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Abstract In this paper, two quadratic solid‒shell (SHB) elements are proposed for the three-

dimensional modeling of thin structures. These consist of a twenty-node hexahedral solid‒shell 

element, denoted SHB20, and its fifteen-node prismatic counterpart, denoted SHB15. The 

formulation of these elements is extended in this work to include geometric and material 

nonlinearities, for application to problems involving large displacements and rotations as well as 

plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-

plastic constitutive equations for metallic materials. Although based on a purely three-

dimensional approach, several modifications are introduced in the formulation of these elements 

to provide them with interesting shell features. In particular, a special direction is chosen to 

represent the thickness, along which a user-defined number of integration points are located. 

Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane 

reduced-integration scheme is adopted. The resulting formulations are implemented into the finite 

element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear 

benchmark problems are investigated. Attention is then focused on the simulation of various 

complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-

sided contact. From all simulation results, it appears that the SHB elements represent an 

interesting alternative to traditional shell and solid elements, due to their versatility and capability 

of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal 

forming processes. 

 

Keywords finite element, quadratic solid‒shell, thin structures, nonlinear analysis, anisotropic 

plasticity, sheet metal forming. 
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1 Introduction 

Nowadays, the numerical modeling has become an indispensable simulation tool in many 

fields of the industry, such as automotive, aerospace, and civil engineering. The finite element 

(FE) method, a widespread numerical tool, provides great assistance to engineers in the design of 

products and optimization of manufacturing processes. Despite the growing development of 

computational resources, reliability and efficiency of the FE analysis remain important features in 

the simulation practice. The present work deals with the simulation of thin structures, which is 

conventionally achieved using classical shell and continuum solid elements. However, in some 

circumstances, traditional shell and solid elements suffer from various locking phenomena, such 

as membrane locking, thickness locking, shear locking, etc. In addition, shell elements are often 

not appropriate for the modeling of complex sheet metal forming processes involving double-

sided contact, partly due to the use of plane-stress assumptions in their formulation. To remedy 

these shortcomings, considerable effort has been devoted to the development of solid‒shell 

elements during the last few decades. The key idea behind this original concept of solid‒shell 

elements is to combine the advantages of both FE technologies, namely shell and continuum 

formulations. The main benefits of this solid‒shell concept may be summarized as follows: easier 

formulation, based on a purely three-dimensional approach, with displacements as the only 

degrees of freedom; consideration of fully three-dimensional constitutive laws, with no plane-

stress restrictions; direct calculation of thickness variations; natural treatment of double-sided 

contact, thanks to the availability of actual top and bottom surfaces; 3D modeling of thin 

structures, using only a single element layer and few integration points, while accurately 

describing the through-thickness phenomena. 

Most solid‒shell elements developed in the literature are based on the reduced-integration 

technique (see, e.g., Zienkiewicz et al. [1]). In the case of linear interpolation, this consists most 

often in adopting an in-plane one-point quadrature rule, while considering a number of 

integration points along the thickness. In addition to the reduced-integration scheme, several 

other numerical strategies, such as the assumed strain method (ASM), the enhanced assumed 

strain (EAS) approach, the assumed natural strain (ANS) concept, were developed in the 

literature to eliminate various kinds of locking phenomena (see, e.g., [2‒17]). Note that, for linear 

under-integrated solid‒shell elements, special stabilization procedures are required for the control 
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of zero-energy (hourglass) modes, which are induced by the reduced-integration rule (see, e.g., 

Abed-Meraim and Combescure [12], Schwarze et al. [18]). 

In this paper, two quadratic solid‒shell elements are proposed for the 3D nonlinear analysis of 

thin structures. These formulations are extended to include geometric and material nonlinearities, 

following the earlier works on the family of SHB elements. The first solid‒shell element in this 

family was developed by Abed-Meraim and Combescure [6], and consists of an eight-node 

hexahedral element denoted SHB8PS. Its formulation was subsequently improved by Abed-

Meraim and Combescure [12], especially in terms of locking reduction, while the hourglass 

modes were efficiently controlled by implementing a new stabilization procedure. The 

performance of the SHB8PS element was demonstrated through a representative set of selective 

benchmark tests as well as sheet metal forming processes involving large strains, anisotropic 

plasticity, and contact (see Abed-Meraim and Combescure [12], Salahouelhadj et al. [19]). Then, 

a six-node prismatic solid‒shell element denoted SHB6 was developed by Trinh et al. [20], as a 

complement to the SHB8PS element for the modeling of complex geometries whose meshing 

requires the combination of hexahedral and prismatic elements. Although the performance of the 

SHB6 is good in the whole, its convergence rate remains slower than that of the SHB8PS, and 

requires finer meshes to obtain accurate solutions. More recently, the quadratic counterparts of 

the above hexahedral and prismatic solid‒shell elements were developed by Abed-Meraim et al. 

[21], in order to improve the overall performance and convergence rate. These quadratic versions 

consist of a twenty-node hexahedral element, denoted SHB20, and a fifteen-node prismatic 

element, denoted SHB15. Likewise, their formulation is based on a fully three-dimensional 

approach with an in-plane reduced-integration rule. The performance of these elements has been 

evaluated by Abed-Meraim et al. [21] within the framework of small strain and elastic benchmark 

problems. In the present work, however, the formulation of the quadratic SHB15 and SHB20 

elements is extended to the framework of large displacements and rotations. Moreover, the 

resulting formulations are coupled with large-strain anisotropic elasto-plastic constitutive 

equations, which allows modeling complex and challenging structural problems, such as sheet 

metal forming processes. 

The remainder of the paper is outlined as follows. The general formulation of the quadratic 

solid‒shell elements, SHB15 and SHB20, is presented in Section 2. Then, the performance of 

these elements is assessed in Section 3, first through a variety of linear and nonlinear benchmark 
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problems. In Section 4, the proposed formulations are applied to the simulation of complex sheet 

metal forming processes, including springback, incremental forming, and deep drawing tests. 

Finally, the main conclusions and remarks are drawn in Section 5. 

 

2 Basic formulations for the quadratic solid‒shell elements 

Despite some differences between the prismatic and hexahedral solid‒shell elements (e.g., in 

terms of geometry, interpolation functions, etc.), their theoretical formulations show a number of 

similarities. In this section, a general formulation, common to both SHB15 and SHB20 

solid‒shell elements, is introduced. This formulation, which was previously developed by Abed-

Meraim et al. [21] within the framework of small strains, is extended here to the large-strain 

framework. 

2.1 Geometry and integration points 

Figure 1 illustrates the reference geometry and location of integration points for the SHB15 

and SHB20 solid‒shell elements. The starting point for the formulation of these quadratic 

solid‒shell elements is the classical 3D approach, used for conventional quadratic continuum 

elements, with fifteen nodes for the prismatic SHB15 element and twenty nodes for the SHB20 

element. Then, a special direction ζ  (see Fig. 1) is chosen as the thickness direction, along 

which a user-defined number of integration points are arranged. In the ξ η−  plane corresponding 

to each ζ -coordinate of these through-thickness integration points, are defined a total number of 

three integration points for the prismatic SHB15 element, and four integration points for the 

hexahedral SHB20 element, as shown in Fig. 1. The coordinates and associated weights of these 

integration points can be obtained using the classical Gauss distribution method (see, e.g., 

Zienkiewicz et al. [22]). It is worth noting that, in the case of full integration for conventional 

quadratic solid elements, three in-plane integration points with three through-thickness 

integration points are required for prismatic elements, while nine in-plane integration points with 

three through-thickness integration points are used for hexahedral elements. 
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(a) SHB15                                               (b) SHB20 

Fig. 1. Reference geometry and location of integration points for the SHB15 and SHB20 

solid‒shell elements. 

 

Moreover, to provide the proposed elements with some desirable shell features and to reduce 

locking, special local element frames are introduced, which are attached to the element mid-

planes associated with each integration point. In these local physical coordinate systems, 

associated with the ζ -coordinate of each integration point, the fully three-dimensional elasticity 

tensor of the material is specified. Note that this is a first major difference with conventional 

continuum elements, for which no such local element frames are considered. Figure 2 illustrates, 

in the case of the SHB20 element, the definition of these local element frames, which are built 

using the following procedure. First, the element mid-plane corresponding to a given integration 

point k  is defined using the physical nodal coordinates, which is represented in Fig. 2 by the four 

points 1Pk , 2Pk , 3Pk  and 4Pk . These latter points allow us, in turn, to define four mid-points k
12m , 

k
23m , k

34m  and k
41m , which are the barycenters of ( )1 2P Pk k , ( )2 3P Pk k , ( )3 4P Pk k  and ( )4 1P Pk k , 

respectively. Then, the first base vector, k
1e , of the local coordinate system is defined as being 

parallel to ( )41 23m mk k , while the second vector k2e  is defined parallel to ( )12 34m mk k . Vector 2
ke  is 

modified by adding a correction term k
ce , so that vectors k1e  and ( )2

k k
c+e e  are orthogonal, which 

gives 
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( )
( )

1 2

1

1 1

Tk k

k k
c Tk k

⋅
= −

⋅

e e
e e

e e
.  (1) 

Finally, the third base vector k3e  is simply obtained by the following cross-product (see Fig. 2): 

( )3 1 2
k k k k

c= × +e e e e .  (2) 

The same strategy is applied to the prismatic SHB15 element, in order to define the associated 

local coordinate systems, and is not repeated here for conciseness. 
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Fig. 2. Schematic representation of the local element frame associated with the kth integration 

point of the SHB20 element. 

 

2.2 Quadratic interpolation for the SHB elements 

Using the classical isoparametric approach, the SHB15 and SHB20 solid‒shell elements adopt 

the conventional shape functions IN  for quadratic prismatic and hexahedral elements, 

respectively. The spatial coordinates ix  and the displacement field iu  within the element are 

expressed as functions of the nodal coordinates and the nodal displacement, respectively 

∑
=

==
n

I
iIIIiIi xNNxx

1

),,(),,( ζηξζηξ ,  (3) 

),,( ζηξIiIi Ndu = ,  (4) 
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where the lowercase subscript i varies from 1 to 3, and represents the spatial coordinate directions, 

while the uppercase subscript I goes from 1 to n, with n being the number of element nodes 

( 15n =  for the SHB15 element, and 20n =  for the SHB20 element). Note that in Eq. (4) above, 

the convention of implied summation over repeated indices has been used, which will be also 

adopted in the sequel. 

2.3 Strain-displacement relationship and discrete gradient operator 

Based on the interpolation of the displacement field (Eq. (4)), the linear part ε  of the strain 

tensor is defined by the following relationship: 

( ) ( )iIjIjIiIijjiij NdNduu ,,,, +=+=
2

1

2

1ε .  (5) 

The combination of Eqs. (3) and (4), along with the expression of the shape functions 

),,( ζηξIN , allows us to develop the displacement field in the following form: 

0 1 1 2 2 3 3 1 1 2 2i i i i i i i iu a a x a x a x c h c h c hα α= + + + + + + +⋯ , (6) 

where hα  are functions of the nodal coordinates ξ , η , ζ , in the reference coordinate system, 

and α  varies from 1 to 11 for the SHB15 element, and from 1 to 16 for the SHB20 element. For 

the SHB15 element, the hα  functions are expressed as follows: 

2 2 2
1 2 3 4 5 6 7

2 2 2 2
8 9 10 11

,  ,  ,  ,  ,  ,  ,

,  ,  ,  ,

h h h h h h h

h h h h

ξζ ηζ ξη ξηζ ξ η ζ
ξ ζ η ζ ξζ ηζ

 = = = = = = =


= = = =
 (7) 

while for the SHB20 element, they are given by 

2 2 2
1 2 3 4 5 6 7

2 2 2 2 2 2
8 9 10 11 12 13

2 2 2
14 15 16

,  ,  ,  ,  ,  ,  ,

,  ,  ,  ,  ,  ,

,  ,  .

h h h h h h h

h h h h h h

h h h

ξζ ηζ ξη ξ η ζ ξηζ
ξ η ξ ζ η ξ η ζ ξζ ηζ
ξ ηζ ξη ζ ξηζ

 = = = = = = =


= = = = = =
 = = =

 (8) 

By evaluating Eq. (6) at the fifteen nodes of the SHB15 element, respectively, at the twenty 

nodes of the SHB20 element, one obtains the following fifteen-equation system, respectively, 

twenty-equation system: 

αα hhhxxxsd iiiiiiii cccaaaa +++++++= ⋯22113322110 ,       1,2,3i = , (9) 
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where ( )1 2 3, , , ,T
i i i i ind d d d=d ⋯  represent the nodal displacement vectors, and 

( )iniii
T
i xxxx ,,,, ⋯321=x  are the nodal coordinate vectors. The constant vector ( )1,1, ,1T =s ⋯  is 

a fifteen-component vector, in the case of the SHB15 element, and a twenty-component vector, 

for the SHB20 element. As to vectors αh , these are constant vectors whose expressions can be 

easily obtained by evaluating the hα  functions at the element nodes in the reference coordinate 

system ( , , )ξ η ζ  (for the full details, see Abed-Meraim et al. [21]).  

By introducing the Hallquist [23] vectors 
| 0

i
ix ξ η ζ= = =

∂=
∂
N

b , with N  the vector whose 

components are the shape functions IN , one can demonstrate the following first set of 

orthogonality conditions, which is common to both elements: 

0

0

T
i

T
i

T
i j ij

α

δ

 ⋅ =


⋅ =
 ⋅ =

b h

b s

b x

,  (10) 

where , 1,2,3i j = , while 1,...,11α = , for the SHB15 element, and 1,...,16α = , for the SHB20 

element. 

Then, a second set of orthogonality conditions are established for the SHB15 element 

1 9

2 10

3 11

4

5

6

7

8

= 0, = 0

= 0, = 4

1
= , = 4

2
= 0

= 4

= 4

= 12

= 0

T T

T T

T T

T

T

T

T

T

 ⋅ ⋅


⋅ ⋅

 ⋅ ⋅

 ⋅
 ⋅

 ⋅


⋅
 ⋅

h s h s

h s h s

h s h s

h s

h s

h s

h s

h s

,  (11) 

while for the SHB20 element, one obtains 
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1 9

2 10

3 11

4 12

5 13

6 14

7 15

8 16

= 0, = 0

= 0, = 0

= 0, = 0

= 16, = 0

= 16, = 0

= 16, = 0

= 0, = 0

= 0, = 0

T T

T T

T T

T T

T T

T T

T T

T T

 ⋅ ⋅


⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅


⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅


⋅ ⋅

h s h s

h s h s

h s h s

h s h s

h s h s

h s h s

h s h s

h s h s

.  (12) 

Using the above orthogonality conditions (Eqs. (10‒12)), and the scalar product of Eq. (9) by 

T
jb , Ts  and T

αh , successively, the expression of the unknown constants jia  and icα  in Eqs. (6) and 

(9) can be obtained as follows: 

i
T

ii
T
jji ca dγdb ⋅=⋅= αα, ,  (13) 

where the expressions of vectors αγ  for the SHB15 element are given by 

( )( ) ( )( )
( )( )

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

1 1

30 30

4 4 4 4

15 15 15 15

T T T T T T T
j j j j

T T T T T T T T
j j j j

T T T T T T T T T
j j j

L L

L L

L L

α α α

α α

α α

= − ⋅ + − ⋅

     + − − − ⋅ + − ⋅     
     

          + − − − ⋅ + − − − ⋅         
          

γ h h x b h h x b

h s h s x b h h x b

h s h s x b h s h s x

( )( )

( )( )

7 7 7 8 8 8

9 9 9 10 10 10

11 11 11

4 4

5 5

4 4

15 15

4 4

15 15

T
j

T T T T T T T T
j j j j

T T T T T T T T
j j j j

T T T T
j

L L

L L

L

α α

α α

α

 
  

 

     + − − − ⋅ + − ⋅     
     

     + − ⋅ + − − − ⋅     
     

    + − − − ⋅   
    

b

h s h s x b h h x b

h h x b h s h s x b

h s h s x T
j

 
 
 

b

with 



10 

 

17
0 0 8 0 0 0 9 0 0 0

2
17

0 0 8 0 0 0 0 9 0 0
2

256 36 36 58 58
0 0 0 2 0 0

17 17 17 17 17
8 8 0 24 0 0 0 8 8 0 0

36 316 146 324 171
0 0 0 1 0 0

17 187 187 187 187
36 146 316 171 324

0 0 0 1 0 0
17 187 187 187 187

3 3 3
0 0 2 0 1 1 0 0

2 2 2
9 0 0 8 0 0 0 10 0 0 0

0 9 0 8 0 0 0 0 10 0 0

58
0 0 0

17

αβ

− −

− −

− −

− −

− −

− −

− −

−
−

− −

=L

324 171 3 505 585
0 0

187 187 2 187 374
58 171 324 3 585 505
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17 187 187 2 374 187

, 1, ..., 11α β

− −

− − − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
 

while for the SHB20 element, vectors αγ  are given by 

( )( ) ( )( )
( )( )

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

4 4

5 5

4 4 4 4

5 5 5 5

T T T T T T T
j j j j

T T T T T T T T
j j j j

T T T T T T T T T
j j j j

L L

L L

L L

α α α

α α

α α

= − ⋅ + − ⋅

     + − ⋅ + − − − ⋅     
     

           + − − − ⋅ + − − − ⋅           
           

γ h h x b h h x b

h h x b h s h s x b

h s h s x b h s h s x b

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

7 7 7 8 8 8

9 9 9 10 10 10

11 11 11 12 12 12

13 13 13 14 14 14

15 15 15 16 16 16

T

T T T T T T
j j j j

T T T T T T
j j j j

T T T T T T
j j j j

T T T T T T
j j j j

T T T T T T
j j j j

L L

L L

L L

L L

L L

α α

α α

α α

α α

α α

 
 
 

+ − ⋅ + − ⋅

+ − ⋅ + − ⋅

+ − ⋅ + − ⋅

+ − ⋅ + − ⋅

+ − ⋅ + − ⋅

h h x b h h x b

h h x b h h x b

h h x b h h x b

h h x b h h x b

h h x b h h x b
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with 

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4
1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4
3 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 8
1 3 1

0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 8
1 1 3

0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 8

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8
3 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 10

3 1
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20 10
3 1
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20 10

0 0

αβ

−

−

−

−

−

−

=L

1 3
0 0 0 0 0 0 0 0 0 0 0 0

10 20
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10 20
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1 1
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4 8
1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 8

,α β

−

−

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

= 1, ..., 16

 

 

By differentiating Eq. (6) and using Eq. (13), the expression of the displacement gradient ,i ju  

is derived as follows: 

( ), ,
T T

i j j j iu hα α= + ⋅b γ d ,  (14) 
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with α  varying from 1 to 11 for the SHB15 element, and from 1 to 16 for the SHB20 element. 

Finally, the expression of the strain field, which is related to the nodal displacements by the 

discrete gradient operator B , is given by 

( )
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where the discrete gradient operator B  takes the following matrix form: 
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 2.4 Variational principle 

The assumed-strain formulation of the SHB15 and SHB20 solid‒shell elements is based on the 

simplified form of the Hu‒Washizu mixed variational principle, as suggested by Simo and 

Hughes [24], which writes at the element level 

0=⋅−Ω⋅= ∫Ω
extTT

e

d fdσεε ɺɺɺ δδδπ )( ,  (17) 

where δ  denotes a variation, εɺ  the assumed-strain rate, σ  the Cauchy stress tensor, dɺ  the nodal 

velocities, and extf  the external nodal forces. It is worth noting that in the formulation of the 

linear versions of the solid‒shell elements (i.e., SHB6 and SHB8PS, see, e.g., Abed-Meraim and 

Combescure [12], Trinh et al. [20]), the assumed-strain rate εɺ  has been expressed in terms of a 

projected matrix B , which is derived from the classical B  operator, in order to eliminate most 

locking phenomena (e.g., membrane locking, shear locking, etc.). For the present quadratic 

solid‒shell elements (SHB15 and SHB20), no significant locking has been revealed when 
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evaluating their performance on a selective and representative set of benchmark problems (see 

Abed-Meraim et al. [21]). Consequently, no projection is applied to the discrete gradient operator 

B  and, accordingly, the expression of the assumed-strain rate reduces to 

dBε ɺɺ ⋅=),( tx .  (18) 

Substituting the above equation into the simplified form of the Hu‒Washizu variational 

principle, the expressions of the element stiffness matrix and internal force vector are obtained as 

follows: 

∫∫ ΩΩ
Ω⋅=Ω⋅⋅=

ee

dd TT
e )(, int εσBfBCBK ɺep , (19) 

where epC  is the fourth-order elasto-plastic tangent modulus, whose expression will be detailed 

in the following subsection. 

2.5 Constitutive equations 

The formulation of the quadratic solid‒shell elements SHB15 and SHB20 is extended in this 

paper to the framework of large displacements and rotations, and is coupled with advanced large-

strain anisotropic constitutive equations for metallic materials. In this process, two types of local 

frames need to be introduced with respect to the global coordinate system, as illustrated in Fig. 3. 

The first type of local frame, which has already been defined in Section 2.1 (see Fig. 2) and 

denoted as the “element frame”, is attached to the element mid-plane associated with each 

integration point. The second type of local physical coordinate system is the so-called “material 

frame”, which is introduced to define the anisotropic plastic behavior of the material. The time 

integration of the large-strain anisotropic elasto-plastic constitutive equations, which is achieved 

at each integration point, also uses this local material frame in order to satisfy the objectivity 

(material invariance) requirements. Both the local element frame and the material frame are 

defined relative to the global coordinate frame by their rotation matrix P  and R , respectively, 

which allows mapping any vector a  or tensor A  from local to global coordinate systems. 
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Fig. 3. Illustration of the local coordinate systems used in the formulation of the quadratic 

solid‒shell elements. 

 

For the modeling of the anisotropic plastic behavior, the quadratic Hill̓48 yield criterion [25] 

is coupled with the formulation of the SHB elements. Accordingly, the plastic yield function is 

given by 

( ) ( ) YF −−′−′= ασMασ :: ,  (20) 

where σ′  denotes the deviatoric part of the Cauchy stress tensor σ , and α  is the back-stress 

tensor, which describes the kinematic hardening of the material. The fourth-order tensor M  

contains the Hill anisotropy coefficients (F, G, H, L, M and N). The isotropic hardening of the 

material, which characterizes the size of the yield surface, is modeled by the scalar function Y . 

The plastic strain rate tensor pD  is obtained using the classical associative plastic flow rule, 

which follows the normality law with respect to the yield surface 

p λ λ
F∂= =

∂
D V

σ
ɺ ɺ ,   (21) 

where λɺ  and V  represent the plastic multiplier and the plastic flow direction, respectively. 
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In the local material frame, the Cauchy stress rate can be expressed using the following hypo-

elastic law: 

( )e p= : −σ C D Dɺ ,   (22) 

where the second-order tensor D  denotes the total strain rate, while eC  is the fourth-order 

elasticity tensor. Note that a modified plane-stress-type elasticity matrix has been adopted in the 

formulation of the linear versions of the SHB elements (see, e.g., Abed-Meraim and Combescure 

[12], Trinh et al. [20]), in order to avoid the locking phenomena encountered when the classical 

fully three-dimensional elasticity tensor is considered. By contrast, such a modification is not 

required for the present quadratic versions of the SHB elements, since their performance has been 

assessed with both the plane-stress-type elasticity matrix and the classical fully three-dimensional 

one, showing quite equivalent results. Therefore, the classical fully three-dimensional elasticity 

matrix is implemented with the proposed quadratic versions of the SHB elements, which 

represents a major advantage with respect to their linear counterparts. 

The plastic multiplier λɺ  in Eq. (21) is determined by using the consistency condition 0F =ɺ , 

which leads to 

e

e

: :
λ

: : : YH
=

+ +
α

V C D
V C V V H

ɺ ,   (23) 

where the hardening moduli YH  and αH  are scalar and tensor components involved in the 

evolution laws describing the isotropic and kinematic hardening, respectively. The latter can be 

expressed in the following generic form: 

λ

λ

YY H =


= α
α H

ɺɺ

ɺɺ

.   (24) 

Finally, by substituting the expression of the plastic multiplier λɺ  into the hypo-elastic law (22), 

the elasto-plastic tangent modulus is derived as 

( ) ( )e e

ep e
e

: :

: : : YH

⊗
= − γ

+ +α

C V V C
C C

V C V V H
,  (25) 

where 0γ =  for elastic loading/unloading, and 1γ =  for strict plastic loading. 
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3 Simulation of linear and nonlinear benchmark problems 

The formulations of the quadratic solid‒shell elements (SHB15 and SHB20) presented above 

have been implemented into the finite element code ABAQUS/Standard. A representative set of 

linear and nonlinear benchmark tests is selected in this section to evaluate the performance of the 

proposed SHB elements. The obtained results are systematically compared, on the one hand, with 

those provided by ABAQUS quadratic elements, using the same in-plane meshes, and on the 

other hand with reference solutions taken from the literature. The description of the finite 

elements used for comparison purposes is given in Table 1. Note that, for the proposed SHB15 

and SHB20 formulations, only two integration points along the thickness are sufficient to model 

the following linear and nonlinear elastic benchmark tests, while three integration points are used 

in the case of elasto-plastic benchmark problems. 

In this section, all geometries are discretized using the following nomenclature. For 

hexahedral elements, meshes of N1×N2×N3 elements are adopted, where N1 denotes the number 

of elements in the length direction, N2 is the number of elements in the width direction, and N3 is 

the number of elements in the thickness direction. For meshes with prismatic elements, the 

nomenclature adopted is (N1×N2×2)×N3, which corresponds to twice the total number of 

elements involved in hexahedron-based meshes, due to the subdivision of each hexahedron into 

two prisms. For ABAQUS shell elements, the nomenclature adopted for quadrilateral shell 

elements is N1×N2, while the nomenclature for triangular shell elements is N1×N2×2. 
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Table 1 

Quadratic prismatic, hexahedral, and shell finite elements used in the simulations. 

Prismatic elements / 
Triangular shell element 

SHB15 
15-node prismatic solid‒shell element with a user-
defined number of through-thickness integration points 

C3D15 
15-node prismatic solid element with three integration 
points through the thickness 

STRI65 
6-node triangular shell element with a user-defined 
number of through-thickness integration points 

Hexahedral elements / 
Quadrilateral shell 

element 

SHB20 
20-node hexahedral solid‒shell element with a user-
defined number of through-thickness integration points 

C3D20 
20-node hexahedral solid element with three 
integration points through the thickness 

S8R 
8-node reduced-integration quadrilateral shell element 
with a user-defined number of through-thickness 
integration points 

 

3.1 Bending of a clamped square plate 

The performance of the proposed SHB elements is first evaluated on a linear elastic problem, 

which consists of a clamped square plate subjected to a central concentrated force. The geometric 

dimensions, material properties, and boundary conditions of the problem are all illustrated in Fig. 

4. The value of the concentrated point load is chosen so that the analytical displacement at the 

center of the plate is 
2FL

0.0056 1refu
D

= = , where 
)( 2

3

112

t

v

E
D

−
=  is the flexural rigidity of the 

plate [26]. Owing to the symmetry, only one quarter of the plate is discretized using three 

different regular meshes, in order to assess the convergence rate of the proposed SHB elements. 

The convergence results for the SHB elements, in terms of central point displacement normalized 

with respect to the analytical displacement 1refu = , are shown in Fig. 5 along with the results 

given by ABAQUS quadratic elements. Among the prismatic and triangular elements, the 

ABAQUS quadratic shell element STRI65 has the fastest convergence, followed by the proposed 

SHB15 element, while the convergence of the ABAQUS quadratic solid element C3D15 is the 

slowest. For the hexahedral and quadrilateral elements, the convergence of the proposed SHB20 

element is similar to that of the ABAQUS quadratic shell element S8R, which is much faster than 

that of the ABAQUS quadratic solid element C3D20.  
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Fig. 4. Geometry, material properties, and boundary conditions for the clamped square plate. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 5. Convergence results for the clamped square plate subjected to a central concentrated force. 

 

In addition to the convergence results above, a sensitivity analysis with respect to the in-plane 

mesh distortion is conducted here, as proposed by Alves de Sousa et al. [8]. To this end, a quarter 

of the square plate is discretized by (2×2×2)×1 elements, in the case of triangular shell or 

prismatic elements, and by 2×2×1 elements, in the case of quadrilateral shell or hexahedral 

elements. The mesh distortion is created by moving the central node of the mesh (see point B in 

Fig. 6) with a predefined distance d  (0 d 12≤ ≤ ), as illustrated in Fig. 6. Again, the normalized 

displacement of the central point A (see Fig. 6), as a function of the distortion parameter d , is 

investigated. Figure 7 shows the effect of the distortion parameter d  on the normalized 

displacement of the central point A, as obtained with the SHB elements and ABAQUS quadratic 
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solid and shell elements. With regard to mesh distortion sensitivity, the ABAQUS triangular shell 

element STRI65 shows better performance than the SHB15 element; nevertheless, the latter 

performs better than the ABAQUS prismatic solid element C3D15. For the hexahedral elements, 

the sensitivity of the proposed SHB20 element to mesh distortion is similar to that displayed by 

the ABAQUS shell element S8R, while the ABAQUS quadratic solid element C3D20 exhibits 

the highest sensitivity to mesh distortion and provides poor results with respect to the reference 

solution for all values of the distortion parameter d .  
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 6. Illustration of in-plane distorted meshes for a quarter of the clamped square plate. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 7. Effect of the in-plane mesh distortion on the normalized displacement of the center point 

of the clamped square plate. 
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3.2 Bending of a clamped rectangular plate 

The second linear elastic problem consists of a clamped rectangular plate as shown in Fig. 8. 

Two types of bending loading are considered: a concentrated force 44 10F −= ×  at the central 

point of the plate, and a uniform pressure 410P −=  at the top surface of the plate. Within the 

small-strain framework, the deflection at the central point of the plate can be determined 

analytically by the following expressions, which are taken from reference [26]: 

Concentrated force loading: 6
2

10237007250U −×≈= ..)( D

Fb
refZ  

Uniform pressure loading: 6
4

1056200260U −×≈= ..)( D

Pb
refZ  

 

A

z

x y

F

P

E=1.7472×107

v=0.3

t=0.01

 

Fig. 8. Geometry, material properties, and boundary conditions for the clamped rectangular plate. 

 

Owing to the symmetry, only one quarter of the plate is analyzed using the SHB15 and SHB20 

elements. The convergence results in terms of normalized deflections at the central point of the 

plate (point A in Fig. 8), corresponding to both types of loading, are reported in Tables 2 and 3. 

One can observe that, for this linear elastic test problem, the SHB20 solid‒shell element has a 

convergence rate similar to that of the ABAQUS shell element S8R, for both considered types of 

loading, while the convergence of the ABAQUS solid element C3D20 is much slower. For the 

SHB15 prismatic solid‒shell element, the convergence is slightly slower than that of the 

ABAQUS triangular shell element STRI65, but faster than that of the ABAQUS prismatic solid 

element C3D15. 
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Table 2 

Normalized deflection at point A: case of concentrated force. 

Number of 

elements 

STRI65 C3D15 SHB15 Number of 

elements 

S8R C3D20 SHB20 

UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) 

(5×1×2)×1 0.1834 0.0614 0.1845 5×1×1 0.9526 0.0023 0. 9510 

(10×2×2)×1 0.8639 0.4618 0.6536 10×2×1 0.8163 0.3956 0. 8017 

(20×4×2)×1 0.9934 0.8139 0.9089 20×4×1 0.9905 0.8643 0.9890 

(50×10×2)×1 1.0037 0.9743 0.9916 50×10×1 1.0019 0.9755 1.0018 

 

Table 3 

Normalized deflection at point A: case of uniform pressure. 

Number of 

elements 

STRI65 C3D15 SHB15 Number of 

elements 

S8R C3D20 SHB20 

UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) UZ/UZ(ref) 

(5×1×2)×1 0.3177 0.0149 0.0055 5×1×1 1.0208 0.0018 1.0201 

(10×2×2)×1 1.0102 0.5747 0.7762 10×2×1 1.0255 0.6960 1.0289 

(20×4×2)×1 1.0248 0.9233 0.9667 20×4×1 1.0176 0.9046 1.0176 

 

3.3 Pull-out of an open-ended cylindrical shell 

In this test problem, and some others that follow, the performance of the SHB elements will be 

evaluated in the framework of geometric nonlinearities (i.e., large displacements and rotations). 

The first test in this category consists of a free elastic open-ended cylindrical shell, which is  

pulled out by two opposite radial forces as illustrated in Fig. 9. This benchmark test has been 

studied by several authors (see, e.g., [14, 27‒29]), due to its particular boundary conditions 

involving very large rotations. Considering the problem symmetry, only one eighth of the 

cylindrical shell is modeled, as shown in Fig. 9. The load‒displacement curves at point A in the 



22 

 

z-direction and at points B and C in the x-direction, which are obtained with the SHB elements, 

are compared in Fig. 10 with those given by ABAQUS elements as well as with the reference 

solution taken from Sze et al. [29]. The shape of the load‒displacement curves reveals that the 

solution exhibits two main stages: the first stage is governed by bending effects, which is 

characterized by large displacements and rotations, while the second stage is dominated by 

membrane effects. The transition between the two stages is marked by a snap-through point at a 

critical force value of 22×103, which is characterized by a reversal of displacement of point C in 

the load‒displacement curve. The load‒displacement curves obtained with the SHB elements are 

in excellent agreement with the reference solution as well as with those given by ABAQUS 

elements. However, the C3D20 ABAQUS element requires finer meshes in order to obtain an 

accurate solution for this severe benchmark test. 
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Fig. 9. Geometry, elastic properties, and boundary conditions for the open-ended cylindrical shell 

subjected to radial pulling forces. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 10. Load‒displacement curves for the open-ended cylindrical shell subjected to radial pulling 

forces. 

 

3.4 Hemispherical shell with a hole 

Figure 11 illustrates a free hemispherical shell with an 18º circular hole at its pole (see Park et 

al. [30], Sze et al. [31]). The shell is loaded by a pair of alternating forces at 90° intervals. Owing 

to the symmetry of the problem, only one quarter of the model is discretized. The simulation 

results obtained with the SHB elements, in terms of load‒displacement curves at the load points 

A and B, are compared in Fig. 12 with those given by ABAQUS elements as well as with the 

reference solutions given by Park et al. [30] and Sze et al. [31]. It can be seen once again that the 

SHB elements perform very well with respect to the reference solutions, which is also the case 

for ABAQUS prismatic and shell elements. However, as pointed out in the previous nonlinear 

benchmark problem, a finer mesh is required for the ABAQUS quadratic solid element C3D20, 

in order to obtain an accurate solution. 
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Fig. 11. Geometry, elastic properties, and boundary conditions for the hemispherical shell 

subjected to alternating radial forces. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 12. Load‒displacement curves at points A and B for the hemispherical shell subjected to 

alternating radial forces. 

 

3.5 Cantilever plate subjected to a concentrated force 

An elastic cantilever plate with a concentrated force at one corner, as proposed by Hsiao [32], 

is considered here. The geometric dimensions, elastic properties, and boundary conditions of the 

problem are all summarized in Fig. 13. Figure 14 reports the load‒displacement curves at the 

corner point A, in the x, y, and z directions (see Fig. 13). In this Fig. 14, the results obtained with 

the SHB elements are compared with those given by ABAQUS quadratic solid and shell elements, 
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on the one hand, and with the reference solutions given by Hsiao [32] and Barut et al. [33], on the 

other hand. These comparisons reveal that the results given by the SHB elements are in very good 

agreement with the reference solutions, which is also the case with the ABAQUS quadratic shell 

elements STRI65 and S8R and the ABAQUS prismatic solid element C3D15. However, adopting 

the same coarse mesh as that used for the SHB20 and S8R elements (i.e., 4×3×1 elements), the 

solution given by the ABAQUS solid element C3D20 falls far from the reference solution, which 

confirms once again the need for resorting to much finer meshes to achieve an accurate solution. 
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Fig. 13. Geometry, elastic properties, and boundary conditions for the cantilever plate. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 14. Load‒displacement curves for the cantilever plate under a concentrated force. 
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3.6 Bending of a clamped twisted beam 

A clamped twisted beam under out-of-plane loading is analyzed in this section, which is 

considered as a severe nonlinear benchmark test investigated by a number of authors in the 

literature (see, e.g., [12, 34, 35]). All geometric dimensions and material properties for this 

twisted beam problem are specified in Fig. 15. The load‒displacement curves at the loading point 

in the x, y, and z directions are reported in Fig. 16. In this Fig. 16, the results obtained with the 

SHB elements are compared with those given by ABAQUS quadratic solid and shell elements, on 

the one hand, and with the reference solution given by Mostafa et al. [35], on the other hand. This 

comparison shows that the results obtained with the SHB elements are in excellent agreement 

with the reference solution as well as with that given by the ABAQUS quadrilateral shell element 

S8R. However, taking the same mesh as that used for the SHB15 element, the ABAQUS 

triangular shell element STRI65 failed to converge in this nonlinear benchmark test, while the 

C3D15 element provides less accurate results, which reveals the need for a finer mesh. The latter 

observation is far more critical for the C3D20 element, which provides once again the farthest 

results with respect to the reference solution. 
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Fig. 15. Geometry, elastic properties, and boundary conditions for the twisted beam subjected to 

out-of-plane loading. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 16. Load‒displacement curves for the clamped twisted beam subjected to out-of-plane 

loading. 

 

3.7 Bending of a clamped curved beam 

Bending of a curved beam, as illustrated in Fig. 17, is a typical nonlinear benchmark test for 

beam structures, in which various deformation modes (e.g., tension, bending, shear) are involved 

(see Smoleński [34]). The three-dimensional displacement at the loading point is investigated 

using the proposed SHB elements and ABAQUS quadratic elements. The corresponding 

load−displacement curves are reported in Fig. 18 along with the reference solution given by 

Smoleński [34]. As can be seen in Fig. 18, the results obtained with the SHB elements are in 

excellent agreement with the reference solution as well as with those given by ABAQUS 

quadratic elements, except for the ABAQUS solid element C3D20. For the latter, the results 

yielded by a coarse mesh (see Fig. 18 (b)) are far from the reference solution, which reveals that 

the C3D20 quadratic solid element requires much finer meshes to achieve an accurate solution 

for this nonlinear test problem. 
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Fig. 17. Geometry, elastic properties, and boundary conditions for the curved beam. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 18. Load‒displacement curves for the curved beam under a concentrated force. 

 

3.8 Inflation of an elastic‒perfectly-plastic square plate 

In this test, the inflation of a simply supported square plate, as illustrated in Fig. 19, is 

considered to evaluate the performance of the proposed SHB elements in the framework of 

combined geometric and material nonlinearities (i.e., large strains and plastic behavior). The 

square plate is simply supported at its four edges, and subjected to uniform pressure loading 

0.6P = . The material parameters of the plate corresponding to elastic‒perfectly-plastic behavior 

are summarized in Fig. 19 (see [36‒38]). Note that for this nonlinear test, which involves large 

plastic strains, three integration points through the thickness are required to obtain accurate 

solutions. Owing to the symmetry of the problem, only one quarter of the square plate is 

discretized. 
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Fig. 19. Geometry, material properties, and boundary conditions for the simply supported square 

plate subjected to a uniform pressure. 

 

With the increase in the applied pressure, the square plate undergoes a pillow-type 

deformation mode, as displayed in Fig. 20, where the plastic zones are mainly localized in the 

four corners. The simulated pressure‒displacement curves at the center of the plate are depicted 

in Fig. 21. It can be seen that the results obtained with the SHB elements are in good agreement 

with the reference solutions taken from Betsch and Stein [36] and Fontes Valente et al. [37] as 

well as with those given by ABAQUS quadratic elements, except for the C3D20 solid element 

and the STRI65 shell element. The latter ABAQUS elements provide results that slightly deviate 

from the reference solutions (see Fig. 21). 

 

  

 (a) SHB15 elements                                                    (b) SHB20 elements 

Fig. 20. Final deformed shape for the square plate under uniform pressure. 
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 (a) triangular shell / prismatic elements                    (b) quadrilateral shell / hexahedral elements 

Fig. 21. Load‒displacement curves at the center point of the plate. 

 

3.9 Pinched cylinder with rigid end diaphragms  

The second elasto-plastic test consists of a cylinder subjected to two opposite radial forces at 

its middle and bounded by rigid diaphragms on its ends. This popular benchmark problem has 

been considered by a number of authors (see, e.g., [37, 39‒41]) to assess the performance of 

finite elements in large plastic strains. The geometric dimensions, material properties, and 

boundary conditions of the pinched cylinder are all summarized in Fig. 22. In conjunction with 

the elasto-plastic material behavior, a linear isotropic hardening law is considered. Owing to the 

symmetry, only one eighth of the cylinder is modeled. 
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Fig. 22. Geometry, material properties, and boundary conditions for the pinched cylinder. 

 
Figure 23 illustrates the final deformed shape of the pinched cylinder, as obtained with the 

SHB elements. The simulated force−displacement curves at the loading point A (as denoted in 

Fig. 22) are reported in Fig. 24 along with the reference solutions taken from Wriggers et al. [39], 

Eberlein and Wriggers [40] and Hauptmann et al. [41]. It can be seen that the results obtained 

with the SHB elements are in good agreement with the reference solutions along the entire 

loading history, which is also the case with the ABAQUS prismatic solid element C3D15 and the 

ABAQUS shell elements STRI65 and S8R. For the C3D20 quadratic solid element, however, the 

force−displacement response is well predicted during the elastic stage of loading (up to 

displacement of 100 mm), while the simulated response is overestimated at larger plastic strains 

(up to 20 % with respect to the reference solutions). 

 

                         

 (a) SHB15 elements                                                    (b) SHB20 elements 

Fig. 23. Final deformed shape for the pinched cylinder problem. 
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    (a) triangular shell / prismatic elements                   (b) quadrilateral shell / hexahedral elements 

Fig. 24. Force‒displacement curves at the loading point for the pinched cylinder. 

 

4 Simulation of sheet metal forming processes 

This section is dedicated to the validation of the proposed SHB elements in the context of 

sheet metal forming. To this end, a set of selective benchmark problems are simulated with the 

SHB elements, which consist of three well-known deep drawing tests as well as an incremental 

forming process. Despite the strong and coupled nonlinearities involved in such applications (i.e., 

geometric and material nonlinearities as well as contact), only a single element layer, with three 

through-thickness integration points, is consistently considered throughout this section, for all 

meshes consisting of SHB elements. The simulation results are compared both with those given 

by ABAQUS elements and with experiment measurements taken from the literature. 

4.1 Springback simulation of U-shape deep drawing 

The springback simulation of the U-shape deep drawing process has been proposed as a 

benchmark test by the sheet metal forming community in the NUMISHEET̓93 conference [42]. 

The schematic view of the setup and its geometric dimensions are described in Fig. 25. All details 

regarding the simulation process can be found in the related literature (see, e.g., [16, 43‒45]). 

This deep drawing process is divided into two steps: the forming step, followed by the springback 

step. During the first step, the U-shape is formed until the maximum punch stroke of 70 mm is 
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reached under a holding force of 2.45 kN (see Fig. 26 (a)). Then, the springback stage of the 

sheet takes place by removing the holding force and all contact between the sheet and the tools 

(see Fig. 26 (b)). 
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Fig. 25. Setup of the U-bending tools. 

 

 

 

 (a) end of forming step                               (b) after springback 

Fig. 26. Illustration of the deformed sheet, in the U-shape deep drawing test, at (a) the end of 

forming step, and (b) after springback. 

 

Both an aluminum-alloy sheet and a steel sheet are considered in this study. The initial 

dimensions of the aluminum sheet are 350 mm × 35 mm × 0.81 mm, with a friction coefficient 

between the tools and the blank equal to 0.162, while the initial dimensions of the steel sheet are 

350 mm × 35 mm × 0.78 mm, with a friction coefficient equal to 0.144. The elasto-plastic 
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parameters associated with both materials are summarized in Table 4, in which the following 

Swift law has been considered to describe isotropic hardening 

0( )p n
eqY k ε ε= + ,   (26) 

where p
eqε  is the equivalent plastic strain (see the plastic yield function defined in Eq. (20)). 

 

Table 4 

Elastic properties and Swift’s isotropic hardening parameters. 

Material E  (MPa) ν  0ε  k  (MPa) n  

Aluminum 71,000 0.33 0.01658 576.79 0.3593 

Steel 206,000 0.3 0.007117 565.32 0.2589 

 

The anisotropic plastic behavior of the materials is taken into account by considering the Hill 

[25] quadratic yield criterion. The Lankford coefficients associated with both studied materials 

are listed in Table 5. 

 

Table 5 

Lankford’s coefficients for both studied materials. 

Material 0r  45r  90r  

Aluminum 0.71 0.58 0.70 

Steel 1.79 1.51 2.27 

 

Considering the symmetry of the problem, only one quarter of the blank is analyzed. The latter 

is discretized by (100×5×2)×1 triangular shell or prismatic elements and 100×5×1 hexahedral 

elements, respectively (the mesh nomenclature is the same as that used in Section 3). As stated 

before, only three integration points through the thickness are considered in the simulations using 

the SHB and ABAQUS elements. Note that the simulations with the ABAQUS quadratic shell 

element S8R failed to converge for both studied materials, which clearly emphasizes the 
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limitations of this shell element in handling double-sided contact in sheet metal forming 

processes. 

To quantify the amount of springback for the blank after the forming stage, the angles around 

the punch radius and the die radius (1θ  and 2θ , respectively, in Fig. 27) are investigated. The 

simulation results obtained with the SHB elements are compared in Tables 6 and 7 with those 

given by ABAQUS elements as well as with experimental measurements and numerical solutions 

available in the literature. On the whole, the angles after springback predicted with the SHB 

elements are in good agreement with those given by ABAQUS elements, and lie in the intervals 

defined by the reference results. These results demonstrate the good capabilities of the SHB 

elements in modeling sheet metal forming processes, where various nonlinearities (geometric, 

material, and double-sided contact) enter into play, while using only a single element layer with 

few through-thickness integration points. 
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Fig. 27. Definition of springback angles 1θ  and 2θ . 
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Table 6 

Springback angles 1θ  and 2θ  for the aluminum material. 

Material Angle (°) Experiment* Simulation* STRI65 C3D15 SHB15 C3D20 SHB20 

Aluminum 
1θ  101.5º~116.0º 62.0º~134.0º 107.28º 108.87º 102.72º 106.03º 104.13º 

2θ  68.5º~77.5º 63.0º~91.0º 69.85º 69.67º 70.74º 70.74º 74.53º 

* Note: The experimental and simulated intervals are given in Flores [16]. 

 

Table 7 

Springback angles 1θ  and 2θ  for the steel material. 

Material Angle (°) Reference 2* Reference 3* STRI65 C3D15 SHB15 C3D20 SHB20 

Steel 
1θ  101.06º 100.82º 97.94º 99.67º 99.37º 97.03º 98.32º 

2θ  79.99º 80.45º 80.10º 80.27º 81.05º 82.33º 82.52º 

* Note: Reference 2 corresponds to Dvorkin and Bathe [45], while reference 3 refers to Park and 

Oh [43]. 

 

4.2 Single point incremental sheet metal forming 

For the past two decades, the incremental forming technology has attracted much attention due 

to its advantages in terms of economical operability. Single Point Incremental Forming (SPIF) 

has become a typical test in the context of incremental forming process (see, e.g., Bouffioux et al., 

[46], Sena et al. [47]). As illustrated in Fig. 28, a clamped square sheet is gradually deformed in 

its central area by applying a spherical punch with a radius of 5 mm following a preset path. The 

punch is initially set to be tangent to the sheet surface, and located 41 mm away from one side of 

the sheet. The whole forming process consists in the following five steps: 1) the punch indents 

the sheet with 5 mm depth along the y-direction; 2) the punch moves at the same depth following 

a line of 100 mm along the x-direction; 3) the punch indents a second time the sheet up to a depth 

of 10 mm; 4) the punch moves back, at the same new depth, following a line of 100 mm along 
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the x-direction; 5) and finally an unloading step takes place, with the punch returning back to its 

initial position.  
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Fig. 28. Description of the single point incremental forming test. 

 

The material used for the simulations is an aluminum alloy AA3103-O (see Bouffioux et al. 

[46]). The associated elasto-plastic material parameters are summarized in Table 8, according to 

the Swift isotropic hardening law (see Eq. (26)). 

 

Table 8 

Material parameters for the AA3103-O aluminum alloy. 

Material E  (MPa) ν  0ε  k  (MPa) n  

AA3103-O 72,600 0.36 0.00057 180 0.229 

 

The contact conditions between the punch and the sheet are assumed frictionless. Because the 

sheet is deformed mainly in the central area, only one half of the model is meshed with 

(60×15×2)×1 quadratic elements, in the case of prismatic elements, and 60×15×1 quadratic 

elements, in the case of hexahedral elements (again, the mesh nomenclature is the same as that 

used in Section 3). The obtained results in terms of punch force‒punch displacement correspond 

to converged solutions using only a single element layer with three through-thickness integration 
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points. Figure 29 shows the final deformed mesh for this SPIF test, as obtained with the proposed 

SHB elements. 

 

       

 (a) (60×15×2)×1 SHB15 elements                             (b) 60×15×1 SHB20 elements 

Fig. 29. Final deformed shape for the SPIF sheet. 

 

The punch force‒punch displacement responses simulated with the proposed SHB elements 

are compared in Fig. 30 with those given by ABAQUS elements as well as with the experimental 

results provided by Bouffioux et al. [46]. It should be noted that the simulations using ABAQUS 

shell elements (i.e., STRI65 and S8R) failed to converge, due to contact-type nonlinearities. This 

suggests, once again, that finite element formulations based on fully 3D approaches are more 

appropriate to model sheet metal forming processes in which double-sided contact enters into 

play. As shown in Fig. 30, the punch force‒punch displacement responses obtained with the SHB 

elements are in good agreement with those given by ABAQUS elements, although both lying 

higher than the experimental results. Note that oscillations in the simulated curves are observed 

both for the SHB elements and for ABAQUS elements. Indeed, when the punch slides during the 

forming process, the contact between the punch and the sheet within a confined zone is lost and 

recovered several times, until another new zone comes into the same situation. This phenomenon 

causes oscillations in the punch force‒punch displacement curve, whose amplitudes and number 

depend on the mesh size of the punch and the sheet (see, e.g., [48]). In order to reduce these 

numerical oscillations, a refined mesh for the sheet is used in the simulations, which consists of 

(100×30×2)×1 quadratic elements, in the case of prismatic elements, and 100×30×1 quadratic 

elements, in the case of hexahedral elements. Figure 31 reports the results obtained by using 

refined meshes, where it is clearly shown that the simulated punch force‒punch displacement 

curves are much smoother than those obtained with coarse meshes. 
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 (b) hexahedral elements 

Fig. 30. Simulation results using coarse meshes, in terms of punch force evolution for the SPIF 

test, along with experiments taken from Bouffioux et al. [46]. 
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(b) hexahedral elements 

Fig. 31. Simulation results using fine meshes, in terms of punch force evolution for the SPIF test, 

along with experiments taken from Bouffioux et al. [46]. 

4.3 Deep drawing of a square cup 

The benchmark test of deep drawing of a square cup, as proposed in the Numisheet’93 

conference [42] and subsequently by several other authors (see, e.g., Schwarze et al. [18], Xu et 

al. [49]), is considered here to assess the ability of the proposed quadratic solid‒shell elements to 

model challenging industrial forming applications. The geometric dimensions of the forming 

tools are specified in Fig. 32. Two square sheets, with initial dimensions of 150×150×0.81 mm 
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and 150×150×0.78 mm, corresponding to aluminum sheet and steel sheet, respectively, are 

considered for the simulations. The associated elasto-plastic material parameters, according to the 

Swift isotropic hardening law (see Eq. 26) and the von Mises yield surface, are the same as those 

reported in Table 4. 

All along the forming process, a constant blank holding force of 16.6 kN is applied. The 

friction coefficient between the blank and the forming tools is taken equal to 0.162 for the 

aluminum sheet, and 0.144 for the steel sheet. Owing to the symmetry, only one quarter of the 

sheets is discretized with a mesh of (32×32×2)×1 quadratic elements, in the case of prismatic 

elements, and 32×32×1 quadratic elements, in the case of hexahedral elements (note that the 

mesh nomenclature is the same as that used in Section 3). Also, only a single element layer is 

used in the simulations with three integration points through the thickness. The final deformed 

shapes of the sheets, which correspond to a maximum punch stroke of 15 mm for the aluminum 

square cup and 40 mm for the steel square cup, are shown in Figs. 33 and 34, respectively. 
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Fig. 32. Schematic view for the square cup drawing process. 
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 (a) (32×32×2)×1 SHB15 elements                 (b) 32×32×1 SHB20 elements 

Fig. 33. Final deformed shape for the aluminum cup at 15 mm punch stroke. 

 

                     

 (a) (32×32×2)×1 SHB15 elements                (b) 32×32×1 SHB20 elements 

Fig. 34. Final deformed shape for the steel cup at 40 mm punch stroke. 

 

Three draw-in distances Dx, Dy, and Dd, corresponding to the final formed cups, as illustrated 

in Fig. 35, are investigated here for both studied materials. The predicted results for the 

aluminum cup and the steel cup are reported in Tables 9 and 10, respectively. Note that, for the 

same reasons discussed in the previous sheet metal forming processes, the simulations using the 

ABAQUS quadratic shell elements STRI65 and S8R failed to converge and, accordingly, no 

results are reported for these elements.  

For the aluminum cup, all draw-in distances predicted with the SHB elements lie in the range 

delimited by the maximum and minimum experimental measurements, which is also the case for 

the predictions using ABAQUS quadratic solid elements. Note also that the predicted draw-in 
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distances Dx and Dy are identical for all simulations, which is consistent with the assumed 

isotropic plastic behavior of the sheets. 

With respect to the experimental range for the steel cup, the predicted draw-in distances Dx 

and Dy are very slightly overestimated with the SHB elements, while they are very slightly 

underestimated with the ABAQUS solid elements. Nevertheless, the diagonal draw-in distance 

Dd predicted with the SHB elements is in good agreement with the experimental measurements, 

whereas it is somewhat underestimated with the ABAQUS solid elements. On the whole, the 

proposed quadratic solid‒shell elements perform better than their ABAQUS counterparts, 

considering the above-discussed results and the fact that the latter require more integration points 

(IPs) per element (e.g., 27 IPs for the C3D20 element, compared to only 12 IPs for the SHB20 

element). 

 

 

Fig. 35. Definition of the draw-in distances for the final formed square cup. 
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Table 9 

Draw-in distances for the aluminum cup at 15 mm punch stroke. 

 Mesh 
Number of IPs 

per element 
Dx [mm] Dy [mm] Dd [mm] 

Min. experiment ———— ——————— 3.80 3.90 2.30 

Max. experiment ———— ——————— 6.45 6.49 3.79 

C3D15 (32×32×2)×1 9 5.52 5.52 2.59 

SHB15 (32×32×2)×1 9 5.87 5.87 3.00 

C3D20 32×32×1 27 5.31 5.31 2.39 

SHB20 32×32×1 12 5.61 5.61 2.32 

 

Table 10 

Draw-in distances for the steel cup at 40 mm punch stroke. 

 Mesh 
Number of IPs 

per element 
Dx [mm] Dy [mm] Dd [mm] 

Min. experiment ———— ——————— 26.75 26.75 14.06 

Max. experiment ———— ——————— 29.60 29.58 16.31 

C3D15 (32×32×2)×1 9 26.57 26.57 13.64 

SHB15 (32×32×2)×1 9 29.64 29.64 15.89 

C3D20 32×32×1 27 26.57 26.57 13.73 

SHB20 32×32×1 12 29.81 29.81 15.63 

 

4.4 Deep drawing of a cylindrical cup 

The deep drawing of a cylindrical cup is considered as one of the most popular benchmark 

problems in the context of sheet metal forming processes. In particular, this test has been often 

adopted for the analysis of the earing evolution of the cup when anisotropic plastic behavior of 
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metal sheets is considered (see, e.g., [50‒53]). The initially circular sheet is made of an AA2090-

T3 aluminum alloy with an initial thickness of 1.6 mm. The plastic behavior of the sheet is 

described by the Swift isotropic hardening law (see Eq. (26)) together with the Hill [25] 

anisotropic yield surface. The associated material parameters are summarized in Table 11. The 

schematic view of the drawing setup and the dimensions of the forming tools are shown in Fig. 

36. 
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Fig. 36. Schematic view for the cylindrical cup drawing process. 

 

Table 11 

Material parameters for the AA2090-T3 aluminum alloy. 

Material E  (MPa) ν  0ε  k  (MPa) n  0r  45r  90r  

AA2090-T3 70,500 0.34 0.025 646 0.227 0.2115 1.5769 0.6923 

 

Considering the symmetry of the problem, only one quarter of the model is analyzed. Similar 

to the previously investigated sheet metal forming processes, only the results obtained with the 

SHB elements and ABAQUS quadratic solid elements are reported here, since the simulations 

with ABAQUS quadratic shell elements (i.e., STRI65 and S8R) failed to converge in the current 

deep drawing test. In the case of hexahedral elements (i.e., SHB20 and C3D20), the quarter of the 

circular blank is meshed with 255 quadratic elements, while 510 quadratic elements are used in 

the case of prismatic elements (i.e., SHB15 and C3D15). All simulations are performed using 
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only a single element layer with three through-thickness integration points. All along the forming 

process, a constant holding force of 5.55 kN is applied, and the friction coefficient between the 

sheet and the forming tools is taken equal to 0.1. Figure 37 illustrates the geometric shape of the 

formed ear on a quarter cup obtained with the SHB elements. 

 

             

 (a) (255×2)×1 SHB15 elements                       (b) 255×1 SHB20 elements 

Fig. 37. Final deformed shape for a quarter cup. 

 

The earing profile predictions given by the SHB elements and ABAQUS solid elements are 

reported in Fig. 38 along with the experimental measurements provided by Yoon et al. [52]. On 

the whole, it can be observed that both the shape and the height of the earing profiles predicted 

with the proposed SHB elements are in good agreement with the experimental results. More 

specifically, in the range around the experimental peak value, the results given by the SHB 

elements are the closest to the experimental heights, in comparison with ABAQUS predictions. 

However, the predicted cup heights are underestimated at 0° and 90° from the rolling direction, 

both with the SHB elements and with ABAQUS solid elements. Nevertheless, these predictions 

could be improved in future work by adopting more appropriate anisotropic non-quadratic yield 

functions for aluminum alloys (see, e.g., [52, 54, 55]), which are able to predict more than four 

earing profiles for the complete circular blank, as observed experimentally. 
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                          (a) prismatic elements                                        (b) hexahedral elements 

Fig. 38. Predicted cup height profiles for the cylindrical cup. 

 

5 Conclusions 

In this work, two quadratic prismatic and hexahedral solid‒shell elements denoted SHB15 and 

SHB20, respectively, have been proposed for the three-dimensional modeling of thin structures. 

With regard to earlier developments, the formulation of these elements has been extended in this 

paper to the framework of large strains and anisotropic plastic behavior. Based on a convenient 

fully three-dimensional framework, with only translational degrees of freedom and few through-

thickness integration points, these elements appear to be very attractive, as they are able to 

accurately reproduce shell-like behavior using only a single element layer. These resulting SHB 

formulations have been implemented into the finite element code ABAQUS/Standard with the 

help of UEL subroutines. The present analysis mainly focuses on large-strain applications using 

fully three-dimensional anisotropic elasto-plastic constitutive equations. 

The performance of the proposed SHB elements has been first evaluated on a series of 

selective linear and nonlinear benchmark tests. For each benchmark problem, the results given by 

the SHB elements have been compared with those yielded by their ABAQUS counterparts, 

including quadratic solid and shell elements, as well as with reference solutions taken from the 

literature. For all benchmark tests, the numerical results obtained with the SHB elements showed 

excellent agreement with the available reference solutions. Compared to state-of-the-art 

ABAQUS shell elements, the performance of the SHB elements is often comparable; however, in 
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most numerical tests, ABAQUS quadratic solid elements (i.e., C3D15 and C3D20) require finer 

meshes (in the plane and through the thickness) to provide accurate solutions. 

Then, the SHB elements have been applied to the simulation of four challenging sheet metal 

forming processes, in order to assess their capabilities in modeling complex problems involving 

large displacements and rotations, anisotropic large-strain plasticity and double-sided contact. 

Overall, three popular deep drawing processes and an incremental forming test have been 

considered. Various comparisons between the simulation results given by the SHB elements and 

the experimental measurements revealed that the proposed solid–shell elements are able to 

successfully model such complex forming processes, using only a single element layer with few 

through-thickness integration points. Furthermore, the SHB elements provided the closest results 

to the experimental data, when compared to ABAQUS quadratic solid elements. It is worth 

noting that the simulations of the sheet metal forming processes investigated using ABAQUS 

quadratic shell elements failed to converge, which reveals that these shell elements are not 

appropriate for handling double-sided contact in such complex forming processes. 

Overall, the proposed quadratic SHB elements showed good capabilities in modeling various 

types of structural problems, with coarse meshes and few integration points through the thickness, 

whereas conventional quadratic solid elements required finer meshes to achieve accurate 

solutions. Also, the SHB elements represent an interesting alternative to traditional shell elements, 

especially for the simulation of complex problems involving double-sided contact, which are very 

common in sheet metal forming processes. 
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