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We survey the recent advance in the rigorous qualitative theory of the 2d stochastic Navier–Stokes
system that is relevant to the description of turbulence in two-dimensional fluids. After discussing
briefly the initial-boundary value problem and the associated Markov process, we formulate results on
the existence, uniqueness, and mixing of a stationary measure. We next turn to various consequences
of these properties: strong law of large numbers, central limit theorem, and random attractors related
to a unique stationary measure. We also discuss the Donsker–Varadhan and Freidlin–Wentzell type
large deviations, the inviscid limit, and asymptotic results in 3d thin domains. We conclude with some
open problems. Published by AIP Publishing. https://doi.org/10.1063/1.4996545

I. INTRODUCTION

The main subject of this article is the two-dimensional
Navier–Stokes system in R2 subject to periodic boundary con-
ditions, perturbed by a random force. We thus consider the
equations

@tu + hu,riu � ⌫�u + rp = f (t, x), div u = 0, (1.1)

where u = (u1, u2) and p are the velocity field and pressure
of a fluid, ⌫ > 0 is the kinematic viscosity, f is an external
(random) force, and hu, ri = u1@1 + u1@2. All the func-
tions are assumed to be 2⇡-periodic in the spatial variables
x1 and x2. Equation (1.1) is supplemented with the initial
condition

u(0, x) = u0(x), (1.2)

where u0 is a given divergence-free vector field that is 2⇡-
periodic and locally square-integrable. Our aim is to review
rigorous results on the qualitative behaviour of solutions for
(1.1) as t ! 1 and/or ⌫ ! 0. These two limits are impor-
tant for the mathematical description of the space-periodic
2d turbulence (for a physical treatment of this topic see
Ref. 5). In our review, we avoid detailed discussion, related
to the relevance of the 2d Navier–Stokes system (1.1) for
physics, referring the reader to Refs. 3, 5, 16, and 17. But
we mention that a number of equations, closely related to
the 2d Navier–Stokes system, are used in meteorology and
oceanography, so the methods, developed for Navier–Stokes
equations, can be applied in the mathematical theory of cli-
mate and the statistical description of the ocean. A result,

Note: This is an invited article for the Focus Issue on Two-Dimensional Tur-
bulence. It was originally scheduled to appear in volume 29, issue 11 with the
other articles in the Focus Issue, but it was not ready in time and was moved
to a later issue.
a)E-mail: Sergei.Kuksin@imj-prg.fr
b)E-mail: Armen.Shirikyan@u-cergy.fr

presented in Sec. VII, gives a very basic explanation for the
relevance of the 2d models for statistical description of the 3d
phenomena.

Most of the results, discussed in our work, were obtained
in this century. Complete proofs and discussion of many of
them can be found in Ref. 37. New material, not treated in
that book, includes the theory of large deviations and recent
progress concerning the mixing in Eq. (1.1).

II. EQUATIONS AND RANDOM FORCES
A. Cauchy problem

As was mentioned in the Introduction, we consider
Eq. (1.1) with periodic boundary conditions. Before describ-
ing the class of random forces f we deal with, let us recall
a general result on the existence, uniqueness, and regularity
of solutions to the deterministic Cauchy problem (1.1), (1.2).
We begin with the definition of a solution on an arbitrary time
interval JT = [0, T ]. The definitions of all the functional spaces
used here and henceforth can be found in the list of frequently
used notations at the end of the paper.

Definition 2.1. Let f (t, x) be the time derivative of a
piecewise continuous function56

g : JT ! L
2(T2,R2), van-

ishing at t = 0: f = @tg(t, x). A function u(t, x) defined on
JT ⇥ T2 is called a weak solution for (1.1) if it belongs to the
space

XT = C(JT , L
2
�) \ L

2(JT , H
1(T2,R2) \ L

2
�),

and satisfies the relation
�
u(t), '

�
+
⌅

t

0

�hu,riu � ⌫�u, '
�
ds =

�
u(0), '

�
+

�
g(t), '

�
,

t 2 JT , (2.1)

where ' is an arbitrary divergence-free smooth vector field
on T2, and the term with the Laplacian under the integral is
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understood in the weak sense: (�u, ') = (ru, r'). In what
follows, when discussing Eq. (1.1), we often say solution rather
than weak solution.

Note that the Navier–Stokes system contains three
unknown functions, u1, u2, and p, whereas the definition of
a solution specifies only the velocity field u. This is due to
the fact that, once u(t, x) satisfying (2.1) is constructed, the
Leray decomposition (see Theorem 1.5 in Ref. 52, Chap. 1)
may be used to find a unique (up to an additive function of t)
distribution p(t, x) such that the first equation in (1.1) holds in
a weak sense. A proof of the following theorem is essentially
contained in Ref. 52, Chap. 3.

Theorem 2.2. Let T > 0 and let f be the sum of a square-

integrable function h(x) and the time derivative of a piecewise

continuous function with range in H
1(T2,R2). Then, for any

u0 2 L
2
� , Eq. (1.1) has a unique weak solution u 2 XT

satisfying the initial condition (1.2).

If the function g(t, x) is such that its mean value (in x)
vanishes identically in t, then the mean value of the solution
u(t, x) is time-independent. Below we always assume that
the mean values of the forces we apply to the Navier–Stokes
system and of its solutions which we consider both vanish
identically in time.

Theorem 2.2 allows one to construct a unique solution of
Eq. (1.1) for the three important classes of random forces f,
specified below. Namely, let H be the space of divergence free
square-integrable vector fields on T2 with zero mean value.
We shall deal with random forces of the form

f (t, x) = h(x) + ⌘(t, x), (2.2)

where h 2 H is a deterministic function and ⌘ is one of the
following three random processes:

Spatially regular white noise. Let Z2
⇤ be the set of non-

zero integer vectors j = ( j1, j2) and let {ej, j 2 Z2
⇤ } be a

trigonometric basis in H defined by

ej(x) =
j
?

p
2 ⇡ | j |

8><>:
cosh j, xi if j1 > 0 and if j1 = 0, j2 > 0,

sinh j, xi if j1 < 0 and if j1 = 0, j2 < 0,
(2.3)

where j
? = ( j2, j1). Let us fix numbers {bj, j 2 Z2

⇤ } such that

B1 < 1,

where for k � 0, we denote

Bk =
X

j2Z2
⇤

b
2
j
| j |2k  1, (2.4)

and define

⌘(t, x) =
@

@t
⇣(t, x), ⇣(t, x) =

X

j2Z2
⇤

bj �j(t)ej(x), (2.5)

where {�j, j 2 Z2
⇤ } is a family of independent standard Brown-

ian motions. Then ⌘(t, x) =
P

bj⌘j(t)ej(x), where {⌘j = �̇j, j 2
Z2
⇤ } are standard independent white noises. It follows from the

Doob–Kolmogorov inequality (see Theorem 3.8 in Ref. 24,
Chap. 1) that, with probability 1, the series in (2.5) converges
in H

1 uniformly in t 2 [0, T ] for any T < 1 so that ⌘(t) is the

time derivative of a continuous vector function with range in
the space V = H \ H

1(T2,R2).
Random kicks. Let {⌘k} be a sequence of independent

identically distributed (i.i.d.) random variables (the kicks) with
range in V. Define

⌘(t, x) =
@

@t
⇣(t, x), ⇣(t, x) =

1X

k=1

⌘k(x)✓(t � k), (2.6)

where ✓(t) = 0 for t < 0 and ✓(t) = 1 for t � 0. Since ⌘ has
jumps only at positive integers, the trajectories of ⌘ are the
time derivative of piecewise continuous functions.

Piecewise independent process. Let {⌘k} be a sequence
of i.i.d. random variables in L

2(J1, H). We define a random
process of the form

⌘(t, x) =
1X

k=1

I[k�1,k)(t)⌘k(t � k + 1, x), (2.7)

where I [k 1,k ) is the indicator function of the interval [k 1,k).

Example 2.3. Let us take H-valued processes {⌘k(t, ·),
0  t  1} of the form

⌘k(t, x) =
X

j2Z2
⇤

bj ⌘
k

j
(t) ej(x), B1 < 1,

where {⌘k

j
: k � 1, j 2 Z2

⇤ } are real-valued independent ran-
dom processes, distributed as a fixed process ⌘̃ : [0, 1] ! R.
Taking for ⌘̃ a random series with respect to the Haar basis
of the space L2(0, 1) (see Sec. 21 in Ref. 38), we arrive at a
random process ⌘ as in (2.7) that has the form

⌘(t, x) =
X

j2Z2
⇤

bj ⌘j(t) ej(x) . (2.8)

Here {⌘j} are independent random processes, distributed as
the process

⌘0(t) = c

1X

l=1

⇠lI[l�1,l)(t) +
1X

N=0

1X

l=0

cn⇠
n

l
H

n

l
(t), (2.9)

where c and cn are real constants, ⇠ l and ⇠n

l
are i.i.d. real-valued

random variables with a law �, and H
n

l
are the Haar functions,

H
n

l
(t) =

8>>><>>>:
0 if t < l2�n or t � (l + 1)2�n,

1 if l2�n  t < (l + 1/2)2�n,

�1 if (l + 1/2)2�n  t < (l + 1)2�n.

Thus, ⌘0(t) is a random wavelet series and ⌘(t, x) is an H-valued
process whose expansion in the trigonometric basis {ej} has
independent random wavelet coefficients. Notice that the set of
discontinuities of ⌘ is the family of dyadic numbers and, hence,
is dense on the positive half-line. Besides, all trajectories of
⌘ are continuous at non-dyadic points and right-continuous
everywhere.

If c = 1, cn = 2n/2, and � is the centred normal law
with unit variance, then ⌘0(t) is white noise (see Ref. 38). If
cn⌧ 2n/2, then ⌘0(t) is a red noise. In particular, if |cn|  Cn

q

for some q > 1 and � has a bounded support, then the red noise
⌘0(t) is bounded uniformly in t and !.

For reasons of space, we shall usually state the results for
the case of spatially regular white noise. However, suitable
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reformulations of most of them remain valid in the two other
cases.

B. Markov process and a priori estimates

The family of solutions, corresponding to the three classes
of random forces considered in Sec. II A, gives rise to Markov
processes in the space H. This allows us to apply to the study of
the Navier–Stokes system (1.1) with such random forces well-
developed probabilistic methods. We start with Eqs. (1.1) and
(2.5) (recalling that always h 2 H and B1 < 1), and for a
random initial data u0 = u

!
0 (x), independent from the force f,

denote by u(t; u0) a solution of (1.1), (1.2), and (2.5). For a
non-random u0 = 3 2 H, denote

Pt(v , ·) = D(u(t; v)) .

This is a measure in H, depending on (t, 3) in a measurable
way and satisfying the Kolmogorov–Chapman relation. So Pt

is the transition function of a Markov process in H. The latter
is the Markov process generated by solutions of Eqs. (1.1) and
(2.5). It defines the Markov semigroups on functions and on
measures by the relations

Pt : Cb(H)! Cb(H), (Ptg)(u) =
⌅

H

Pt(u, dz)g(z), (2.10)

P⇤
t

: P(H)! P(H), (P⇤
t
µ)(�) =

⌅

H

Pt(z, �)µ(dz). (2.11)

The two semigroups are instrumental to study the equation
since the former defines the evolution of mean values of
observables: for any g 2 Cb(H) and any 3 2 H, we have

E g(u(t; v)) = (Ptg)(v), t � 0. (2.12)

On the other hand, the latter defines the evolution of the laws
since

D(u(t; u0)) = P⇤
t
µ, t � 0, (2.13)

if u0 is a random variable independent from f and its law
equals µ.

The white in time structure of the noise allows not only to
prove the Markovian character of evolution but also to derive
a priori estimates by an application of Ito’s formula. The the-
orem below summarises some of them. For any integer k � 0,
we set

Eu(k, t) = t
k ku(t)k2

k
+
⌅

t

0
s

k ku(s)k2
k+1ds, t � 0.

In the case k = 0, we write Eu(t). For k 2 N, we denote
H

k = H \ H
k(T2,R2) (so H

1 = V ).

Theorem 2.4. Consider Eqs. (1.1) and (2.5). The follow-

ing properties hold for any ⌫ > 0 and any H-valued random

variable u0, independent from ⇣ .

Energy and enstrophy balances. If E|u0 |22 < 1, then

E |u(t)|22 +2⌫E
⌅

t

0
|ru(s)|22ds = E |u0 |22 +B0t +2E

⌅
t

0
(u, h)ds.

(2.14)

If, in addition, E ku0k21 < 1, then

E ku(t)k21 + 2⌫E
⌅

t

0
|�u(s)|22ds = E ku0k21 +B1t

+ 2E
⌅

t

0
(ru,rh)ds. (2.15)

Time average. There is � > 0 depending only on {bj}
such that

P
(

sup
t�0

�Eu(t)� (B0 + 2⌫�1 |h|22) t
�� |u0 |22 + ⇢

)
 e
��⌫⇢, ⇢ > 0.

Exponential moment. There is c > 0 not depending on

⌫, h, and {bj} such that if < > 0 and u0 satisfy the inequalities

< sup
j�1

b
2
j
 c, E exp

�<⌫ |u0 |22
�
< 1,

then for some number K = K(⌫, <,B0, h), we have

E exp
�<⌫ |u(t)|22

�  e
�<⌫2

tE exp
�<⌫ |u0 |22

�
+ K , t � 0.

(2.16)
Higher Sobolev norms. Suppose that h 2H

k
andBk < 1

for some integer k � 1. Then, for any m � 1 and T � 1, there

is C(k, m, T ) > 0 such that

E sup
0tT

Eu(k, t)m  C(k, m, T )
�
1+⌫�m(7k+2) �E |u0 |4m(k+1)

2 +1
��

.

(2.17)
A straightforward consequence of the energy balance

(2.14) and Gronwall’s inequality is the exponentially fast
stabilisation of the L

2 norms of solutions

E |u(t)|22  e
�⌫tE |u0 |22 + ⌫�1B0 + ⌫�2 |h|22 , t � 0.

Combining this with (2.16) and (2.17), we conclude that if all
moments of |u0 |22 are finite, then

E sup
sts+T

Eu(k, t)m  C
0(k, m, T ) for all s � 0, m 2 N .

(2.18)
A proof of all these results, as well as of their counterparts for
random kick–forces, can be found in Chap. 2 of Ref. 37.

The Markov process defined by solutions of Eqs. (1.1)
and (2.5) is time-homogeneous: the law at time t2 of a solu-
tion u(t) which takes a prescribed deterministic value 3 at
t = t1 < t2 depends only on 3 and t2 t1. Solutions of the
kick-forced Eqs. (1.1) and (2.6) define an inhomogeneous
Markov process, but its restriction to integer values of time
t 2 Z is a homogeneous Markov chain, and when studying
Eqs. (1.1) and (2.6) we usually restrict ourselves to inte-
ger t’s, see in Ref. 37. Finally, solutions u(t) of Eqs. (1.1)
and (2.7) do not define a Markov process, but their restric-
tions to t 2 Z form a homogeneous Markov chain, which
is the subject of our study when dealing with that equation,
see Refs. 30 and 50.

III. MIXING

In Sec. II B, we discussed the existence, uniqueness, and
regularity of the flow for the Navier–Stokes system subject to
an external random force. Our next goal is to study its large-
time asymptotics. As before, we shall mostly concentrate on
the case of spatially regular white noise.
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A. Existence of a stationary measure

We consider the Navier–Stokes system (1.1) with the
right-hand side of the form (2.2), where h 2 H is a determin-
istic function and ⌘ has the form (2.5). Since B1 < 1, then ⇣
is a continuous functions of time with range in V.

Definition 3.1. A measure µ 2 P(H) is said to be sta-

tionary for the Navier–Stokes system if P⇤
t
µ = µ for all

t � 0.

By (2.12) and (2.13), a measure µ 2 P(H) is stationary
if and only if there is an H-valued random variable u0 inde-
pendent from ⇣ such that D(u0) = µ, and one of the following
equivalent properties is satisfied for the corresponding solution
u(t; u0):

(a) for all g 2 Cb(H) and t � 0, we have E g(u(t)) = E g(u0);
(b) the measure D(u(t)) coincides with µ for all t � 0.

A solution u(t) of (1.1) as in (a) [or (b)] is called a stationary

solution.
The existence of a stationary measure for the 2d Navier–

Stokes system can be established with the help of the
Borolyugov–Krylov argument, even though the first studies
dealing with both 2d and 3d cases used a different approach;
see Ref. 54. We refer the reader to the article12 for self-
contained and simple proof of the existence of a stationary
measure. In addition, Theorem 2.4 jointly with Fatou’s lemma
implies a priori estimates for any stationary measure of (1.1).
A detailed proof of the following result can be found in
Ref. 37, Chap. 2.

Theorem 3.2. The Navier–Stokes system (1.1), (2.5) has

at least one stationary measure µ⌫ . It is supported by the space

H
2

and satisfies the energy and enstrophy balance relations

⌫

⌅

H

|ru|22 µ⌫(du) =
1
2
B0 +

⌅

H

(h, u)µ⌫(du), (3.1)

⌫

⌅

H

|�u|22 µ⌫(du) =
1
2
B1 +

⌅

H

(rh,ru)µ⌫(du). (3.2)

If, in addition, h 2 C
1

and Bk < 1 for all k � 0, then every

stationary measure µ⌫ 2 P(H) is concentrated on infinitely

smooth functions,
57

and there are positive numbers <, C, and

Ckm not depending on ⌫ such that for any integers m � 1 and

k � 2, we have

⌅

H

exp
�<⌫kuk21

�
µ⌫(du)  C, (3.3)

⌫m(7k+2)
⌅

H

kuk2m

k
µ⌫(du)  Ckm. (3.4)

Besides, for stationary solutions u(t, x) of Eq. (1.1),
estimate (2.17) implies uniform in s � 0 bounds of the form

E sup
sts+T

ku(t)k2m

k
 C(k, m, T ) ⌫�m(7k+2) ;

see Corollary 2.4.13 in Ref. 37.

B. Uniqueness and exponential stability

In contrast to the existence of a stationary measure (which
is established by rather soft tools), its uniqueness is a deep

result that was proved thanks to the contribution of various
research groups. It was first established in the case of spa-
tially irregular white noise by Flandoli and Maslowski13 and
then extended to various types of regular noises in Ref. 32 and
next in Refs. 6, 11, 27, 33–35, 45, 47, and 48 (see Chap. 3 in
Ref. 37 for more references). The following theorem sum-
marises those results in the case of spatially regular white
noise.

Theorem 3.3. If the random process ⇣ in (2.5) satisfies

bj , 0 for all j 2 Z2
⇤, (3.5)

then the problem (1.1), (2.5) has a unique stationary dis-

tribution µ⌫ 2 P(H). This measure possesses the following

properties.

Exponential mixing. There are positive numbers �⌫ and

<⌫ such that for any locally Hölder-continuous function g:
V ! R with at most exponential growth at infinity and

any H-valued random variable u0 independent from ⇣ , we

have

��E g(u(t; u0)) � hg, µ⌫i��  C(⌫, g)e��⌫ t E e
<⌫ |u0 |22 , t � 1,

(3.6)
where C(⌫, g) depends on ⌫ and a specific norm of g, but not

on u0.

Convergence for observables. If, in addition, h 2 H
k

and Bk < 1 for all k, then a similar convergence holds for

any Hölder-continuous function g that is defined on a Sobolev

space H
s

of any finite order and has at most polynomial growth

at infinity.

Space homogeneity. If, in addition to (3.5), bs ⌘ b s,
then the measure µ⌫ is space homogeneous [i.e., the space

translations H 3 u(x) 7! u(x + y), y 2 T2
, do not change it].

The first assertion of the theorem implies that the Markov
process in H which we discuss is exponentially mixing in the

Lipschitz-dual distance in the space H, i.e., for each mea-
sure ⇢ 2 P(H) with a finite second exponential moment we
have

kP⇤
t
⇢ � µ⌫ k⇤Lip(H)  C⌫e

��0⌫ t for t � 0 (3.7)

with some C⌫ , �0⌫ > 0, where

k⇢1 � ⇢2k⇤Lip(H) = suph⇢1 � ⇢2, f i, h⇢, f i =
⌅

H

f (v) ⇢(dv),

(3.8)
and the supremum is taken oven all Lipschitz functions f on
H whose norm and Lipschitz constant are bounded by one.
If (3.7) holds, we also say that the stationary measure µ⌫ and
Eq. (1.1) are exponentially mixing (in H).

Inequality (3.6) expresses the property of conver-
gence of the ensemble average of an observable g to
its mean value with respect to the stationary measure. It
applies to various physically relevant quantities, such as
the energy 1

2 |u|22 , the enstrophy 1
2 |ru|22 = 1

2 |rot u|22 , and the
correlation tensors ui(x)uj(y), where x, y 2T2 are arbitrary
points.
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Similar results hold for solutions of Eqs. (1.1) and (2.6) if
in (3.6) we replace t � 1 by t 2 N.

In Theorem 3.3, the rate of convergence depends on the
viscosity ⌫: when the latter decreases, the attractor of the unper-
turbed problem becomes larger and more chaotic, and it seems
to be a very complicated task to establish a uniform conver-
gence to the limiting measure. On the other hand, it is not
difficult to prove that, when ⌫ > 0 is fixed, the non-degeneracy
condition (3.5) can be relaxed, requiring only that the noise
should act directly on the (finitely many58) determining modes
of the dynamics. A challenging problem, important, in partic-
ular, for numerical simulations, is to prove that the mixing
property remains true under a weaker hypothesis on the noise,
allowing for the noise’s localisation in a part of either the phys-
ical or the Fourier spaces so that the determining modes of the
dynamics do not necessarily belong to the region of the phase
space affected by the noise. Propagation of the randomness
then may take place due to the “mixing” properties of the
(deterministic) Navier–Stokes flow. Uniqueness and mixing
of the random flow in this situation are mostly established in
the case when the deterministic component h of the random
force is zero.

We begin with the case when the random force is localised
in the Fourier space. In Refs. 20 and 21, Hairer and Mattingly
obtained the following result:

Theorem 3.4. Let the random force f have the form (2.2),
(2.5) with h = 0 and with ⌘ satisfying

bj , 0 if and only if j 2 I, (3.9)

where I is a finite subset of Z2
⇤ such that any vector in Z2

can be represented as an integer linear combination of the

elements of I, and I contains at least two vectors of different

lengths. Then Eq. (1.1) is exponentially mixing in H.

A key ingredient of the proof is an infinite-dimensional
version of the Malliavin calculus, which uses the white noise
structure of the random perturbation. Note that the result above
does not imply the assertion of Theorem 3.3 since now the
set of modes j 2 Z2

⇤, excited by the random force, must be
finite.

The recent paper30 deals with the case when the noise
is a piecewise independent random process of the form (2.7).
The main result of Ref. 30 is an abstract theorem, establishing
the mixing property for a large class of nonlinear PDE, per-
turbed by bounded random forces of the form (2.2), (2.7); its
proof relies on the method of optimal control and a variant of
the Nash–Moser scheme. In particular, the theorem in Ref. 30
applies to the Navier–Stokes system, perturbed by a bounded
red noise as in Example 2.3:

Theorem 3.5. Let the random force f have the form (2.2),
in which h = 0 and ⌘ is given by (2.8) and (2.9), with the

set of coefficients bj satisfying (3.9). Assume that |cn|  Cn
q

for all n � 1 with some q > 1, and that the law of the

random variables ⇠ l and ⇠n

l
has the form � = p(r) dr with

p 2 C
1
0(�1, 1), p(0), 0. Then Eq. (1.1) is exponentially mixing

in H.

The situation in which the random perturbation is
localised in the physical space was studied in Ref. 50 (see also
Ref. 51 for the case of a boundary noise). To formulate the
corresponding result, we fix a non-empty open set Q ⇢ R⇥T2

whose closure is contained in (0, 1) ⇥ T2 and denote by
{'j} ⇢ H

1(Q, R2) an orthonormal basis in L
2(Q, R2). Consid-

ering again the random force (2.2), we assume that h ⌘ 0, and
⌘ is a piecewise independent random process of the form (2.7),
with

⌘k(t, x) =
1X

j=1

bj⇠jk j(t, x).

Here  j = �'j, where � 2 C
1
0 (Q) is a nonzero function,

{bj} are real numbers such that
P

jbj k j k1 < 1, and ⇠ jk

are independent random variables whose laws have the form
�j = pj(r) dr, where pj 2 C

1
0(�1, 1) and pj(0) , 0. Thus, the

random force entering the right-hand side of (1.1) is bounded
and space-time localised in Q. The following theorem is the
main result of Ref. 50.

Theorem 3.6. In addition to the above hypotheses,

assume that bj , 0 for all j � 1. Then, for any ⌫ > 0,

Eq. (1.1) has a unique stationary measure, which is exponen-

tially mixing in H.

IV. CONSEQUENCES OF MIXING

The results of Sec. III concern the evolution of the
mean values of observables and the laws of solutions under
the stochastic Navier–Stokes flow. This section is devoted
to studying the typical behaviour of individual trajectories.
We will assume that the random force in Eq. (1.1) is such
that the equation is exponentially mixing, either for t > 0
or for t 2 N. That is, either the assumptions of Theorems
3.3–3.5 or 3.6 hold or f is a kick-force of the form (2.2),
(2.6), where (3.5) holds. We state the results for the case
when Theorem 3.3 applies. Situation with the other cases is
very similar; e.g., see Ref. 37 for the case of the kick-forced
equations.

A. Ergodic theorems

We consider the Navier–Stokes system (1.1), (2.2) in
which h 2 H is a fixed function and ⌘ is given by (2.5). Let us
denote59 by H the space of locally Hölder-continuous func-
tions g: V ! R with at most exponential growth at infinity.
The following result established in Refs. 26 and 49 (see also
Sec. 4.1.1 in Ref. 37) shows that the time average of a large
class of observables converges to their mean value with respect
to the stationary measure.

Theorem 4.1 (Strong law of large numbers). Under the

hypotheses of Theorem 3.3, for any � 2 [0, 1/2), any non-

random u0 2 H and g 2 H, with probability 1 we have

lim
t!1

t
�
✓1

t

⌅
t

0
g(u(s; u0)) ds � hg, µ⌫i

◆
= 0 . (4.1)

Convergence (4.1) remains true for random initial func-
tions that are independent from ⌘ and have a finite exponential
moment. Moreover, some further analysis shows that the law of
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iterated logarithm (LIL) is also valid. In particular, the num-
ber � in (4.1) characterizing the rate of convergence to the
mean value cannot be taken to be equal to 1/2; see Sec. 4.1.2
in Ref. 37.

We now turn to the central limit theorem (CLT). To this
end, given an observable g 2 H with zero mean value with
respect to µ⌫ , we denote

�2
g
= 2

⌅

H

⌅ 1

0
(Ptg)(v)dt g(v)µ⌫(dv).

In view of inequality (3.6) and the assumption that hg, µ⌫i = 0,
the function Ptg decays exponentially to zero as t ! 1,
and it is not difficult to prove that, under the hypotheses of
Theorem 3.3, the number �2

g
is well defined and positive for

any non-constant g; see Proposition 4.1.4 in Ref. 37. A proof
of the following result can be found in Refs. 26 and 49 (see
also Sect. 4.1.3 in Ref. 37).

Theorem 4.2 (Central limit theorem). Under the hypothe-

ses of Theorem 3.3, for any non-random u0 2 H and any

non-constant g 2 H satisfying hg, µ⌫i = 0, we have

D
✓ 1p

t

⌅
t

0
g(u(s; u0)) ds

◆
* N�g

as t ! 1, (4.2)

where N� stands for the centred normal law on R with a

variance �2 > 0 and * stands for the weak convergence of

measures.

Let us emphasise that �g is expressed in terms of the
stationary measure µ⌫ and does not depend on u0. Furthermore,
convergence (4.2) is equivalent to the relation

lim
t!1

P
⇢ 1p

t

⌅
t

0
g(u(s)) ds 2 �

�
= N�g

(�), (4.3)

where � ⇢ R is an arbitrary Borel set whose boundary has zero
Lebesgue measure.

B. Random attractors

Another important object characterising the large-time
behaviour of trajectories is the random attractor. There are
many definitions of this object, and in the context of ran-
dom dynamical systems, most of them deal with the concept
of pullback attraction. The meaning of the latter is that, for
some fixed observation time, the distance between trajectories
of the system and the attractor decreases when the moment
of beginning of the observation goes to 1. In this section,
we discuss a concept of attractor that possesses an attraction
property forward in time and is closely related to the unique
stationary measure constructed in Theorem 3.3. To simplify
notation, we fix the viscosity ⌫ > 0 and do not follow the
dependence of various objects on it. Moreover, we assume
that the Brownian motions {�j} entering (2.5) are two-sided60

and denote by (⌦, F, Ft , P) the canonical filtered probability
space associated with the process ⇣ ; see Sec. 2.4 in Ref. 24.
In particular, the measurable space (⌦, F ) may be chosen
to coincide with the Fréchet space C(R, V ) of continuous
functions from R to V, with the topology of uniform con-
vergence on bounded intervals and the corresponding Borel
sigma-algebra.

Let us denote by 't(!): H ! H the random flow gener-
ated by the Navier–Stokes system with spatially regular white
noise (2.5). Thus, for any initial function u0 2 H, the solution
u(t; u0) of (1.1), (1.2), and (2.5) is given by 't(!)u0. The family
{'t(!), ! 2 ⌦, t � 0} possesses the perfect co-cycle property.
Namely, let ✓t : ⌦ ! ⌦ be the shift operator taking !(·) to
!(· + t). Then, there is a set of full measure ⌦0 2 F such that
for any ! 2 ⌦0, we have

't+s(!)u0 = 't(✓s(!))'s(!)u0 for all t, s � 0, u0 2 H.

The following result is established in Refs. 9, 39, and 40 (see
also Theorem 4.2.9 in Ref. 37) in the context of general random
dynamical systems.

Theorem 4.3. Under the hypotheses of Theorem 3.3, for

any sequence {tk} going to +1 the limit

µ! = lim
k!1

'tk
(✓�tk

(!))⇤µ (4.4)

exists in the weak topology of P(⌦) for almost every ! 2 ⌦.
Moreover, the following properties hold:

Uniqueness. If {t 0
k
} is another sequence going to +1

and {µ0! } is the corresponding limit, then µ! = µ0! almost

everywhere.

Reconstruction. For any � 2 B(H), the mapping ! 7!
µ!(�) is measurable, and µ can be reconstructed by the

formula µ(�) = Eµ ·(�).

We now describe a random attractor associated with µ.
To this end, we fix any sequence {tk} going to +1 and denote
by ⌦0 the set of full measure on which limit (4.4) exists. The
almost sure existence of the limit in (4.4) implies that ⌦0 is
P-invariant under ✓t ; that is, P(⌦04(✓t(⌦0)) = 0 for any t 2R,
where 4 stands for the symmetric difference of two sets. We
define µ! by (4.4) on the set of full measure ⌦0 and denote
by A! the support of µ! for ! 2 ⌦0, while we set A! = ?
on the complement of ⌦0. The measurability property of µ·
mentioned in Theorem 4.3 implies that {A! ,! 2 ⌦} is also
measurable in the sense that for any u 2 H, the function ! 7!
dH (u,A!) is measurable. The following result is established
in Ref. 36 (see also Sec. 4.2 in Ref. 37).

Theorem 4.4. Under the hypotheses of Theorem 3.3, the

following properties hold:

Invariance. For any t � 0 and almost every ! 2 ⌦, we

have 't(!)A! = A✓t (!).

Attraction. For any u 2 H, the functions ! 7!
dH ('t(!)u,A✓t (!)) converge to zero in probability as t ! 1.

That is, for any " > 0, we have

P�
dH ('t(!)u,A✓t (!)) � "

 ! 0 as t ! 1.

Minimality. If {A0! ,! 2 ⌦} is another measurable fam-

ily of closed subsets that satisfies the first two properties, then

A! ⇢ A0! for almost every ! 2 ⌦.
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C. Dependence on parameters and stability

We now investigate how the laws of trajectories of (1.1)
vary with parameters. To simplify the presentation, we shall
consider only the dependence on the random forcing, assum-
ing that it is a spatially regular white noise. However, similar
methods can be used to study the dependence on other param-
eters, such as the viscosity, as well as the relationship between
stationary measures corresponding to various types of random
forcings.

We thus assume that X is a metric space and that the right-
hand side in (1.1) has the form (2.2), (2.5), where h 2H is fixed
and bj’s are continuous functions of a 2 X, satisfying

sup
a2X

X

j2Z2
⇤

bj(a)2 | j |2 < 1.

A proof of the following result can be found in Sec. 4.3.1
of Ref. 37.

Theorem 4.5. In addition to the above hypotheses, let

bj(â) , 0 for all j 2 Z2
⇤, (4.5)

where â 2 X is a fixed point, and let {µa} be a family

of stationary measures
61

of Eq. (1.1) with the right-hand

side corresponding to the value a 2 X of the parameter.

Then µa! µâ
as a! â, and for any compact subset⇤ ⇢ P(H),

there exists a continuous function A⇤(⇢) > 0 going to zero with

⇢ such that

sup
t�0

��P⇤t (a)�1 �P⇤t (â)�2��⇤L  A⇤
�k�1 � �2k⇤L + dX (a, â)

�

for �1, �2 2 ⇤, a 2 X ,

where P⇤
t
(a) denotes the Markov semigroup for (1.1) corre-

sponding to the parameter a.
We emphasise that by this result the law of a solution

for (1.1) depends on the parameters of the random force f

continuously and uniformly in time; cf. Theorem 7.1 below.

V. LARGE DEVIATIONS

Having discussed the typical behaviour of trajectories, we
now turn to a description of probabilities of rare events. Two
different asymptotics will be studied: deviations of the time-
average of observables from their ensemble average as t!1
and deviations from the limiting dynamics in the small noise
regime. In the latter setting, we shall only discuss the behaviour
of a stationary distribution since in the case of an additive
noise, the asymptotics of trajectories with given initial data
is a simple result that follows immediately from the large
deviation principle (LDP) for Gaussian random variables. We
refer the reader to the paper8 and the references therein for
this type of results for stochastic PDEs with multiplicative
noise.

A. Donsker–Varadhan type large deviations

We first describe the general idea. To this end, let us note
that for an arbitrary function g 2 H (whose mean value is not

necessarily zero), we can rewrite the convergence (4.3) in the
form

lim
t!1

P
⇢1

t

⌅
t

0
g(u(s)) ds 2 hg, µ⌫i +

�p
t

�
= N�g

(�). (5.1)

Thus, the CLT can be interpreted as a description of the prob-
abilities of small deviations of the time average of observables
from their mean value. The goal of the theory of large devia-
tions is to describe the probabilities of order 1 deviations [when
�/
p

t in (5.1) is replaced by �]. These types of results were
first obtained by Donsker and Varadhan in the case of finite-
dimensional diffusion processes10 and later extended to many
other situations. In the context of the Navier–Stokes equations,
the theory was developed in the case of random kicks22,23 (see
also the recent papers44,46 devoted to spatially regular white
noise), and we now describe the main achievements.

Let us consider the Navier–Stokes equations (1.1) and
(2.2), where h 2 H is a deterministic function, and the random
forcing ⌘ is given by (2.6). In this case, the trajectories of
(1.1) have jumps at integer times, and we normalise them to
be right-continuous in time. Setting uk = u(k), we see that the
random sequence {uk} satisfies the relation

uk = S(uk�1) + ⌘k , k � 1, (5.2)

where S: H ! H denotes the time-1 shift along trajectories
of Eq. (1.1) with f = h. Equation (5.2) defines a discrete-time
Markov process in H, and we use the notation introduced in
Sec. II B to denote the related objects, replacing t with k. We
thus write Pk(3, �), Pk , and P⇤

k
.

To formulate the result on LDP, we shall need some
hypotheses on the kicks ⌘k . Namely, we shall assume that
they satisfy the following condition, in which {ej} is the
trigonometric basis in H defined by (2.3).

Structure of the noise. The random kicks ⌘k
have the

form

⌘k(x) =
X

j2Z2
⇤

bj⇠jkej(x),

where bj are some non-zero numbers satisfying B1 < 1 and

{⇠ jk} are independent random variables whose laws possess

C
1-smooth positive densities ⇢j with respect to the Lebesgue

such that sR |⇢0j(r)|dr  1 for any j.

This condition ensures that the Markov process {uk} asso-
ciated with (1.1) has a unique stationary measure µ⌫ for any
⌫ > 0, and the CLT holds for any Holder-continuous func-
tional f : H ! R with at most exponential growth at infinity
(cf. Theorems 3.3 and 4.2).

We now introduce the occupation measures

µ!
n
=

1
n

n�1X

k=0

�uk
,

where �v 2 P(H) stands for the Dirac mass at v 2 H, and
{uk} is a trajectory of (5.2). Let us recall that the space P(H)
is endowed with the topology of weak convergence. We shall
say that a mapping I : P(H)! [0, +1] is a good rate function

if its sub-level set {� 2 P(H) : I(�)  c} is compact for any
c � 0. The following result is established in Sec. 2.2 of Ref. 23
(see also Ref. 22 for the case of bounded kicks).



125106-8 S. Kuksin and A. Shirikyan Phys. Fluids 29, 125106 (2017)

Theorem 5.1. Suppose that the above hypothesis on the

structure of the noise is satisfied. Then the following assertions

hold for any ⌫ > 0:

Pressure. For any g 2 Cb(H) and any deterministic initial

function u0 2 H, there is a finite limit

Q(g) = lim
n!1

n
�1 logE exp

⇢n�1X

k=0

g(uk)
�

that is independent from u0. Moreover, Q is a 1-Lipschitz

function satisfying the relation Q(g + C) = Q(g) + C for any

C 2 R.

Rate function. The Legendre transform I : P(H) !
[0, +1] of Q defined by

I(�) = sup
g2Cb(H)

�hg, �i � Q(g)
�

is a convex good rate function that can be represented by the

Donsker–Varadhan relation

I(�) = sup
g�1

⌅

H

log
g

P1g
d�,

where the supremum is taken over all functions g 2 Cb(H)
minorised by 1.

LDP. For any random initial function u0 independent from

{⌘k} such that E exp(� |u0 |22) < 1 for some � > 0, and any

Borel set � ⇢ P(H), we have

�I(�̇)  lim inf
n!1

1
n

logP{µn 2 �}

 lim sup
n!1

1
n

logP{µn 2 �}  �I(�),

where �̇ and � denote the interior and closure of �, respec-

tively, and I(A) is the infimum of I on the set A.
Assuming faster decay for the coefficients bj and con-

sidering the Navier–Stokes system in higher Sobolev spaces,
it is not hard to show that a similar result holds in the case
when H is replaced by H

s. Next, application of the standard

techniques of the theory of large deviations implies that for
any Hölder-continuous function g: H

s ! R with moderate
growth at infinity, the time average n

�1 P
n�1
k=0 g(uk) satisfies

the LDP with a good rate function Ig: R ! R that can
be expressed in terms of I by the relation (cf. Sec. 1.3 in
Ref. 22)

Ig(r) = inf {I(�) : � 2 P(H), hg, �i = r}.

B. Vanishing noise limit

We now go back to the Navier–Stokes system (1.1) with
a spatially regular white noise and discuss the behaviour of
the unique stationary measure as the stochastic component of
the noise goes to zero. Namely, let us assume that the external
force in (1.1) has the form

f (t, x) = h(x) +
p
" ⌘(t, x), (5.3)

where h 2 H is a fixed function, " > 0 is a small parameter,
and ⌘ is given by (2.5). We assume that the coefficients bj are
non-zero (and satisfy the inequality B1 < 1) so that for any
⌫ > 0 and " > 0, there is a unique stationary measure µ"⌫ 2
P(H). We are interested in the behaviour of µ"⌫ for a fixed ⌫,
so we drop ⌫ from the notation in this section and write simply
µ" . In what follows, we assume that the following hypothesis
is satisfied.

Global asymptotic stability. The flow of the unperturbed

Navier–Stokes system (1.1), corresponding to f = h, has a

unique fixed point û 2 H, which is globally asymptotically

stable in the sense that any other trajectory converges to it as

t ! +1.
Notice that this condition is satisfied with û = 0 if

the deterministic part of the force (2.2) vanishes. A sim-
ple argument based on the uniqueness of a stationary dis-
tribution for the limiting equation implies that {µ"} con-
verges weakly to the Dirac mass concentrated at û. In fact,
much more detailed information about that convergence is
available. Namely, let us denote by St(u0, f ) the solution
of (1.1) and (1.2) and introduce a quasi-potential by the
relation

V(v) = lim
r!0

inf
(

1
2

⌅
T

0
k f (s)k2

b
ds : T > 0, f 2 L

2(JT , H), |ST (û, f ) � v |2  r

)
,

where the infimum is taken over all T and f for which the
inequality holds, and we set kgk2

b
=

P
j b
�2
j

(g, ej)2. A proof of
the following result can be found in Ref. 42 (see also Ref. 7
for the case of spatially irregular noise).

Theorem 5.2. Suppose that global asymptotic stability

for the limiting dynamics holds, and the coefficients {bj} enter-

ing (2.5) are non-zero. Then the function V : H ! [0, +1] has

compact sub-level sets in H, vanishes only at the point û, and

controls the LDP for the family {µ"}; that is, for any � 2B(H),
we have

� inf
v2�̇

V(v)  lim inf
"!0+

" log µ"(�)  lim sup
"!0+

" log µ"(�)

 � inf
v2�

V(v).

The facts that V vanishes only at û and has compact sub-
level sets imply that µ"(H\B) s e

c(B)/" as " ! 0, where
B ⇢ H is an arbitrary ball around û, and c(B) > 0 is a number.
Hence, the LDP gives an estimate for the rate of concentra-
tion of µ" around û. Let us also note that in the case when
the limiting dynamics is not globally asymptotically stable, it
is still possible to prove that the family {µ"} is exponentially
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tight, but the validity of the LDP is not known to hold (see
open problem 3 in Sec. VIII). However, more detailed infor-
mation on the limiting dynamics would be sufficient to get the
LDP. For instance, this is the case when there are finitely many
stationary points, and the unperturbed dynamics possesses a
global Lyapunov function. We refer the reader to Ref. 43 for
detail.

VI. INVISCID LIMIT

If the random force f in Eq. (1.1) has the form (5.3) with
h = 0 and with ⌘ as in (2.5), where ⌫ > 0 is fixed and " ! 0,
then the corresponding stationary measure µ"⌫ converges to the
delta-measure at 0 2 H, and the results of Sec. V B describe
this convergence in more detail. Now assume that " and ⌫ both
go to zero in such a way that " = ⌫a with some a > 0. Apply-
ing to µ⌫

a

⌫ relation (3.1) with h = 0 and bj B
p
" bj, j 2 Z2

⇤,
we get ⌅

H

|ru|22 µ⌫
a

⌫ (du) =
B0

2
⌫a�1.

From this we conclude that the measure µ⌫
a

⌫ may have a non-
trivial limit as ⌫! 0 only if a = 1. Then Eq. (1.1) becomes

@tu + hu,riu � ⌫�u + rp =
p
⌫ ⌘(t, x), div u = 0 . (6.1)

Assume that (3.5) holds. Then a stationary measure µ⌫⌫ of (6.1)
is unique. For short, we re-denote it as µ⌫ .62

A. Properties of µ⌫ , independent from ⌫

In this subsection, we discuss a number of properties
of the stationary measures µ⌫ which hold uniformly in ⌫.
They depend only on the quantities B0 and B1 and indi-
cate certain universal properties of the statistical equilibria
of Eq. (6.1).

Relations (3.1) and (3.2) with h = 0 andB0 =: ⌫B0,B1 =:
⌫B1 imply that, uniformly in ⌫,

Eµ⌫ |ru|22 =
1
2
B0, Eµ⌫ |�u|22 =

1
2
B1 . (6.2)

Since |ru|22  |u|2 |�u|2, then Eµ⌫ |ru|22  (Eµ⌫ |u|22)1/2

(Eµ⌫ |�u|22)1/2. It follows that B2
0/2B1  E|u⌫ |22  1

2B0
so that the averaged kinetic energy is bounded below and
above. Moreover, uniformly in ⌫, the measures µ⌫ satisfy
(3.3) with ⌫B 1 (this follows immediately from the proof in
Ref. 37). Consider a stationary solution u

⌫(t, x), corresponding
to µ⌫ . Then E |u⌫ |22 = Eµ⌫ |u|22 , and the Reynolds number of
u
⌫ is

Re⌫ =
hu⌫ihxi
⌫

=

�E |u⌫ |22
�1/2 · 1
⌫

⇠ ⌫�1

[h·i stands for the characteristic size of a variable], while the
averaged kinetic energy 1

2 (E |u⌫ |22) is of order one. So when
⌫ ! 0, the solutions u

⌫ describe space-periodic stationary 2d
turbulence.

Assume that bs ⌘ b s, so the measures µ⌫ are space-
homogeneous, and that bs decays sufficiently fast when
|s| ! 1. In this case, as it is shown in Refs. 31 and 37, the
measures µ⌫ possess additional properties. Namely, let g(r) be
any continuous function, having at most a polynomial growth

at infinity. Then, denoting 3 = rot u, we have the following
balance relation, valid for all ⌫ > 0,

Eµ⌫
g(v(t, x))|rv(t, x)|2 = 1

2
(2⇡)�2B1Eµ⌫

g(v(t, x)) (6.3)

(by the homogeneity the relation does not depend on x).
Since |�u|22 = |rv |22 , then relations (6.2) and the translational
invariance of µ⌫ imply that

Eµ |rv(t, x)|2 = 1
2

(2⇡)�2B1.

So (6.3) means that the random variables |rv(t, x)|2 and
g(v(t, x)) are uncorrelated, for any continuous function g as
above and any (t, x).

The balance relations (6.3) admit a surprising reformu-
lation. For any ⌧ 2 R denote by �⌧(!), the random curve
{x 2 T2 : v!(t, x) = ⌧} (it is well defined for a.a. ⌧ and !, if
bs decays fast enough). Then

Eµ⌫
⌅

�⌧ (!)
|rv! | d` = 1

2
(2⇡)�1B1Eµ⌫

⇥
⌅

�⌧ (!)
|rv! |�1 d`, for a.a. ⌧, (6.4)

where d` is the length element on �⌧(!), and the existence
of the integrals in the l.h.s. and the r.h.s. for a.a. ⌧ is a part
of the assertion. This is the co-area form of the balance rela-

tions. Besides, relations (6.3) imply the following point-wise
exponential estimates:

Eµ⌫ ⇣
e
� |v(t,x) | + e

� |u(t,x) | + e
� |ru(t,x) |1/2 ⌘  K 8 x, (6.5)

valid uniformly in ⌫, where the positive constants � and K

depend only on the first few numbers Bj; see Ref. 37.

B. Inviscid limit

Since estimates (6.2) hold uniformly in ⌫, the family of
measures {µ⌫ , 0 < ⌫  1} is tight in H

2 ✏ and, by Prokhorov’s
theorem, relatively compact in the space P(H2�✏ ), for any
✏ > 0. So any sequence of measures {µ⌫0j , ⌫0

j
! 0} contains

a weakly converging subsequence,

µ⌫j ! µ weakly in P(H2�✏ ) . (6.6)

Relations (6.2) immediately imply that

Eµ |ru|22 =
1
2
B0, Eµ |�u|22 

1
2
B1,

B2
0/2B1  Eµ |u|2  1

2
B0, (6.7)

so µ is supported by the space H
2. More delicate analysis of

the convergence (6.6) shows that

µ(K) = 1, where K = {u 2 H
1 : rot u 2 L1}, (6.8)

see Ref. 19. Moreover, the measure µ is invariant for
the deterministic Eq. (6.1)|⌫=0, i.e., for the free 2d Euler
equation

@tu + (u · r)u + rp = 0, div u = 0 . (6.9)

See Refs. 28 and 37.63 The limit (6.6) is the inviscid limit for
the (properly scaled) stochastic 2d Navier–Stokes equations. In
view of what has been said at the beginning of Subsection VI A,
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the inviscid limit measures µ describe the statistic of space-
periodic stationary 2d turbulence. We summarise the results
concerning this limit in a theorem as follows:

Theorem 6.1. (1) Any inviscid limit measure µ satisfies

(6.7) and (6.8) and is invariant for Eq. (6.9).
(2) If bs ⌘ b s and |bs| decay sufficiently fast as |s|!1, then

the measure µ is space-homogeneous and satisfies (6.5), where

Eµ⌫
should be replaced by Eµ

.

The last assertion follows from (6.5), convergence (6.6),
and Fatou’s lemma. Convergence (6.6) does not allow passing
the limit in (6.3) and (6.4), and we do not know if the balance
relations hold for the inviscid limit measures µ. Relations (6.7)
imply that the limiting measures µ are non-trivial in the sense
that they do not equal the delta-measure in the origin. In fact,
they are non-degenerate in a much stronger sense. To state the
corresponding result, we denote

E(u) =
1
2
|u|22 , E1(u) =

1
2
|rot u|22 =

1
2
|ru|22 ,

and call a real analytic function f (r) admissible if f
00(r) has

at most a polynomial growth as |r|!1 and is bounded from
below (e.g., f is a polynomial of the form f = r

2m + · · · or any
trigonometric polynomial).

Theorem 6.2 (Refs. 29 and 37). (1) The inviscid limits µ
are such that the push-forward measures E⇤µ and (E1)⇤µ are

absolutely continuous with respect to the Lebesgue measure

on R.

(2) If B2 < 1and bs ⌘b s, then for any d 2Nand any admissi-

ble functions f 1, . . . , f d such that their derivatives f
0

1 , . . . , f
0

d
are

linearly independent modulo constants,
64

the push-forward of

µ under the mapping

u(·) 7!
⇣ ⌅

T2
fk(rot u(x)) dx, 1  k  d

⌘
2 Rd ,

is absolutely continuous with respect to the Lebesgue measure.

Due to this result, the Hausdorff dimension of suppµ is
infinite. Indeed, if this is not the case, then choosing d bigger
than the Hausdorff dimension, we see that the push-forward
measure in item (2) of the theorem is supported by a set of
dimension <d, which contradicts the assertion.

VII. 3D NAVIER–STOKES SYSTEM IN THIN DOMAINS

In this section, we consider a thin layer around the torus
T2 and the 3d Navier–Stokes system, perturbed by a random
kick-force with a sufficiently small vertical component. We
show that when the width of the layer goes to zero, statistical
characteristics of the 3d flow converge to those of the 2d flows
(1.1), (2.2), and (2.6), where the kicks ⌘k are the horizontal
components of the 3d kicks. Moreover, this convergence is

uniform in time. Since Earth’s atmosphere is a thin spherical
layer, this result gives a good support to the belief that suitably
chosen 2d stochastic meteorological models can be success-
fully used to model the climate. Usually these 2d models are
related to Eq. (1.1); see the studies25,53 and the references
therein.

Let Q" = T2 ⇥ (0, ") = {x = (x1, x2, x3)}. Consider
the 3d Navier–Stokes system in Q" under the free boundary
conditions,

@tu + hu,riu � ⌫�u + rp = ⌘(t, x), div u = 0, x 2 Q" ,

(7.1)

u3 = @3u1,2 = 0 for x3 = 0 and x3 = ", (7.2)

u(0, x) = u0(x), (7.3)

where u = (u1, u2, u3). Denote by H" (by V") the L2-space
(the H

1-space) of divergence-free vector fields (u1, u2, u3) (x)
on Q" such that u1 and u2 have zero mean. Denote by |·|" the
L2-norm on Q" , i.e., the norm in H"(note that |1|" = "), by
(·, ·)" the corresponding L2 scalar product, and denote
by k·k" the homogeneous norm in V" , kuk" = |ru|" .
The space H as in Sec. II A is naturally embedded
in H" ,

i : H 3 (u1, u2) 7! (u1(x1, x2), u2(x1, x2), 0) 2 H" ,

and the norm of this embedding equals
p
". Introduce in H"

two orthogonal projections,

M"u = ("�1
⌅ "

0
u1(x0, y) dy, "�1

⌅ "

0
u2(x0, y) dy, 0),

N" = id �M" ,

where x
0 = (x1, x2). Then M"H" = iH. The 3d Stokes operator

L" = ��|H" preserves the spaces M"H" and N"H" , and its
eigenfunctions are of two kinds,

es(x1, x2) 2 M"H" , s 2 Z2
" ,

and
e
"
j
(x1, x2, x3) 2 N"H" , j 2 N,

where |es |" = |e"j |" =
p
" for all s and j, and

L"es = |s|2es 8s, L"e
"
j
= ⇤"

j
e
"
j
8 j,

so that

kesk" = (Les, es)1/2
" = |s|

p
", ke"

j
k" =

q
⇤"

j
" .

The vectors es 2 iH will be identified with the eigenvectors
of the 2d Stokes operator (which is the opposite of the 2d
Laplacian, restricted to the space H). Each vector e

"
j

has com-

ponents (e"
j
)l = C

l

j
(sin / cos)(sl

j
· x0) cos( ⇡" n

l

j
x3), l = 1, 2, 3,

where s
l

j
2 Z2

⇤, n
l

j
2 N [ {0} and at least one of the numbers

n
1
j
, . . . , n

3
j

is non-zero. Therefore the eigenvalue ⇤"
j

has the
form

⇤"
j
= Aj + Bj⇡

2"�2, Aj 2 N [ {0}, Bj 2 N . (7.4)

Assume that the force ⌘(t, x) in (7.1) is a kick-process of
the form (2.6) with the kicks

⌘k

"(x) =
X

s2Z2
⇤

bs⇠
k

s
es(x) +

1X

j=1

d
"
j
⇣ k

j
e
"
j
(x) .

Here the constants {bs} and {d"
j
} are such that

B1B
X

b
2
s
|s|2 <1, bs , 0 8 s, D"

1 B
X

(d"
j

)2⇤"
j
<1,
(7.5)
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and {⇠k

s
}, {⇣ k

j
} are i.i.d. random variable with law p(r)dr, where

p 2 C
1
0(�1, 1) satisfies the conditions

p(0) , 0,
⌅

R
rp(r) dr = 0.

We shall compare solutions of Eqs. (7.1)–(7.3) with those
of the kick-forced 2d Navier–Stokes system (1.1), (2.2), and
(2.6), where the kicks ⌘k are

⌘k = M"⌘
k

" =
X

s

bs⇣
k

s
es(x) .

Under the assumptions (7.5), this 2d equation is expo-
nentially mixing in the space H in the sense that there
exists a measure µ 2 P(H) such that for every solution
u(t) of (1.1), (2.2), and (2.6), its law, evaluated at integer
points t 2 N, converges to µ exponentially fast in the dual-
Lipschitz norm in P(H); see Ref. 37. The mixing property for
Eqs. (7.1)–(7.3), claimed in the theorem below, is understood
in a similar way.

Theorem 7.1. Assume that

D"
1  "�1�2("), where �(")! 0 as " ! 0 . (7.6)

Then there exist c0, "0 > 0 such that the following properties

hold.

Exponential mixing. If 0 < "  "0, then the set

O" = {u : kM"uk"  c0
p
", kN"uk"  c0�(")} ⇢ V"

is invariant for Eqs. (7.1)–(7.3) and the dynamics on O" is

exponentially mixing with invariant measure µ" 2 P(O").

Convergence. As "! 0, the measure (M")⇤µ" converges

to µ weakly in H.

Stability. Let v0 2 H be such that k30k1 < c0, let u(t) be

a solution of (1.1), (2.2), and (2.6), equal v0 at t = 0, and let

u"(t) be a solution of Eqs. (7.1)–(7.3) with u0 = iv0 2 O" .

Then

kD(M"u"(t)) �D(u(t))k⇤
L(H) ! 0 as " ! 0,

uniformly in t � 0.

For a random vector field u on Q" , its averaged normalised
kinetic energy is E"(u) = 1

2E |u|2"/Vol(Q") = 1
2"E |u|2" . By

(7.6) and (7.4), for a kick ⌘k

" , we have

E"(M"⌘
k

") =
1
2
2

X

s

b
2
s
⇠ 1,

E"(N"⌘
k

") =
1
2
2

X

j

(d"
j

)2 . "�2("),

where 2 = s r
2
p(r) dr. For the averaged normalised dissipation

of energy D"(u) = 1
2"E kuk2" , we have

D"(M"⌘
k

") =
1
2
2B1 ⇠ 1,

D"(N"⌘
k

") = 1
2 

2D"
1 

1
2
2"�1�2(").

Therefore the vertical component of the random force in (7.1)
should be small in terms of the energy but not in terms of the
dissipation of energy.

VIII. OPEN PROBLEMS

Open problem 1 (Mixing of pipe flow). Let us consider
the Navier–Stokes system (1.1) in the strip

D = {(x1, x2) 2 R2 : x1 2 R, |x2 | < 1}.
The initial-boundary value problem for (1.1) is well posed
in L

1 spaces on D, with no decay conditions at infinity (see
Refs. 1 and 2). Moreover, the problem is dissipative and
possesses a global attractor (in the deterministic setting).
It follows that at least in the case of a bounded stochas-
tic forcing, the random dynamics has a stationary distribu-
tion. A challenging problem is to prove its uniqueness and
mixing.

Open problem 2 (Mixing in the whole space). The 2d
Navier–Stokes system considered on the whole space R2 is
well posed in L

1 spaces (see Refs. 18 and 41). However, it
is not known if the dynamics is dissipative, and it seems to
be a hopeless task to prove any kind of regular behaviour of
solutions under stochastic perturbations. On the other hand,
the Navier–Stokes system with the Ekman damping

@tu + �u + hu,riu � ⌫�u + rp = f (t, x), div u = 0, (8.1)

where � > 0 is a number, is dissipative (see Ref. 55). It is a
natural question to investigate the existence of stationary mea-

sure and its mixing properties under various types of random
perturbation.

Open problem 3 (Vanishing noise limit). The vanish-
ing noise limit of stationary measures described in Theorem
5.2 concerns a rather particular situation: the unperturbed
dynamics should be globally asymptotically stable. This is
a very restrictive hypothesis, and removing it is an impor-
tant question. In the finite-dimensional case, this problem is
rather well understood, and one can establish the so-called
Freidlin–Wentzell asymptotics for stationary measures; see
Sec. 6.4 in Ref. 15. As for stochastic PDE’s, similar results
can be proved, provided that the global attractor for the unper-
turbed dynamics has a regular structure. The latter means that
the attractor consists of finitely many steady states and the
heteroclinic orbits joining them. Such a result is proved in
Ref. 43 for the case of a damped nonlinear wave equation.
The attractor of the Navier–Stokes system is not likely to pos-
sess that property, and the validity of the Freidlin–Wentzell

type asymptotics for stationary distributions remains an open
problem.

Open problem 4 (Inviscid limit). (a) Does the limiting
measure µ in (6.6) depend on the sequence {µ⌫j

}? (We believe
that it does.)

(b) Consider the energy spectrum of a measure µ as above

Ek(µ) = Z
�1

X

{s2Z2
⇤ :M�1k |s |Mk }

Eµ |us |2,

where Z is the number of terms in the sum and M > 1 is a
suitable constant. Do there exist positive constants a, b, and C

such that
C
�1

k
�a  Ek(µ)  Ck

�b (8.2)
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for all k � 1? Do the exponents a and b depend on the inviscid
limit µ?

(c) Do the stationary measures µ⌫ satisfy (8.2) for
C1⌫ ↵  k  C2⌫ � , for suitable 0  ↵ < � and C1, C2 > 0?
See Ref. 4 for an affirmative answer to this question with
a = b = 2 and ↵ = 0, � = 1, when u is a solution of the 1d
stochastic Burgers equation.

Open problem 5 (thin 3d domains). Improve the result
of Theorem 7.1 by replacing condition (7.6) with a weaker
restrain, thus allowing in (7.1) for random forces with big-
ger vertical components (this seems to be possible to achieve
by making better use of the stochastic nature of the force
⌘). Obtain similar results for 3d stochastic models of Earth’s
atmosphere and their suitable 2d approximations.
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