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Electrochemistry and electrocatalysis have been receiving increased attention

recently due to their crucial contribution to electrical-to-chemical conversion

systems. Here the development and operation of a new spectroelectrochemical

transmission cell for time-resolved X-ray absorption spectroscopy of solutions is

described. X-ray absorption spectra were recorded on the ROCK beamline of

SOLEIL under constant and scanning potentials. Spectra were recorded at a

frequency of 2 Hz during a cyclic voltammetry experiment performed on a

20 mM solution of FeIIICl3�6H2O at 20 mV s�1 scanning speed. Spectra with

good signal-to-noise ratios were obtained when averaging ten spectra over 5 s,

corresponding to a 100 mV potential range. A 90% conversion rate from Fe(III)

to Fe(II) was spectroscopically demonstrated in cyclic voltammetry mode.

1. Introduction

Electrochemistry is a crucial technique for the study of elec-

tron transfer processes that occur between an electrode

surface and a redox-active film or solution. It has become

more and more popular in the last decade with the advent of

solar- (McKone et al., 2014) or electricity-to-fuel (Tatin et al.,

2016) devices. Electrolyzers, fuel cells or photoelectrochemical

cells all have in common an interaction between an electrode

and a catalyst. Electrochemical analysis techniques can

provide precious thermodynamic and kinetic information on

electrochemical and chemical reactions; however, they do not

provide information on the geometric and electronic structure

of the catalyst or intermediate species of concern. In order

to understand an electrochemical reaction more precisely,

complementary information on the local and electronic

structure of the redox-active species is very precious. The

coupling of X-ray spectroscopies with electrochemical tech-

niques allows gathering of such information while being close

to actual operation conditions. Despite difficulties in having

regular access to synchrotron radiation X-ray sources, X-ray

techniques present several advantages when coupled with

electrochemistry. Their penetration depth (which is energy-

dependent) allows the use of a variety of materials and

thicknesses, with transmission or back-scattering geometries.

It also offers a very broad range of local and electronic

information, from the spin and oxidation state (X-ray

absorption near-edge spectroscopy, XANES) to the number

and distances of the first neighbors (extended X-ray absorp-

tion fine structure, EXAFS). Moreover, these pieces of

information are element specific, which is crucial when

analyzing complex systems with multiple elements involved in

redox transformations.
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In situ and operando X-ray absorption spectroelectro-

chemistry experiments were first developed in the 1980s to

study homogeneous stable redox species in solution. For

example, Smith et al. (1984) reported an in situ Fe K-edge

EXAFS study, in which they showed that the Fe—C bond

increases by 0.03 Å upon transformation from ferrous to ferric

cyanide. The technique was widely applied to study the

oxidation states and/or the coordination chemistry of stable

electrochemically generated metal complexes (Dewald et al.,

1986; Antonio et al., 1997; Soderholm et al., 1999; Bae et al.,

2001; Levina et al., 2004; Hennig et al., 2005; Milsmann et al.,

2006; Takao et al., 2010; Yeo et al., 2012; Best et al., 2016).

Operando XAS spectroelectrochemistry later thrived in the

last decade concomitantly to the increased interest in energy-

related electrochemical applications such as electrocatalysis

(Friebel et al., 2015; Kornienko et al., 2015; Lassalle-Kaiser et

al., 2017; Risch et al., 2015; Fabbri et al., 2017), fuel cells

(Russell & Rose, 2004; Scott et al., 2007; Binninger et al., 2016)

or batteries (O’Grady, 1996; Giorgetti & Stievano, 2017). The

majority of these energy-related studies were performed on

heterogeneous systems with the catalysts deposited as films on

the electrode.

The vast majority of XAS spectroelectrochemical experi-

ments described so far were performed with a constant elec-

trochemical potential applied in order to completely convert a

solubilized species (homogeneous) or to maintain a material

under a particular condition (heterogeneous). Such constant

potential experiments are, however, incompatible with the

detection and study of short-lived species that can be gener-

ated in the vicinity of an electrode during a cyclic voltammetry

experiment, but can evolve over time if the potential is kept

constant. Determining the structure and properties of these

transient species generated during the electrochemical process

is of major importance for the elucidation of homogeneous as

well as heterogeneous electrochemical reaction mechanisms.

Only a few experiments were carried out using time-

resolved XAS spectroelectrochemistry. Nagasaka et al.

recently reported on a transmission cell for the in situ coupling

of electrochemistry and Fe L-edge XAS (Nagasaka et al., 2013,

2015). In this experiment, multiple Fe L-edge XAS spectra

were measured at different stationary potentials to cover the

potential window of Fe(II)/Fe(III) redox coupling. This cyclic

voltammetry-like experiment operates with a pseudo potential

scan rate of 0.08 mV s�1 imposed by the modulation of the

step potential and the time required to record each XAS

spectrum. This approach is clearly too slow to observe

transient species formed by an electron transfer from/to an

electrode. Fixed-energy X-ray absorption voltammetry

(FEXRAV) was recently introduced as a method to circum-

vent the long acquisition times typically required for an XAS

spectrum (Minguzzi et al., 2013; Rondinini et al., 2016;

Montegrossi et al., 2017). Although using this technique to

collect a XANES or EXAFS spectrum with a good energy

resolution is extremely time consuming, it allows for a fast

analysis of the oxidation state of a given element at selected

potentials and hence opens the door to kinetic analysis. This

method was extended to Fe L-edge XANES by Nagasaka et

al. (2014) [not in References. 2013 or 2015?] in order to probe

the electronic structure of FeSO4 in solution during a cyclic

voltammogram. Unfortunately, the setup did not allow a high

conversion of the species in solution and the Fe L-edge

XANES spectra collected therefore represented a mixture of

species.

In this paper, we report on the development of a new

spectroelectrochemical cell for the collection of XAS spectra

along the course of a cyclic voltammogram. The concept

was demonstrated using FeIIICl3�0.6H2O/FeIICl2 as the redox

couple in water. Time-resolved XANES at the Fe K-edge have

been conducted in transmission-mode detection, with a high

conversion yield achieved during cyclic voltammetry (CV). A

20 mV s�1 scan rate was used to record cyclic voltammograms

while XANES spectra with good signal-to-noise ratios were

collected every 5 s, corresponding to a 100 mV potential

range. EXAFS spectra could also be collected up to k =

10 Å�1.

2. An electrochemical cell for in situ time-resolved
transmission XAS measurements

An electrochemical cell was designed in order to collect

transmission XAS data during a cyclic voltammetry experi-

ment. The main issue lies in the use of a very high surface area

electrode in order to convert the whole solution analyzed by

the X-rays during a cyclic voltammetry experiment. Fig. 1

describes the design of this cell, with a vertical section of the

main part showing the liquid compartment. Photographs of

the cell and of its parts can be found in Fig. S1 of the

supporting information. The analysis chamber is a cylinder,

which is represented by the blue circle in Fig 1. This chamber

has a 5 mm diameter and can hold a volume varying from 20 ml

to 40 ml depending on its thickness (from 1 mm to 2 mm). The

analysis chamber is filled from the bottom to the top to expel

research papers
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Figure 1
Detailed view of the transmission mode spectroelectrochemical cell
developed for time-resolved data collection.
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any air bubbles and the liquid can be circulated to regenerate

the sample to be analyzed. The working electrode (WE)

consists of a glassy carbon foam which is fitted inside the

analysis chamber and is electrically connected by compressing

a glassy carbon film (60 mm thick and 10 mm2 in size) from the

front side (Fig. S1). The back window of the analysis chamber

is sealed with a 25 mm-thick Kapton film. The electrical

contact with the WE is ensured by a gold tip inserted from the

back of the cell and soldered to a copper wire (Fig. S1). An Ag

or Pt wire was inserted from the side of the cell to reach the

analysis chamber and used as a pseudo-reference electrode

(RE). The counter electrode (CE) is a Pt mesh, housed in a

separate compartment connected to the top of the cell through

a vycor frit and filled with the electrolyte solution (Fig. S1).

3. Results and discussion

3.1. Electrochemistry

Fig. 2 shows a cyclic voltammogram of a 20 mM FeCl3�6H2O

aqueous solution in 0.1 M KCl electrolyte measured in an

XAS-spectroelectrochemical cell at 20 mV s�1. The irreversi-

bility of the redox system is due to the inner-sphere nature of

the electron transfer in the Fe(III)/Fe(II) coupling in water.

Indeed, this type of electron transfer is associated with the

adsorption of the chloride ligands of the FeCl3 complex on the

glassy carbon electrode, which induces a reorganization of the

ligands around the Fe ion upon reduction of Fe(III) and re-

oxidation of Fe(II), hence the irreversibility of the wave

(Tanimoto & Ichimura, 2013). A comparison between two

CVs measured in the XAS-spectroelectrochemical cell and in

a conventional electrochemical cell is shown in Fig. S2. The

Fe(III) reduction wave is observed at essentially the same

potentials in both electrochemical cells, whereas a significant

potential shift (ca. +500 mV) is observed for the Fe(II) re-

oxidation wave. This shift is due to the slow electron transfer

mentioned above, enhanced by the larger surface area of the

WE used in the XAS electrochemical cell. This surface area

can be estimated, on the basis of the current intensity, to be 20

times larger (ca 140 mm2) than that of the conventional glassy

carbon disk (ca 7 mm2).

3.2. XAS result

3.2.1. In situ XAS spectra collection with constant applied
potential. Fig. 3 shows the Fe K-edge XANES spectra of

FeIIICl3�6H2O and FeIICl2 aqueous solutions under an Ar

atmosphere in 0.1 M KCl, recorded in the XAS-spectro-

electrochemical cell. The rising edge of the ferrous compound

is shifted to lower energies by 5 eV with respect to the ferric

one, which is in agreement with reported values (Testemale

et al., 2009). This significant shift confirms that the

FeIIICl3�6H2O/FeIICl2 redox coupling is a good candidate to

evaluate and validate our measurement procedure. Fig. 3

shows the Fe K-edge XANES spectra recorded in situ during a

constant potential electrolysis performed on an FeIIICl3 solu-

tion by applying a reductive potential of �0.8 V versus Pt.

During the electrochemical transformation, we can clearly

observe a gradual edge shift to lower energies, which indicates

the progressive formation of the ferrous complex. The

presence of isosbestic points at 7130 eV and 7155 eV indicates

a direct electron transfer from Fe(III) to the electrode to yield

Fe(II) during the electrochemical transformation. After 90 s,

the current reached a plateau (with a current value close to

0 A), thus indicating the complete conversion of the solution.

The proportion of Fe(III) and Fe(II) in solution at different

time points of the constant potential electrolysis (CPE) was

determined by performing linear combination fits using the Fe

K-edge XANES reference spectra of FeCl3�6H2O and FeCl2
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Figure 2
CV of a 20 mM FeCl3�6H2O aqueous solution in 0.1 M KCl recorded in
the XAS-spectroelectrochemical cell at 20 mV s�1 with glassy carbon film
and foam as the WE, a Pt mesh as the CE and a Pt wire as the pseudo
reference electrode.

Figure 3
Fe K-edge XANES spectra recorded on a 20 mM aqueous solution of
FeIIICl3�6 H2O (black dashed line) and on a 20 mM aqueous solution of
FeIICl2 (red dashed line) in 0.1 M KCl electrolyte under an Ar
atmosphere. Time-resolved Fe K-edge XANES spectra recorded during
the reductive CPE at �0.8 V versus Pt of a 20 mM aqueous solution of
FeIIICl3�6H2O in 0.1 M KCl electrolyte under an Ar atmosphere starting
from 5 s after the beginning of CPE (blue line) and evolving over time
(gray lines) to reach 90% conversion to Fe(II) (green line).
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shown in Fig. 3. Using this method of analysis, we determined

that 90% of the Fe(III) was converted to the corresponding

Fe(II) species at the end of electrolysis (see Fig. S3). In the

course of electrolysis from Fe(III) to Fe(II), two interruptions

were made in the application of a potential in order to check

for radiation damage. During these periods of 60 s and 40 s

without any potential applied (shown as green rectangles

in Fig. S3, left), XAS data were still collected. The linear

combination fits performed on these data indicated that no

change in Fe(III)/Fe(II) proportion was observed during this

period of time without any applied potential. This confirms

that (i) the reduction of Fe(III) to Fe(II) is solely due to the

electrochemical reaction at the electrode and (ii) the collec-

tion of XAS data for up to 60 s under these conditions does

not induce any radiation damage. It should also be noted that

a perfect agreement is obtained between the kinetics extracted

from the chronoamperometry experiment and from the

XANES linear combinations (see Fig. S3, right), indicating

that the electrochemically transformed solution volume is

indeed probed by the X-ray beam.

3.2.2. Potential sweeping in cyclic voltammetry mode. The

electrochemical transformations during a complete CV were

monitored by time-resolved XAS. The electrode potential was

swept with a scan rate of 20 mV s�1 starting from the open

current voltage at 0 V. XAS spectra were measured with a

monochromator oscillation of 2 Hz (only forward scans were

recorded) to yield a total of 380 spectra over the complete

potential cycle, with an integration time of 250 ms per spec-

trum. XANES spectra with a good signal-to-noise ratio were

obtained by averaging ten individual spectra, corresponding to

a 5 s time range or a 100 mV potential range. Fig. 4 (top left

and right) shows the XANES spectra (after averaging)

recorded during the reductive (top left) and oxidative (top

right) processes. During the reduction process, the evolution

of the spectra shows the formation of the ferrous complex with

isosbestic points, as observed in CPE mode (see above). The

reverse process is clearly occurring on the re-oxidation step

as well.

Fig. 4 (bottom left) shows the proportion profiles of Fe(III)

and Fe(II) obtained from XANES linear combinations

performed on the averaged spectra, together with the current

as a function of time (blue line). These profiles are in perfect

agreement with the theoretical ones expected for an electro-

chemical Nernstian redox wave, as described by Savéant
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Figure 4
Time-resolved Fe K-edge XANES evolution during the reductive process of a 20 mM FeIIICl3�6H2O aqueous solution in 0.1 M KCl under Ar (top left)
and its re-oxidation process (top right) along a 20 mV s�1 CV. Evolution of the proportion of Fe(II) (red dots) and Fe(III) (black dots) determined by
XAS during the full cyclic voltammogram (blue line) between �1 V and 0.9 V (bottom left). EXAFS spectra of a 20 mM FeIIICl3�6H2O (black dashed
line) and FeCl2 (red dashed line) aqueous solution in 0.1 M KCl together with spectra collected during a cyclic voltammogram at 100 s (green line) and
190 s (blue line) after the beginning of the CV (bottom right).
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(2006). Ratios of 50:50 were observed for the Fe(III) and

Fe(II) species (dashed gray vertical line) when the current

reached the cathodic and anodic peak potentials, which is

again in agreement with theoretical expectations. At the end

of the reduction process, when the potential reaches �1 V

versus Pt (after 50 s), 86% of Fe(III) was converted into Fe(II)

(see Fig. 4 bottom left), while continuing the cycle towards

positive potentials leads to a complete regeneration of the

initial ferric compound (up to 90%) when the potential

reaches 0.9 V versus Pt (after 150 s).

EXAFS spectra were also recorded along the cyclic

voltammogram up to k = 8 (Fig. 4 bottom right). Although the

k-space data clearly show the changes expected for the

FeCl3�6H2O to FeCl2 conversion, the data quality obtained for

a spectrum averaged over 5 s only allows a Fourier transform

analysis for the first neighbors (see Fig. S4). The intensity of

the first-shell peak of the time-resolved spectra recorded after

100 s and 190 s reproduces very well those observed for

the pure Fe(II) and Fe(III) species and match with those

described in the literature (Inada & Funahashi, 1999; Inada et

al., 1994).

4. Conclusions

In summary, investigating the local and electronic structure of

redox active molecules in solution using time-resolved X-ray

spectroelectrochemistry requires fulfilment of two important

criteria: (i) rapid electrochemical transformation with high

conversion yield, achieved by using a high-surface-area

working electrode; and (ii) a fast data collection technique

such as quick-XAS in order to investigate the processes with a

good time resolution. In this work, using our newly developed

3D-printed spectroelectrochemical cell, we have demon-

strated for the first time the in situ time-resolved XAS moni-

toring of a dynamic electrochemical process in solution. We

have collected data on static liquid solutions, but it should be

noted that the measurements can also be performed under

liquid circulation. This data collection strategy has advantages

(it helps to reduce radiation damage issues) but also draw-

backs (electrochemical measurements may be compromised)

and should thus be adapted to each specific system. Our

efforts are currently focused on the optimization of the cell to

improve the data quality while reaching higher potential scan

rates. The combination of the cell and data collection methods

presented in this paper should be helpful to study the local and

electronic structure of redox active, bio-inspired species that

can be generated during a cyclic voltammogram, but that

are too short-lived to be isolated or generated by constant

potential electrolysis. The time resolution we have been able

to access so far for a single spectrum (5 s) only allows for

probing of species with lifetimes in the range of seconds. This

time resolution could be improved given the capabilities of the

ROCK beamline and of the quick-XAS beamlines at other

synchrotron facilities. The monochromator frequency used in

this study was 2 Hz (one spectrum in 250 ms), but this

frequency can be reasonably increased by an order of

magnitude. Although a higher time resolution implies a lower

signal-to-noise ratio for each single spectrum, it should be

pointed out that the collection of multiple spectra is possible,

provided that several consecutive CVs can be performed with

identical electrochemical features. We are currently using this

cell and methodology to study the mechanism of electro-

catalytic CO2 reduction by an iron porphyrin catalyst.

Acknowledgements
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