig. 7 can
be supposed to result from heat transfer effects. Indeed measurements give an estimate of the mean velocity, that is equal
to streaming velocity only if no heat convection occurs. In the case of E2 experiments, a 4 K temperature difference in the
guide wall temperature wasmeasured across a distance of λ/4. The temperature establishment was found to last for 20min,
probably due to the time needed to reach thermal equilibrium between thermoacoustic, conduction and convection heat
fluxes. It can thus be assumed that themeasured time evolution of mean velocity is not the only result of acoustic streaming.
In the following, only the numerical results will be considered.

In the next section, the driving effect of inner streaming on the outer streaming will be analyzed. Indeed, an analogy with
the lid-driven cavity in a cylindrical geometry is presented in order to identify the physical meanings of the characteristic
times.

5. Lid-driven cavity analogy

Based on the observation that inner streaming drives outer streaming with competing diffusion and convection, and in
order to mimic the establishment of outer streaming, we introduce an equivalent fluid-mechanics problem. We therefore
consider the establishment of flow in a lid-driven cavity, but with a cylindrical geometry, and assume that the ‘‘lid’’ is the
tube envelope where the inner streaming velocity is imposed.



Fig. 8. Schematics of the lid-driven cylindrical flow problem: geometry and boundary conditions.

Fig. 9. (a) Time evolution ( ) of U (z = L/4, r = 0) in lid-driven cavity for Uw from N1 , and ( ) of Us at Oc from Fig. 4. (b) Same with both curves
normalized to reach the same steady-state value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

5.1. Description of the problem

The problem being axisymmetric, the geometry is defined by z ∈ [0, L/2] and r ∈ [0, R − 3δν]. The viscous flow is
governed by the following equations, which are the same as in Eq. (1) without the acoustic source terms:⎧⎪⎨⎪⎩

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv
∂t

+ ∇ · (ρv ⊗ v) + ∇p = ∇ · ( ¯̄τ )
(17)

This system is completed with the isentropic state law Eq. (2). Symmetry conditions are imposed at the vertical walls
z = 0, L/2 and on the horizontal axis r = 0. The boundary condition at the wall r = R− 3δν (the ‘‘lid’’) is that the velocity is
only axial. Its value Uw(z) is equal to the streaming axial velocity profile Us(z) along the tube at r = R − 3δν given by direct
numerical calculations described in the previous sections (see Fig. 8). There is initially no flow in the cavity. The numerical
procedure is the same as that described in Section 2.2. The simulations show that the flow is almost incompressible (density
variations are less than 0.006%).

5.2. Results

A first simulation (low level) is runwithUw corresponding to the establishedUs at r = R−3δν forN1 case (slow streaming).
Fig. 9(a) shows (in red) the time evolution of the axial velocity U at r = 0 and z = L/4 (center of the mimicked streaming
cell). The time evolution of the streaming velocity at Oc (same location) in Fig. 4 is reproduced in blue dots. Fig. 9(b) shows
both curves normalized so that they reach the same steady state value. Both curves are very similar with similar time scales,
which confirms that transverse diffusion of momentum is the dominant physical phenomenon for the establishment of the
slow streaming pattern.

A simulation at higher level is runwith Uw corresponding to the established Us at r = R−3δν forN2 case (fast streaming).
Fig. 10(a) shows (solid red line) the time evolution in the lid-driven cavity of the axial velocity U at r = 0 and z = L/4. The
time evolution of the streaming velocity at Oc (same location) given by Fig. 6(b) is reproduced in blue dots. Both curves are
very similar in shape, although the maximum value obtained for the streaming curve is about half of that in the lid-driven
cavity. Fig. 10(b) shows the same curves normalized to reach the same steady-state. Both curves are almost superimposed,
which shows that the time scales are the same and that the change of slope in the curve is indeed related to the inertial effect,
when convection becomes strong enough to compete efficiently with diffusion and to modify the time evolution. However,
as stated above the established streaming velocity is much smaller than that obtained in the lid-driven cavity. This suggests
that the inertial effects of the lid-driven cavity model are not sufficient to correctly model the change in the streaming flow
field.

Fig. 11 shows several snapshots of contours of the axial velocity in the lid-driven cavity during the transient evolution.
Streamlines are superimposed on the right half plane section (the simulations are performed on a length L/2 and the solution



Fig. 10. (a) Time evolution ( ) of U (z = L/4, r = 0) in lid-driven cavity for Uw from N2 , and ( ) of Us at Oc from Fig. 6. (b) Same with both curves
normalized to reach the same steady-state value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

in the right half plane section is constructed by symmetry). Comparisonwith Fig. 5 shows that the time evolution of patterns
are very similar which confirms that the transient evolution of the streaming patterns comes from competing diffusion
and convection in a manner analogous to the lid-driven cavity. However, an important difference exists: there is no extra
streaming cell in the lid-driven cavity.

Fig. 12 shows axial profiles of U on the axis r = 0 for corresponding times of Fig. 11. The axial profile imposed at the
wall r = R − 3δν is also shown. At early times the axial profile of U is similar to the profile of Uw , which confirms that
momentum diffusion in the radial direction is dominant. The distortion observed in the last profile is due to convection in
the axial direction.

A similar simulation can be conducted using the experimental configuration of E2. Fig. 13 shows the time evolution of the
axial velocity U at r = 0 and z = L/4 in the lid-driven cavity (the experimental inner streaming axial profile is imposed at
the lid). The associated time scales are of the same order as td and tc calculated in Section 4.3, and the transient behavior of
the flow is analogous to that observed in Fig. 10. As mentioned earlier, this evolution cannot be highlighted experimentally.

This analysis shows that although diffusion and convection do compete in the establishment of the streaming flow in
a similar manner as in the lid-driven cavity problem, this is not enough to explain the emergence of the new streaming
cell. Therefore, at this stage, we can conclude that the lid-cavity model is not complete enough to describe the mutation of
streaming at high levels.

In the next section, the complete streaming equations (5) are solved numerically, with a mono-frequency acoustic source
used to compute the different source terms. The effect of increasing the amplitude of the acoustic flow field is analyzed.

6. Averaged model simulation for the streaming flow

The high-levelmono-frequency acoustic field source used in this section is obtained in two steps. Firstly a DNS simulation
at very low-level amplitude is run until a steady streaming flow is obtained. The resulting acoustic field, calculated by
subtracting the streaming flow from the total velocity field (v′

= v−v, ρ ′
= ρ−ρ), contains insignificant level of harmonics.

Then this acoustic field (v′, ρ ′) is multiplied by a coefficient α chosen to obtain high values of the nonlinear Reynolds number
ReNL. This acoustic field is used to compute the source terms so that the following averaged Navier–Stokes equations are
solved for the unknown streaming field (vS, ρS, pS):⎧⎪⎨⎪⎩

∂ρS

∂t
+ ∇ · (ρS vS) = −α2

∇ · (ρ ′v′)

∂ρS vS
∂t

+ ∇ · (ρS vS ⊗ vS) + ∇pS = ∇ · ( ¯̄τ S) + F̄1,
(18)

with F̄1 defined by

F̄1 = −∇ · (α2ρ ′v′ ⊗ vS + α2vS ⊗ ρ ′v′ + α2ρSv′ ⊗ v′ + α3ρ ′v′ ⊗ v′) (19)

and pS − p0 = c20 (ρS −ρ0). The boundary conditions are no slip on the outside wall parallel to the horizontal symmetry axis,
and symmetry conditions on the vertical boundaries and horizontal axis.

These equations, very similar to Eqs. (5), are solved with the same numerical method as presented in Section 2.2.
This AMS approach can be used to study the influence of inertial effects on the streaming flow for a monofrequency

high amplitude acoustic forcing field. This is equivalent to the strategy followed in [15]. In this way we are able to exclude
the influence on the streaming flow of higher harmonics in the acoustic signal. This numerical approach is used here to
investigate nonlinear Reynolds numbers ReNL ranging from 0.002 up to 94 (corresponding to Re ranging from 0.0025 to
30.81).

Fig. 14 displays the axial streaming velocity component Us obtained with the AMS simulation scaled by the Rayleigh
streaming maximum velocity 3 × U2

max/(8c0) along the scaled central axis z/L for R/δν = 40 and 0.002 ≤ ReNL ≤ 94. For



(a) t = 7.5 × 10−4 s.

(b) t = 1.25 × 10−3 s.

(c) t = 1.75 × 10−3 s.

(d) t = 1 × 10−2 s.

Fig. 11. Contours of the axial velocity (with color code) at different times during the transient evolution in the lid-driven cavity for Uw from N2 . Streamlines
are superimposed on the right half plane section. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

increasing ReNL numbers, the sine function associated to slow streaming becomes steeper next to the resonator center, at
the acoustic velocity antinode location, and not next to the resonator ends (acoustic velocity nodes locations). This behavior
is in agreement with the predictions of the nonlinear model developed by Menguy and Gilbert [15] at moderate nonlinear
Reynolds numbers ReNL = O(1). The direction of distortion is opposite to that observed in the full DNS simulations and
experiments [28,29].

In Fig. 15, the dimensionless streaming velocity is plotted along the axis for DNS, AMS and Lid-driven cavity (LDC)
simulations, for slow-streaming (N1) and fast-streaming (N2). For slow-streaming, all three simulations give analogous



Fig. 12. Axial profiles of U at r = 0 (in blue) for corresponding times expressed in 10−3 s and at r = R − 3δν (in red) in the lid-driven cavity for Uw from
N2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Time evolution of U(z = L/4, r = 0) in lid-driven cavity for Uw from E2 .

Fig. 14. AMS results for streaming velocity scaled by 3 × U2
max/(8c0) along the axis, R/δν = 40.

profiles even though the LDC streaming velocity is slightly smaller. This is because the lid-cavity model does not include
the acoustic source terms.

For fast-streaming, the AMS result shows the same behavior as the lid-driven cavity. Once again the LDC streaming
velocity is slightly smaller, because that model does not include the acoustic source terms. For the AMS simulations, the
associated axial velocity contours and streamlines are displayed in Fig. 16. They are similar to those obtained for the lid
driven cavity flow, in the steady state (see Fig. 11(d)). On the contrary, the DNS streaming velocity on the axis is globally
much smaller, and shows the presence of new streaming cells.

Both the lid-driven cavity and the AMS approaches show that when the intensity of a monofrequency wave is increased,
the streaming flow becomes nonlinear because of inertial effects, but the distortion of the Rayleigh streaming profile is
different than in DNS simulations or experiments.

This shows that in order to explain the mutation of the streaming flow at high levels, other effects must be analyzed. The
only effects that have not been considered yet are the consequences of nonlinear interaction between the streaming flow
and acoustics, i.e. the modification of the acoustic flow by the streaming flow. This is currently under study.

7. Conclusion

In this paper the effect of inertia on Rayleigh streaming was investigated numerically and experimentally.
Time evolution of streaming patterns were analyzed. Based on an analysis of the equations driving the streaming flow,

two time scales were identified: the diffusion and the convection time scales. The ratio of these time scales is a Reynolds



Fig. 15. Dimensionless streaming velocity along the axis. Comparison of DNS (solid lines), AMS (dashed lines) and Lid-Driven Cavity, LDC (dashed–dotted
lines) results, R/δν = 50, for slow-streaming (in blue) and fast-streaming (in red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 16. AMS results, R/δν = 50. Isolines of the axial streaming velocity colored by its value and the streamlines of the streaming flow. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

number Re =
4Us
λ

R2
ν

that characterizes the streaming flow and separates the linear from the nonlinear regime. This number
is proportional to the nonlinear Reynolds number ReNL only when the streaming flow is of orderM2c0.

The time evolution of outer streaming wasmimicked by analyzing a lid-driven flow. It was confirmed that in a first stage,
the outer fast streaming cells are created due to momentum diffusion in the radial direction and that in a second stage, the
streaming cells are distorted due to convection in the axial direction. But no extra cell is created in the lid-driven cavity.

Nonlinear inertial effects on the established streaming flow were further investigated using a numerical approach that
solves the full streaming flow equations with an imposed monofrequency acoustic wave source computed from the DNS.
These simulations as well as the lid-driven cavity simulations show similar results: The streaming patterns in the core of the
waveguide are different than those observed in DNS simulations and experiments.

Therefore inertial effects cannot be considered as the leading phenomenon to explain the mutation of streaming at high
acoustic levels. Nonlinear interactions between the streaming flow and acoustics have to be considered, which will be the
scope of further studies.
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