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Abstract

In this paper consistency of the Frequency Domain Bootstrap for differentiable functionals of spec-
tral density function of a linear stationary time series is discussed. The notion of influence function in
the time domain on spectral measures is introduced. Moreover, the Fréchet and Hadamard differen-
tiability of functionals of spectral measures are defined in the time domain. Sufficient and necessary
conditions for consistency of the FDB in the considered problems are provided and the second order
correctness is discussed for some functionals. Finally, validity of the FDB for the empirical processes
is considered. As an illustration the notions of quantile and range in the time domain are discussed.
A simulation study is provided, in which performance of the FDB is analyzed.
Keywords: bootstrap, empirical process, Fréchet differentiability, influence function, second order
correctness, spectral density function, spectral measure.

1 Introduction

Bootstrap for dependent data has been developed over the last three decades. Most of existing boot-
strap approaches are designed for the time domain. Widely applied for stationary time series are block
bootstrap methods. For instance, the Moving Block Bootstrap ([25], [27]), the Circular Block Bootstrap
([37]), the Stationary Bootstrap ([38]), the Tapered Block Bootstrap ([33]), the Regenerative Block Boot-
strap ([3]). Some of these techniques can be also adapted for nonstationary data. Additionally, there
exist methods introduced for particular classes of nonstationary time series. Among them we have the
Seasonal Block Bootstrap ([35]), the Periodic Block Bootstrap ([5]), the Generalized Seasonal Block Boot-
strap ([16]), the Generalized Seasonal Tapered Block Bootstrap ([17]), the Extension of Moving Block
Bootstrap ([14], [15]). Sometimes in the parametric setting it is also possible to apply to dependent
sequences the techniques designed for i.i.d. data like the i.i.d. bootstrap of Efron [13] or wild bootstrap
of Wu [45] (see e.g., [26] and [43]).
Alternatively, one may bootstrap the time series in the frequency domain. In that case the usual ap-
proach is to apply the i.i.d. bootstrap to studentized periodogram estimates ([19], [18], [29]). The most
classical example of this idea is the Frequency Domain Bootstrap (FDB). Other method called the Local
Bootstrap (LB) was proposed in [32]. In this approach one bootstraps the periodogram ordinates locally
around the frequency of interest. In contrary to the FDB, the LB does not require estimation of the
spectral density function. Both methods share same limitations of applicability, i.e. they are consistent
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only for some classes of functionals. To extend applicability of the bootstrap in the frequency domain
a few other bootstrap methods were proposed: the Autoregressive Aided Periodogram Bootstrap ([24]),
the Convolved Bootstrapped Periodograms of Subsamples (CBPS) ([28]) and the Time Frequency Toggle
(TFT)-bootstrap ([23]). All these approaches are much more difficult to implement than the FDB. They
depend on unknown tuning parameters. Moreover, in contrary to other techniques the TFT-bootstrap is
not purely a frequency domain technique. Indeed, the idea is to bootstrap Fourier coefficients obtained
after applying a fast Fourier transform to the considered time series, and at the end, to back-transformed
these quantities to obtain a bootstrap sample in the time domain. It should be also noticed that the CBPS
is asymptotically valid in quite general framework for linear functionals and could be adapted to the gen-
eral functional considered in this paper, but it seems very challenging to study its second order properties.
In this paper we focus on the classical Frequency Domain Bootstrap. Till now its consistency/inconsistency
was proven in some particular cases, mainly for stationary linear processes. Franke and Härdle [18] con-
sidered the problem of spectral density estimation, while Dahlhaus and Janas [10] obtained validity of
the FDB for ratio statistics and Whittle estimator. Finally, Kim and Nordman [22] extended its appli-
cability for Whittle estimator to long-range dependent linear models. It is worth to indicate that the
FDB works for Whittle estimator since the functional corresponding to the Whittle estimator may be
expressed approximately as a ratio statistic as will be seen later. Moreover, it is known that the FDB
is not consistent for some functionals e.g., the autocovariance function. This originates from the fact
that the FDB assumes that periodogram ordinates are independent while for non-Gaussian processes
this condition usually does not hold. As a result bootstrap variance for the considered statistics not
always converges to the asymptotic one (see e.g., [20], [31]). However, till now in the literature there is
no result stating the form of the class of functionals for which the FDB is consistent, while for particular
functional it is important to know if the simplest bootstrap approach is valid or some generalization is
essential. The main advantage of the FDB method is the fact that it is based on the i.i.d. bootstrap and
does not require choosing any tuning parameters like for instance block length. Moreover, till now the
second order correctness was proven only for the FDB in some specific cases.
The aim of this paper is twofold. At first, we revisit some well known bootstrap consistency results
for spectral density function. We focus on smooth functions of linear functionals of spectral density.
In particular we give necessary and sufficient conditions for the validity of the FDB. Essentially, in the
general (non-Gaussian) case, the FDB works for functions (of linear functionals), which are homogeneous
of degree 0. We then generalize existing results to differentiable functionals of spectral density function
in the framework of stationary linear processes. For that purpose we introduce a concept of influence
function in the time domain analogously to the i.i.d. case, but on spectral measures instead of cumulative
distribution functions. These influence functions behave quite differently than in the usual i.i.d. set-up
and may not be automatically centered. Moreover, we define the notion of the Fréchet differentiability
of functionals of spectral measures. The FDB is asymptotically valid if and only if the kurtosis of the
process is 0 (for instance in the Gaussian case) or if the functional of interest has a centered influence
function, which is the case for ratio statistics as well as some Whittle estimators. We then study under
what conditions the empirical process in the frequency domain, as considered in [8], converges to some
Gaussian process and when its bootstrap version is valid. We essentially show that this holds if and only
if all the functions are centered with respect to the given spectral density. In other cases, the bootstrap
will fail to give the correct asymptotic distributions. These results allow us to prove the validity of the
bootstrap for large classes of interesting statistics. In details, we discuss case of quantile and range. For
this purpose we introduce a version of the Hadamard differentiability in the time domain.
Paper is organized as follows. In Section 2 notation is introduced and the FDB algorithm is recalled.
Consistency of the FDB for differentiable functions of linear functionals and its second order correctness
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is discussed in Section 3. Influence function in the time domain is introduced in Section 4 and some
examples are presented. Section 5 is dedicated to the sufficient and necessary conditions for asymptotic
validity of the FDB for Fréchet differentiable functionals in the time domain. The analogous conditions
for empirical processes are formulated in Section 6. Section 8 contains short discussion of the obtained
results. All proofs can be found in the Appendix.

2 Problem formulation

Let {Xt, t ∈ Z} be a real valued stationary time series. For simplicity we assume that EXt = 0.Moreover,
let Xt admit an infinite moving average representation

Xt =

∞∑
j=0

ajζt−j with

∞∑
j=1

j2|aj | <∞, a0 = 1,

where (ζt)t∈Z is an i.i.d. sequence with Eζ2t = σ2 and Eζ8t <∞. Such conditions allow to verify easily the
conditions for asymptotic normality of the estimators that we are going to consider (see [7], Corollary
3.2)
Let R(k) = Cov(X1, X1+k) be the autocovariance function of the process Xt and let

f(ω) = 1/(2π)

∞∑
k=−∞

R(k) exp(−ikω)

be its spectral density function.
By In(ω) we denote the periodogram i.e.,

In(ω) =
1

2πn
dn(ω)dn(−ω), (1)

where

dn(ω) =
n∑

t=1

Xt exp(−itω), ω ∈ [−π, π] (2)

is the discrete Fourier transform of {Xt, t ∈ Z}. It is known that In(ω) is not a consistent estimator of
the spectral density f but it is asymptotically unbiased and may serve as a basis for estimating many
parameters.

In this paper we are interested in functionals of the spectral density T (f) and in particular, smooth
functions g (second order differentiable) of linear functionals

T (f) = g(A(ξ, f)),

where

A(ξ, f) =

(∫ π

0
ξ1(ω)f(ω)dω,

∫ π

0
ξ2(ω)f(ω)dω, . . . ,

∫ π

0
ξp(ω)f(ω)dω

)′

and
ξ = (ξ1, . . . , ξp) : [0, π] → Rp.

We usually estimate T (f) using the plug-in estimator T (In). Its bootstrap counterpart is obtained using
the Frequency Domain Bootstrap (FDB), which we recall in Section 2.2.
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2.1 Discretized versions

In general, to compute integrals in A(ξ, f) we estimate the functional by using the Riemann approximation
of the integral at specific frequencies, most of the time the Fourier frequencies λ̃jn = 2πj/n, j = 1, . . . , n0,
where n0 = [n/2] is the integer part of n/2. We denote

Ãn(ξ, f) =

2π

n

n0∑
j=1

ξ1(λ̃jn)f(λ̃jn),
2π

n

n0∑
j=1

ξ2(λ̃jn)f(λ̃jn), . . . ,
2π

n

n0∑
j=1

ξp(λ̃jn)f(λ̃jn)

′

.

However, it is known that the error of approximation in this case is of order O(n−1)

2π

n

n0∑
j=1

ξi(λ̃jn)f(λ̃jn)−
∫ π

0
ξi(ω)f(ω)dω ∼ n−1π (ξi(π)f(π)− ξi(0)f(0)) /2,

where an ∼ bn means that an/bn −→ 1 as n −→ ∞.
Assume in addition that ξ1(ω)f(ω) is twice differentiable, which, under the condition that we introduce
later, will reduce to the assumption that the spectral density is twice differentiable. Then one can rather
choose an approximation at the midpoint frequencies λjn = (2πj + π)/n. By the well known Polya’s
theorem, we have

2π

n

n0∑
j=1

ξi(λjn)f(λjn)−
∫ π

0
ξi(ω)f(ω)dω ∼ π2

24n2

(
(ξif)

′
(π)− (ξif)

′
(0)
)
.

If the spectral density is not twice differentiable, then the approximation will be of order O(n−1). Notice
that the periodogram is infinitely differentiable as a function of ω. Thus, when we replace f by In we
automatically get

2π

n

n0∑
j=1

ξi(λjn)In(λjn)−
∫ π

0
ξi(ω)In(ω)dω = O(n−2).

As a consequence we will always gain in using the discretization at midpoint frequencies λjn = (2πj+π)/n
and hence such λjn are chosen in the sequel. This is a minor point if we are interested only in the first order
asymptotics but it can have important consequence for one and two sided confidence intervals. The ap-

proximation error in the case of the standardized version of n1/2
(
2π
n

∑n0
j=1 ξi(λ̃jn)f(λ̃jn)−

∫ π
0 ξi(ω)f(ω)dω

)
typically implies a bias of a size 1/

√
n, when the standard Fourier frequencies are used. To our knowledge,

this has not been discussed before in the bootstrap literature.

2.2 Frequency Domain Bootstrap

The main idea underlying the FDB is based on the observation that the periodogram values evaluated
at different frequencies 0 < ω1 < ω2 < · · · < ωk < π, In(ωj), j = 1, . . . , k are asymptotically independent
and exponentially distributed i.e., asymptotically we have

In(ωj)

f(ωj)

d−→
n→∞

Exp(1).

The FDB essentially consists in ”bootstrapping” these standardized frequencies, once f is estimated by
some convergent estimator.
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Recall that for linear processes considered here, we have (see [41], [26], p. 235)

E

(
In(ωj)

f(ωj)

)
= 1 +O(n−1),

Var

(
In(ωj)

f(ωj)

)
= 1 +O(n−1),

Cov

(
In(ωj)

f(ωj)
,
In(ωk)

f(ωk)

)
= n−1k4 + o(n−1), for j ̸= k,

where
k4 = Eζ4/σ4 − 3

is the kurtosis of the innovations.
This means that even if the random variables are asymptotically independent, they are not independent
for finite n and hence we expect the i.i.d. bootstrap of the frequencies to have problem when k4 ̸= 0.

Below we recall the FDB algorithm together with its simple modification and the consistency result.

Step 0 Compute an estimator of the spectral density f , for instance the kernel estimator

f̂n(ω) = f̂n(ω, h) =
(2π)2

nh

n0∑
j=−n0

k

(
ω − λjn

h

)
In(λjn) (3)

=
1

nh

n0∑
j=−n0

2πk

(
ω − λjn

h

)
|dn(λjn)|2,

where n0 = [n/2] and λjn = (2πj + π)/n. Moreover, k is a kernel on [−π, π], that is a real valued,
non-negative, symmetric function such that

∫∞
−∞ k(x)dx = 1. The smoothing window parameter

h = hn converges to 0 as n→ ∞.

Step 1 Approximate the functional
T (f) = g(A(ξ, f))

by the sequence of Tn = Tn(In) = g(An(ξ, In)), where

An(ξ, f) =

2π

n

n0∑
j=1

ξ1(λjn)f(λjn),
2π

n

n0∑
j=1

ξ2(λjn)f(λjn), . . . ,
2π

n

n0∑
j=1

ξp(λjn)f(λjn)

 .

The correcting factor 2π appears because we are evaluating the functions at ”the Fourier frequen-
cies”.

Step 2 Compute for j = 1, . . . , n0 the standardized periodogram ordinates

ϵ̂jn =
In(λjn)

f̂n(λjn)
.

Because of the estimated standardization, the mean of ϵ̂jn may be neither equal nor close to 1. To
solve this problem, compute the rescaled values

ϵ̃jn =
ϵ̂jn
ϵ̂·n
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with

ϵ̂·n =
1

n0

n0∑
i=1

ϵ̂jn.

Step 3 Generate ϵ∗jn i.i.d. from the empirical distribution Pn0 = 1
n0

∑n0
i=1 δϵ̃jn (by construction EPn0

ϵ∗jn = 1
and VarPn0

(ϵ∗jn) → 1) that is, draw the bootstrap values randomly with replacement from these
rescaled values and compute the bootstrapped periodogram values

I∗n(λjn) = f̂n(λjn)ϵ
∗
jn, j = 1, . . . , n0.

In Step 0 of the FDB algorithm we used the standard kernel estimator with a normalization of the
kernel to 1 on R (

∫∞
−∞ k(x)dx = 1) instead of 2π, which may be found in [26] (see p. 299 below expression

(9.20)) or i.e., in [18], [31], [24]. This standardization by 2π is a source of confusion in many applications
and in several expressions, all the more than the conventions are not same in signal theory.
The (2π)2 in the expression for f̂n(ω) (see formula (3)) may be surprising, but is essentially due to the fact

that the functions are taken at the Fourier frequencies. Thus, 1/(nhn)
∑n0

j=−n0
k
(
ω−λjn

h

)
is a Riemann

integral equivalent to 1/(2πh)
∫ −1/2
−1/2 k(

ω−2πx
h )dx, which converges to 1/(2π) as h→ 0. Integrating locally

In(2πx) also results in an additional 1/2π term.
In Step 1 in some cases it is possible to consider the estimator

Tn = g
(
An(ξ, f̂n)

)
,

where f̂n is an estimator of f . In the parametric case one may use the parametric estimator

f̂n(ω) = f
θ̂n
(ω),

where θ̂n is a convergent estimator of the parameter θ (for instance a Whittle estimator of θ, under
specific assumptions).

Remark 2.1 Notice that ϵ̂jn =
In(λjn)

f̂n(λjn)
essentially aims at reproducing the behavior of

In(λjn)
f(λjn)

which is

asymptotically Exp(1). If one is only interested in asymptotic result, then Step 2 can be skipped and Step
3 can be replaced by the following more parametric bootstrap procedure.

Step 3∗ Generate ϵ∗jn i.i.d. Exp(1), then compute

I∗n(λjn) = f̂n(λjn)ϵ
∗
jn, j = 1, . . . , n0.

Once the frequencies are resampled, then compute the corresponding value of the statistics Tn, that
is

T ∗
n = Tn(I

∗
n) = g(An(ξ, I

∗
n)),

where

An(ξ, I
∗
n) =

2π

n

n0∑
j=1

ξ1(λjn)I
∗
n(λjn),

2π

n

n0∑
j=1

ξ2(λjn)I
∗
n(λjn), . . . ,

2π

n

n0∑
j=1

ξp(λjn)I
∗
n(λjn)

′

.

6



3 Consistency of FDB for differentiable functions of linear functionals

The following theorem, which summarizes the main known results, shows that the FDB is valid only for
specific processes or specific functionals (see Lahiri (2003) ch. 9.2 and references therein).

Theorem 3.1 Assume that

(i) {Xt, t ∈ Z} is a stationary linear process of the form

Xt =

∞∑
j=0

ajζt−j with

∞∑
j=

j2|aj | <∞, a0 = 1,

where (ζt)t∈Z is an i.i.d. white noise with Eζ2t = σ2 and Eζ8t <∞;

(ii) the spectral density estimator f̂n converges to f uniformly over [0, π];

(iii) infλ∈[0,π] f(λ) > 0.

Then we have √
n(An(ξ, In)−A(ξ, f))

d−→
n→∞

N(0,Σξ),

where

Σξ =

[
2π

∫ π

0
ξi(ω)ξj(ω)f(ω)

2dω +
k4
σ4

∫ π

0
ξi(ω)f(ω)dω

∫ π

0
ξj(ω)f(ω)dω

]
1≤i≤p
1≤j≤p

.

Moreover, the FDB satisfies

√
n(An(ξ, I

∗
n)−An(ξ, f̂n))

d−→
n→∞

N(0,Σ∗
ξ) a.s.,

where

Σ∗
ξ =

[
2π

∫ π

0
ξi(ω)ξj(ω)f(ω)

2dω

]
1≤i≤p
1≤j≤p

.

Notice that we have

Σξ = Σ∗
ξ +

k4
σ4
A(ξ, f)A(ξ, f)′. (4)

Thus, the bootstrap asymptotically works when either κ4 = 0 or if the functional of interest is such that
the quantities

∫ π
0 ξi(ω)f(ω)dω = 0. The first condition is for instance satisfied in the Gaussian case, but

is very restrictive in the framework of bootstrap.
Let us recall that we are interested in a smooth functional T (f) = g(A(ξ, f)), which is differentiable
around A(ξ, f). Using Slutsky’s lemma (or the delta method) we derive the corresponding equation to
(4). We have

∇g(A(ξ, f))′Σξ∇g(A(ξ, f))

= ∇g(A(ξ, f))Σ∗
ξ∇g(A(ξ, f))′ +

k4
σ4

||A(ξ, f)′∇g(A(ξ, f))||2,

where ∇ is the gradient operator. Thus, the FDB has the correct asymptotic variance iff k4 = 0 or

A(ξ, f)′∇g(A(ξ, f)) = 0. (5)
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In that case we have that (under appropriate assumptions)

√
n(g (An(ξ, In))− g (A(ξ, f)))

d−→
n→∞

N(0,∇g(A(ξ, f))′Σξ∇g(A(ξ, f))),
√
n(g(An(ξ, I

∗
n))− g(An(ξ, f̂n)))

d−→
n→∞

N(0,∇g(A(ξ, f))′Σξ∇g(A(ξ, f))) a.s.

In particular it is easy to check that for p = 2, if g(x, y) = x/y then (5) holds immediately. This explains
why the bootstrap is asymptotically valid for any ratio statistics

T (f) =

∫ π
0 ξ1(ω)f(ω)dω∫ π
0 ξ2(ω)f(ω)dω

,

for which the second coordinate of A(ξ, f) is nonzero (see [20], [26]). But actually this result covers more
functionals for general p. Indeed, if we want to have

A(ξ, f)′∇g(A(ξ, f)) = 0

for any value of the parameter A(ξ, f) in an open set, then equivalently we have

x′∇g(x) = 0

for any x = (x1, . . . , xp)
′ in an open set. This equation is known as the Euler differential equation and

is equivalent to the fact that g is homogeneous of degree zero. Let us recall that g is homogeneous of
degree zero iff

g(λx1, . . . , λxp) = λ0g(x1, . . . , xp),

which yields by derivation in λ to
x′∇g(x) = 0.

Recall also that if at least one of the coordinates does take the value 0 (a.s), then the function g can
always be expressed as a function of ratio (which explains why ratio plays such an important role in the
validity of the FDB).

Corollary 3.1 When k4 ̸= 0 and g is differentiable in each component in the neighbourhood of A(ξ, f),
homogeneity of degree 0 of g is a necessary and sufficient condition for the FDB to work asymptotically
for g(A(ξ, f)) (provided that ∇g(A(ξ, f)) ̸= 0).

Examples:

1. the FDB for the spectral distribution function, of the variance estimator or of the autocovariance
function R(k) fails unless the kurtosis of the innovations k4 = 0;

2. the FDB for autocorrelation, which can be expressed as ratio statistics, asymptotically works;

3. if T (f) = g(A(ξ, f)) with ξ = (ξ1, . . . , ξp) and g(x1, . . . , xp) =
p∏

i=1
xαi
i with

∑p
i=1 αi = 0, then the

FDB works asymptotically;

4. the FDB is also valid for functionals that are not directly ratios. For instance for p = 2 one can
take g(x, y) = xy

(x2+y2)
, or for p = 3, g(x, y, z) = xyz

(x2z+y2x+z2y)
. These functions are differentiable

outside the set of points for which the denominator equals 0 and they are homogeneous of degree
zero. Moreover, they all can be expressed as functions of different types of ratios.
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3.1 Second order theory for the FDB

Dahlhaus and Janas in [10] proved the second order validity of the FDB in the particular case when the
statistics of interest are ratio of linear functionals. Following their proof it is easy to show that the same
result holds for any function of linear functionals, that is smooth and homogenous of degree 0.
Recall that we consider the process with linear representation

Xt =
∞∑

j=−∞
ajζt−j with

∞∑
j=−∞

j2|aj | <∞, a0 = 1. (6)

Its transfer function is given by

A(ω) =

∞∑
t=−∞

aj exp(itω), ω ∈ [−π, π] (7)

and the spectral density is such that for any ω ∈ [−π, π],

f(ω) =
1

2π
|A(ω)|2 > η, for some η > 0.

Moreover, let f̂ be a tapered estimator of f of the form

f̂(ω) =
1

2π
|dn(ω)|2

with

dn(ω) =
n∑

t=1

h(ρ)
(
t

n

)
Xt exp(−iωt), (8)

where for some ρ ∈ (0, 1] (the proportion of tapered data), we define the taper function h(ρ) : R → [0, 1]
by

hρ(x) = u(x/ρ)I{x∈(0,ρ/2)} + I{x∈[ρ/2,1−ρ/2]} + u((1− x)/ρ)I{x∈(1−ρ/2,1]},

where u : [0, 1/2] → [0, 1] is twice differentiable with bounded second order derivative, u(0) = 0, u(1/2) =
1.

To obtain the second order validity of the FDB we consider the following assumptions.

A1 The function g is twice differentiable, homogeneous of degree 0, such that ∇g(A(ξ, f)) ̸= 0.

A2 (ζt)t∈N (see (6)) are i.i.d r.v’s with distribution P such that EP ζt = 0, VarP (ζt) = 1 and EP ζ
8
t <∞.

A3 M3 := Eζ3t = 0.

A4 The spectral density function f(ω) is such that

inf
ω∈[0,π]

f(ω) > 0.

Moreover, the tapered estimator f̂(ω) is uniformly strongly consistent i.e.,

sup
ω∈[0,π]

|f̂(ω) − f(ω)| −→ 0 a.s. as n −→ ∞.
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A5 ξ = (ξ1, . . . , ξp) : [0, π] → Rp is a vector of bounded functions having bounded variation, which are
extended to the whole real line in a way that the extension is symmetric around 0 and periodic
(with period 2π).

A6 The proportion of tapered data ρ = ρn (see (8)) is such that

ρn ∼ n−δ, δ < 1/6.

A7 The filter coefficients {aj}j∈Z and the Fourier coefficients ξ̂(ω) of ξ(ω) are decreasing exponentially
that is, there exists C > 0 such that

|aj | ≤ exp(−C|j|),

||ξ̂(ω)||2 ≤ exp(−C|ω|),

for all large ω.

A8 The following Cramér condition holds: for some some 0 < δ < 1 and some M > 0, for any
t = (t1, t2), ||t|| > M, ∣∣EP exp(it′(ξ1, ξ

2
1))
∣∣ < 1− δ.

A9 Let Wn,1 = n−1/2
(
dn(

2π
n j1), dn(

2π
n j2), . . . , dn(

2π
n j8)

)′
, (j1, . . . , j8) ∈ {1, . . . , n2 − 1}8 and Wn,2 =∫

(ξ(ω)′, 1)′In(ω) dω . Then the limits of Cov(Wn,1) and Cov (Wn,2) exist and are nonsingular.
Moreover,

∫
(ξ(ω)′, 1)′(ξ(ω)′, 1)f2(ω) dω is nonsingular.

Assumption A3 is very strong. It is clearly satisfied in the Gaussian case but not for general processes.
Condition A8 is automatically satisfied if ξ has an absolutely continuous part with respect to Lebesgue
measure on R. Finally, A9 ensures that the cumulants of order 4 are not degenerate and that their
empirical versions are close to the true ones.
Theorem below states the second order correctness of the FDB for functions or ratio functionals of the
spectral density (when standardized by the true variance).

Theorem 3.2 Let A1−A2 and A4−A9 hold. Then we have almost surely as n→ ∞ uniformly in x

Pr ∗
(
Var∗(g(An(ξ, I

∗
n)))

−1/2(g(An(ξ, I
∗
n))− g(An(ξ, f̂n))) ≤ x

)
− Pr

(
Var(g(An(ξ, In))

−1/2(g(An(ξ, In))− g(A(ξ, f))) ≤ x
)

= −4π
M2

3

σ6n1/2
CP (f)(x

2 − 1) + o(n−1/2),

where CP (f) is a constant depending on P and f . If in addition A3 holds (the skewness of the residuals
is 0), then the bootstrap is second order correct.

Theorem 3.2 shows that the FDB is asymptotically valid and/or second order correct under very
specific conditions:

• for any smooth functional, the bootstrap will be second order correct if EP ζ
3
1 = 0 and k4 =

EP ζ
4
1/
(
EP ζ

2
1

)2 − 3 = 0 that is typically in the Gaussian case;

10



• only homogeneous functions of degree 0 of linear functionals (including ratios of linear functionals)
are candidates for the asymptotic validity when k4 ̸= 0;

• only linear time series with i.i.d. innovations such that Eζ31 = 0 can be second order correct without
corrections.

Thus, one should be careful while applying the FDB method on specific functionals and should not
expect second order corrections without some further modification of the procedure.

A solution to obtain second order valid confidence intervals via calibration of the quantile of the
bootstrap distribution is to use the Edgeworth expansion inversion (see [1]) when M3 ̸= 0. Indeed it is

easy to see with their results that if one has estimators of the quantities M3, σ
2 and CP (f) say M̂3, σ̂

2

and Ĉ such that

P

(∣∣∣∣∣M̂2
3

σ̂6
Ĉ(T 2

n − 1)− M2
3

σ6
CP (ξ)(T (f)

2 − 1)

∣∣∣∣∣ > ε

)
= o(n−1/2),

then we can correct either the original statistics or the bootstrap quantiles to get second order correction.
However, such methods may require some complicated computations to obtain a valid estimator of CP (f).

4 Influence function in the time domain

In this section we introduce a concept of an influence function in the time domain that will allow us later
to state sufficient and necessary conditions for consistency of the FDB.
Note that the functional T (f) = g(A(ξ, f)) can be seen as a functional of the spectral measure F on
[0, π]. We have

A(ξ, f) =

(∫ π

0
ξ1(ω)F (dω),

∫ π

0
ξ2(ω)F (ω), . . . ,

∫ π

0
ξp(ω)F (dω)

)
.

We denote A(ξ, f) and T (f) by A(ξ, F ) and T(F ), respectively, to stress the dependence of F rather than
of f. The natural estimator of T(F ) is simply T(F̂n), where

F̂n(λ) =

∫ λ

0
In(ω)dω

may be also seen by extension as a positive measure

F̂n ([λ1, λ2)) =

∫ λ2

λ1

In(ω)dω.

Since we know that it is easier to get asymptotic distribution of the process
√
n(F̂n − F ), than of the

corresponding process based on non-integrated periodogram, it is natural to try to study the differen-
tiability property of T in the time domain, to get an analogue of the functional delta-method. In this
case we will see that it is possible to introduce a contaminated version of F by some Dirac measure to
compute an equivalent of the influence function but in the time domain.

Let T be a functional defined on a vectorial space of positive measure on [0, π] including Dirac mea-
sures, denoted by F . We define the following notion of influence function in the time domain analogously
to the i.i.d. case, but on spectral measures instead of cdf’s.

11



Definition 4.1 Let T : F →RK be a functional of spectral measures. The uncentered influence function
(with value in RK) or the first order gradient of T in the periodic direction ω0 is given by

T (1)(ω0, F ) =
∂T(F + εδω0)

∂ε

∣∣∣∣
ε=0

.

It is known that the purely periodic process

ηt(ω0) = A cos(ω0t) +B sin(ω0t),

where EA = EB = 0 and Var(A) = Var(B) = 1, has spectral measure given by

hω0 =
δ−ω0 + δω0

2
.

Then for a general process Xt with spectral measure F on [0, π], the contaminated process Xt +
√
2εηt,

where Xt and ηt are independent, has spectral measure F + εδω0 on [0, π]. Thus, the influence function
can be interpreted as the infinitesimal variation of the functional T(F ) when F is contaminated by a
purely periodic process with variance going to 0 at rate

√
2ε.

Examples 1-3:

1. The linear functional A(ξ, F ) has influence function given by

T (1)(ω0, F ) = (ξ1(ω0), . . . , ξp(ω0)) .

Notice that in general ∫ π

0
T (1)(ω0, f)F (dω) ̸= 0.

A particular case is the covariance function of order k

R(k) = EXtXt+k =

∫ π

0
cos(ωk)f(ω)dω,

for which we have
T (1)(ω0, f) = cos(ω0k)

and for some k ∫ π

0
cos(ωk)f(ω)dω ̸= 0.

2. Whittle estimators.
For simplicity all the calculus are made for θ ∈ R, but the final result actually also holds for the
multidimensional case. A Whittle estimator can be seen as a M-estimator that is a solution of the
equation ∫ π

0

ḟθ(ω)

fθ(ω)

(
In(ω)− fθ(ω)

fθ(ω)

)
dω = 0

or equivalently ∫ π

0

ḟθ(ω)

fθ(ω)2
F̂n(dω)−

∫ π

0

ḟθ(ω)

fθ(ω)
dω = 0,

12



where

ḟθ(ω) =
∂fθ(ω)

∂θ
.

Thus, we can define θ = T(F ), the functional solution of the equation

0 =

∫ π

0

ḟθ(ω)

fθ(ω)2
F (dω)−

∫ π

0

ḟθ(ω)

fθ(ω)
dω

=

∫ π

0

ḟθ(ω)

fθ(ω)2
F (dω)−

∫ π

0

ḟθ(ω)

fθ(ω)2
Fθ(dω)

or similarly ∫ π

0

∂

∂θ

(
1

fθ(ω)

)
(F − Fθ)(dω) = 0.

To compute the influence function of T(F ), we consider θ◦ε = T(F + εδω0) the solution of the
equation ∫ π

0

ḟθ◦ε (ω)

fθ◦ε (ω)
2
F (dω) + ε

ḟθ◦ε (ω0)

fθ◦ε (ω0)2
−
∫ π

0

ḟθ◦ε (ω)

fθ◦ε (ω)
dω = 0.

Then calculating the derivative with respect to ε, we get that

−
(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
F (dω)

)
T (1)(ω0, F )

+
ḟθ(ω0)

fθ(ω0)2
−
(∫ π

0

∂2 log(fθ(ω))

∂θ2
dω

)
T (1)(ω0, F ) = 0,

which yields the influence function

T (1)(ω0, F ) =

(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
F (dω) +

∫ π

0

∂2 log(fθ(ω))

∂θ2
dω

)−1

·
(
− ∂

∂θ

(
1

fθ(ω0)

))
. (9)

Moreover, one may note that in the particular case of ARMA or FARIMA models, we have∫ π
0

∂2 log(fθ(ω))
∂θ2

dω = 0 and
∫ π
0

∂
∂θ

(
1

fθ(ω)

)
F (dω) = 0 (see the comment under Remark 1, p. 409

in [22]. Thus, we get

T (1)(ω0, Fθ) = −
(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
Fθ(dω)

)−1
∂

∂θ

(
1

fθ(ω0)

)
.

3. General contrasts.
Notice that the Whittle estimators are a simple case of contrast estimators satisfying some esti-
mating equation ∫ π

0
ψ(ω, Fθ)(F − Fθ)(dω) = 0.

Assuming that ψ is twice differentiable and that there exists a unique solution to this problem for
any F in F , it is easy to compute the corresponding influence function. Consider θ

◦
ε = T(F + εδω0)
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the solution of

0 =

∫ π

0
ψ(ω, Fθ◦ε

)(F + εδω0 − Fθ◦ε
)(dω)

=

∫ π

0
ψ(ω, Fθ

◦
ε
)F (dω) + εψ(ω0, Fθ

◦
ε
)−

∫ π

0
ψ(ω, Fθ◦ε

)Fθ◦ε
(dω).

By derivation, we get

0 = T (1)(ω0, F )

∫ π

0
ψ′(ω, Fθ)F (dω) + ψ(ω0, Fθ)

− T (1)(ω0, F )

(∫ π

0
ψ′(ω, Fθ)Fθ(dω) +

∫ π

0
ψ(ω, Fθ)

.
fθ(ω)dω

)
and hence the influence function is of the form

T (1)(ω0, F ) = −
(∫ π

0
ψ′(ω, Fθ)F (dω)−

∫ π

0
ψ′(ω, Fθ)Fθ(dω)

−
∫ π

0
ψ(ω, Fθ)

.
fθ(ω)dω

)−1

ψ(ω0, Fθ).

The main benefit of having the influence function is that it allows to linearize the functional of interest.
Typically we expect that

T(F̂n)− T(F ) =
∫ π

0
T (1)(ω, F )(F̂n − F )(dω) +Rn,

where Rn is a remainder, which needs to be controlled either by choosing an adequate metric or directly by
hand. In many applications (e.g., Whittle estimator) this remainder is typically of order Rn = oP (n

−1/2).
As a consequence the limiting behavior of

√
n(T(F̂n) − T(F )) is determined by the linear part i.e.,∫ π

0 T
(1)(ω, F )(F̂n − F )(dω). Notice that this linearization allows to study the behavior of the contrast

whether the true model is really Fθ (in this case the influence function becomes very simple) or under a
misspecified model (notice the shift in the denominator).

5 Sufficient and necessary conditions for asymptotic validity of FDB

To establish conditions for the consistency of the FDB, we introduce below a notion of Fréchet differen-
tiability of functionals of spectral measures. For this purpose we first endow the space F with a metric d
between measures. We assume that this metric is compatible with the linear structure of the space i.e.,
that we have d(F + εG, F ) ≤ |ε|CG,F for some constant CG,F depending on G and F.

Definition 5.1 Let T : F →RK be a functional (with no constraint on the total mass of these measures).
T is said to be Fréchet differentiable on F ∈ F for the metric d, with gradient g(1) iff there exists a linear
continuous operator DT(1) : F →RK and a continuous function r : R → RK with r(0) = 0 such that for
any G ∈ F

T(G)− T(F ) =DT(1)(G− F ) + r(d(G,F ))d(G,F ),

where

DT(1)(G− F ) =

∫ π

0
g(1)(ω)(G− F )(dω).
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Remark 5.1 Exhibiting the correct metric, which makes a functional Fréchet differentiable, is a chal-
lenging task. In the i.i.d. case such a task was considered in [12, 2], who proposed to use Zolotalev
metrics indexed by class of functions. This idea can be also adapted in our framework since we know
from [8] that an empirical process indexed by classes of functions in the frequency domain behaves like
an empirical process for i.i.d. data under some entropy metric condition on the class F . The question
of the validity of the FDB then comes down to study separately the validity of the FDB of the linear part
and the rate of convergence of the residual part (which is considered in Section 6).

Lemma 5.1 If T : F →RK is Fréchet differentiable at F for the metric d, then T (1)(ω, F ) is a gradient
of T and we have

T(F̂n)−T(F ) =
∫ π

0
T (1)(ω, F )(F̂n − F )(dω) + r(d(F̂n, F ))d(F̂n, F ).

A von Mises’ type of theorem follows immediately from the representation above. Moreover, under an
additional assumption controlling the behavior of the remainder evaluated at F̂ ∗

n , we establish a necessary
and sufficient condition for the asymptotic validity of the FDB of a non-degenerate general functional.

Theorem 5.1 Assume that the assumptions (i)-(iii) of Theorem 3.1 hold and that T : F →RK is Fréchet
differentiable at F for the metric d, with influence function T (1)(ω, F ). If d(F̂n, F ) = OP (n

−1/2) and
0 <

∫ π
0 T

(1)(ω, F )T (1)(ω, F )′f(ω)2dω <∞, then we have

√
n(T(F̂n)− T(F )) d−→

n→∞
N

(
0, 2π

∫ π

0
T (1)(ω, F )T (1)(ω, F )′f(ω)2dω

+
k4
σ4

(∫ π

0
T (1)(ω, F )f(ω)dω

)(∫ π

0
T (1)(ω, F )f(ω)dω

)′)
.

If additionally d(F̂ ∗
n , F ) = OP (n

−1/2) in probability along the sample, we have

√
n(T(F̂ ∗

n)− T(F̂n))
d−→

n→∞
N

(
0, 2π

∫ π

0
T (1)(ω, F )T (1)(ω, F )′f(ω)2dω

)
in probability along the sample. Then the bootstrap is asymptotically valid iff

k4

∫ π

0
T (1)(ω, F )f(ω)dω = 0. (10)

Remark 5.2 The condition (10) essentially means that either k4 = 0, which is true in the Gaussian
case, or the influence function is centered. As already noticed the latter may not be the case with our
definition of the influence function as shown in the following examples.

Examples :

1. The FDB for a linear functional with only one function (p = 1) i.e., for A(ξ1, F ), is valid iff
k4
∫ π
0 ξ1(ω)f(ω)dω = 0. In particular one can notice that for the autocovariance the FDB does not

work if k4 ̸= 0.
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2. The influence function of the ratio T (F ) =
∫ π
0 ξ1(ω)F (dω)/

∫ π
0 ξ2(ω)F (ω) is given by

T (1)(ω0, Fθ) =
d

dε

( ∫ π
0 ξ1(ω)F (dω) + εξ1(ω0∫ π
0 ξ2(ω)F (dω) + εξ2(ω0)

)∣∣∣∣
ε=0

=
ξ1(ω0)∫ π

0 ξ2(ω)F (dω)
−
ξ2(ω0)

∫ π
0 ξ1(ω)F (dω)(∫ π

0 ξ2(ω)F (dω)
)2

=
ξ1(ω0)− T (F )ξ2(ω0)∫ π

0 ξ2(ω)F (dω)
.

Note that the influence function is automatically centered.

3. Whittle estimators (continuation of Example 2 from Section 4).
In this case, for ARMA or FARIMA models, we have the recentering property∫ π

0
T (1)(ω, Fθ)Fθ(dw) = 0.

T (1)(ω0, Fθ) is precisely the linear part obtained in [10]. It is automatically centered under their
assumptions. This explains why the limiting distribution does not depend on k4 and why the
bootstrap works (asymptotically) in that case. However, notice that in models where the variance
depends on θ, the influence function given by (9) should be considered and may not be centered,
so that the bootstrap may fail in that case!

4. (continuation of Example 3 from Section 4)
If the M-estimator is constructed in the way that∫ π

0
ψ(ω, Fθ)fθ(ω)dω = 0,

then under the assumptions of Theorem 5.1 the FDB is valid. In particular, notice that the Whittle
estimator satisfies this property.

6 Invalidity/validity of the bootstrap for empirical processes in the
time domain

Empirical spectral processes indexed by some class of real functions H satisfying some integrability
conditions are studied in [8]. The framework in the time domain is a bit different from the usual one.
We consider class of functions of the following form

H =

{
h : [0, π] → R such that

∫ π

0
h(w)2f(ω)2dω <∞

}
.

We are interested in the behavior of the (infinite) dimensional vectors of the form{
n1/2

(∫
h(ω)In(ω)−

∫
h(ω)f(ω)dω

)
, h ∈ H

}
and more precisely in the discretized version of this quantity at the Fourier frequencies. We put
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Zn(h) =
2π

n1/2

 n0∑
j=1

h(λjn)In(λjn)−
n0∑
j=1

h(λjn)f(λjn)

 , h ∈ H.

Let us introduce dH the pseudo-distance between spectral densities defined by

dH(f1, f2) = sup
h∈H

{∣∣∣∣∫ h(ω)f1(ω)dω −
∫
h(ω)f2(ω)dω

∣∣∣∣} .
In the following, we will also be interested in the rate of convergence dH(In, f). Indeed typically to

ensure that Theorem 5.1 yields a CLT or to study general M-estimators including the Whittle estimators,
we end-up with controlling dH(In, f) for a specific class of function (see examples in [9]). Moreover, we
want to check under which conditions we have convergence of the bootstrap versions to the same limit
or at least when we have d(F̂ ∗

n , F ) = OP (n
−1/2) as assumed in Theorem 5.1 for this kind of metrics.

Additionally, we introduce the computable discretized version of dF (f1, f2) given by

dF ,n(f1, f2) =
2π

n
sup
h∈F

∣∣∣∣∣∣
n0∑
j=1

h(λjn) (f1(λjn)− f2(λjn))

∣∣∣∣∣∣ ,
which obviously converges to dF (f1, f2) as n→ ∞.

As in [8] the process (Zn(h), h ∈ H) is a random element of l∞(H) (the space of all bounded func-
tions from H to R) equipped with the metric, ||z||H = suph∈H |z(h)|. Moreover, as in the usual case
(l∞(H), ||z||H) is a (generally non-separable) Banach space. It was proven in [8] that under the condi-
tions discussed below (Zn(h))h∈H converges to a Gaussian process in l∞(H).

Define the semi-metric on H
ρ2(h, g) =

∫ π

0
(h(ω)− g(ω))2f(ω)2dω.

When f is bounded (as will be the case later), it is possible to use

ρ̃2(h, g) =

∫ π

0
(h(ω)− g(ω))2dω

as in [9]. However, notice that if one wants to generalize the results presented below to fractional
stationary times series with a singularity at 0, then ρ2 should be used.

The bracketing numberN(δ,H, ρ2) is defined as the smallest numberm such that, there exist functions
g1, g2, . . . , gm ∈ H such that for any g ∈ H, inf1≤i≤m ρ2(g, gi) ≤ δ. At this point we refer the reader to
the discussion in [9] explaining the link between bracketing numbers and regular covering numbers (the
number of balls needed to cover H with balls of size δ) and providing examples of calculus of this quantity
for many classes of functions. In many examples, when f is bounded,

N(δ,H, ρ2) ≤ N(δ,H, ρ̃2)

and these quantities can be bounded by a polynomial Cδ−V for some positive constants C and V.

Following Dahlhaus (1988) we assume the following conditions:
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B0 the process (Xt)t∈Z is strictly stationary and centered;

B1 function f is continuous and Hölder of order k > 1/2 (and thus bounded) that is, for some positive
constant K

|f(ω1)− f(ω2)| ≤ K|ω1 − ω2|k;

B2 the fourth order spectrum is continuous and the spectrum of all order m ≥ 2 are bounded by Cm,
where C is some positive constant;

B3 (H, ρ2) is totally bounded and is a permissible subset of the set of all real functions such that∫ π
0 h(w)

2f(ω)2dω < ∞. Moreover, there exists an envelop H such that |h(ω)| ≤ H(ω), ω ∈ [0, π]
with ∫ π

0
H(w)2f(ω)dω <∞;

B4 the covering number satisfies the integrability condition∫ 1

0
(log(N(δ,H, ρ2))2 <∞;

B5 the spectral density estimator f̂n converges to f uniformly over [0, π].

In this section similarly to [8] we make a stronger assumption B0 on the generating process. The
reason for this is that exponential inequalities (here on weighted sums of the periodogram at the Fourier
frequencies) are essential to obtain maximal inequalities and to control increments of empirical processes
as was done in the i.i.d. case. Condition B4 comes from the paper by Dahlhaus and Polonik [9] who
have improved the original condition of Dahlhaus in [8]. Notice that B4 is stronger than the usual
assumption (in the i.i.d. case) which would rather be of the form

∫ 1
0 (log(N(δ,H, ρ2))1/2 < ∞. This

means that N(δ,H, ρ2) should be of an order much smaller than exp(δ−1/2) (rather than the ”Gaussian”
rate exp(δ−2)). In most applications (in particular if the bracketing number is polynomial) this condition
will be satisfied. This restriction is due to the fact that the exponential inequalities obtained in this
framework are typically proved with a suboptimal rate of order exp(−t1/2) instead of the Gaussian rate
exp(−t2).

In the following we consider the bootstrap version of (Zn(f), h ∈ H), say (Z∗
n(f), h ∈ H), obtained

using the standard FDB procedure described before (either with a parametric estimator of the spectral
density or with a non-parametric one), where

Z∗
n(h) =

2π

n1/2

 n0∑
j=1

h(λjn)I
∗
n(λjn)−

n0∑
j=1

h(λjn)In(λjn)

 .

Theorem 6.1 Under assumptions B0-B5, the empirical spectral process (Zn(h), h ∈ H) converges in
(l∞(H), ||z||H) to a centered Gaussian process with continuous sample paths and covariance operator,
given, for all h ∈ H, g ∈ H by

c(h, g) = 2π

∫ π

0
h(ω)g(ω)f(ω)2dω +

k4
σ4

∫ π

0
h(ω)f(ω)dω

∫ π

0
g(ω)f(ω)dω. (11)
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Moreover, the bootstrap empirical spectral process Z∗
n(h) also converges in (l∞(H), ||z||H) to a (different)

centered Gaussian process with continuous sample paths and covariance operator given, for all h ∈ H, g ∈
H,

c1(h, g) = 2π

∫ π

0
h(ω)g(ω)f(ω)2dω.

As a consequence the FDB of the empirical spectral process is only asymptotically valid on classes of
functions satisfying the additional conditions, for ALL h ∈ H

k4

∫ π

0
h(ω)f(ω)dω = 0.

Moreover, in any case we have
dH(In, f) = OP (n

−1/2)

and
dH(I

∗
n, In) = OP (n

−1/2) in probability along the sample.

These results allow us to prove the validity of the bootstrap for large classes of interesting statis-
tics. For this purpose we introduce a version of the Hadamard differentiability in the time domain
(more precisely in (l∞(H), ||z||H)), which is weaker than the Fréchet differentiability introduced before.
This notion is a time domain version of the Hadamard differentiability definition proposed by Pons and
Turkheim (1991) for regular functionals in probability spaces, which has been successfully used in many
applications. As an illustration we discuss the notions of quantile and range in the time domain, which
may be useful to detect with high probability the important frequencies in a signal. Finally, we state the
validity of the FDB for these functionals.

For a given spectral measure F in ℓ∞(H), define B(H,F) as the set of spectral measures Q in ℓ∞(H)
whose paths f ∈ H 7→ Qf =

∫ π
0 f(w)Q(dw) are ρ2-uniformly continuous and bounded. This is the

smallest natural space containing the Gaussian limiting process of the empirical process studied before.

Definition 6.1 A functional T : ℓ∞(H) → Rq is uniformly Hadamard differentiable at F tangentially
to B(H,F) if and only if there exists a continuous linear mapping dTF such that for any sequence FN

converging to F, any hN converging to h ∈ B(H,F) and every tN converging to 0 such that FN + tN hN ∈
ℓ∞(H), we have: ∀hN ∈ ℓ∞(H),

T (FN + tN hN )− T (FN )

tN
− dTF. h −→

tN→0
0.

Notice that T may not be defined on the entire space ℓ∞(H), but on a subset F only. In this case, one
must check that FN + tN hN ∈ F .

Recall that Hadamard differentiability is weaker than Fréchet differentiability and if the influence
function is easily computable as T (1)(ω, F ), then dTF may be express as

dTF. hN =

∫ π

0
T (1)(ω, F )hN (dω).

The following result establishes a CLT for Hadamard differentiable functionals in the time domain and
the necessary and sufficient conditions for the validity of the FDB.
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Theorem 6.2 Assume that T : ℓ∞(H) → Rq is uniformly Hadamard differentiable at F tangentially
to B(H,F) for a class of functions H which satisfies assumptions B3-B4. Assume in addition that the
additional hypotheses of Theorem 6.1 are satisfied, then we have

√
n(T(F̂n)− T(F )) d−→

n→∞
dTF .GF ,

where GF is the centered Gaussian process with continuous sample paths and covariance operator, given
by c(h, g), h ∈ H, g ∈ H in (see (11)). If in addition, Hadamard differentiability holds for a set H such
that for all h ∈ H, k4

∫ π
0 h(ω)f(ω)dω = 0 or if the functional admits a non-degenerate influence function

such that k4
∫ π
0 T

(1)(ω, F )f(ω)dω = 0, then the limit distribution is given by N
(
0, 2π

∫ π
0 T

(1)(ω, F )2f(ω)2dω
)

and the FDB is asymptotically valid.

Again the condition k4
∫ π
0 T

(1)(ω, F )f(ω)dω = 0, which is easier to check in practice, holds either if
k4 = 0 (typically for Gaussian processes) or for differentiable functionals with centered influence function
in the time domain. Below we provide two important functionals, for which the FDB is valid.

Example 5: Quantiles in the frequency domain
Since the spectral measure F may not be a cumulative distribution function, it is tempting to define its
normalized version by

F̃ (λ) =

∫ λ
0 f(ω)dω∫ π
0 f(ω)dω

.

The corresponding empirical version based on the integrated periodogram is then defined by

F̃n(λ) =

∫ λ
0 In(ω)dω∫ π
0 In(ω)dω

.

Since it is a ratio statistics, this functional (at fixed λ) enjoys the nice properties stressed before: the
bootstrap will be automatically valid for this quantity at any λ. Thus, it is easy to define the quantile
in the time domain as

Tα(F ) = F̃−1(α) = inf{λ, F̃ (λ) ≥ α}.

In particular the range functional F̃−1(1 − α/2)− F̃−1(α/2) can be used in practice to detect which
frequencies are included in the signal with probability 1−α. Let us prove that this functional is Hadamard
differentiable with respect to a well chosen set of functions. Assume that we are working in a set of
functions F that are continuous with continuous spectral density f , which is lower bounded on [0, π]. Let
us first compute ”formally” the influence function. Despite the fact that in most situation computing the
influence function is easy, in practice, this is the first step that must be taken. Since F̃ ( Tα(F )) = α, we
have as ε −→ 0,

(1− ε)F (Tα((1− ε)F + εδω)) + εI{Tα((1− ε)F + εδω) > ω} = α((1− ε)F ([0, π]) + ε)

and by derivation at ε = 0

−F (F̃−1(α)) + T (1)
α (ω, F )f(F̃−1(α)) + I{Tα(F ) > ω} = α− αF ([0, π]).

Since F (F̃−1(α)) = αF ([0, π]), we get the expression (which is actually totally similar to the usual
influence function of the quantile in an i.i.d. case)

T (1)
α (ω, F ) =

α− I{F̃−1(α) > ω}
f(F̃−1(α))

, ω ∈ [0, π].

20



Notice that this influence function is automatically centered with respect to f, because we have∫ π

0
(α− I{Tα(F ) > ω}) f(ω)dw = α

∫ π

0
f(ω)dw −

∫ Tα(F )

0
f(ω)dω

= α

∫ π

0
f(ω)dw − α

∫ π

0
f(ω)dw = 0.

It is known that the inverse operator is Hadamard differentiable in the set of all functions, which have
non-zero derivatives at the point of interest (see [42] and hence is Hadamard differentiable tangentially
to B(H,F). It follows that the quantiles associated to the normalized spectral density are Hadamard
differentiable with differential given by

dTF. hN =

∫ π

0
T (1)
α (ω, F )hN (dω).

As a consequence, F̃−1
n (α) is asymptotically Gaussian and the FDB is consistent, because the influence

function is centered. The same result holds for the range F̃−1(1−α/2)− F̃−1(α/2) with influence function
in the time domain given by

T
(1)
1−α/2(ω, F )− T

(1)
α/2(ω, F )

and the FDB is consistent even in the non-Gaussian case.

Example 6 Comparing spectra
In many fields, it is interesting to compare the spectral measure or spectral density of two independent

signals to test whether they come for instance from the same source (see for instance [6, 11]) or to test
if is the spectral density is equal to some given spectral density f2 (see [30]). The idea is simply to
introduce a distance between the spectrum densities or the spectrum measures. For instance, metrics of
the following forms have been suggested

d2(f1, f2) =

(∫ π

0
|f1(ω)− f2(ω)|2d(ω)

)1/2

(12)

or

W1(F1, F2) =

∫ π

0
|F1(ω)− F2(ω)|dω. (13)

These quantities may be seen respectively as a L2 metric and a L1-Wasserstein distance in the time
domain. The idea is simply to use the plug-in versions of (12) and (13) based on the periodogram to
get an estimator of the distance. Under H0 : f1 = f2, estimates of these quantities should be close to 0.
However, one should be aware of the fact that the test is going to reject the null hypothesis H0 : f1 = f2
againstH1 : f1 ̸= f2 even if the spectra of the signals are the same, but the scaling constants for the signal
are different. Indeed if (Xt)t∈Z and (Yt)t∈Z are two independent copies of the same signal (with common
spectrum density f), then (Xt)t∈Z and c(Yt)t∈Z (c - constant, c ̸= 1), then they have spectral densities
f and cf , respectively. Similarly, if one considers scaling by a random variable A > 0 (independent of
the signal) with mean 0 and variance σ2A, then (Xt)t∈Z and A(Yt)t∈Z have spectral densities respectively
f and σ2Af . In many fields, one wants to detect if the spectrum (the frequencies in the signal) is (are)
the same, while the scaling is considered as a side effect. Thus, in practice it is recommended to use the
standardized versions of the quantities introduced before say

d̃2(f1, f2) =

(∫ π

0

∣∣∣∣ f1(ω)∫ π
0 f1(ω)dω

− f2(ω)∫ π
0 f2(ω)dω

∣∣∣∣2 d(ω)
)1/2
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and

W1(F̃1, F̃2) =

∫ 1

0
|F̃−1

1 (α)− F̃−1
2 (α)|dα =

∫ π

0
|F̃1(ω)− F̃2(ω)|dω,

where F̃−1
i , i = 1, 2 are the standardized quantiles introduced in Example 5. It is not difficult to see that

these functionals are homogeneous of degree 0 in term of the joint spectrums (f1, f2). The corresponding
plug-in versions are asymptotically normal and the FDB is asymptotically valid under H0.
To explain why it works, consider for instance the simple case, where one wants to test if the signal
comes from the standardized spectrum F̃ associated to the spectral density f , based on the functional
W1(F̃1, F̃ ). Assume that we observe n consecutive observations from the signal (Xt)t∈Z . Denote by In,X
the periodogram. Then W1(F̃1, F̃ ) is estimated by

Ŵ1 =

∫ π

0

∣∣∣∣
∫ ω
0 In,X(λ)dλ∫ π
0 In,X(λ)dλ

−
∫ ω
0 f(λ)dλ∫ π
0 f(λ)dλ

∣∣∣∣ dω
(or its discretized version) and the bootstrap version is given by

Ŵ ∗
1 =

∫ π

0

∣∣∣∣∣
∫ ω
0 I∗n,X(λ)dλ∫ π
0 I

∗
n,X(λ)dλ

−
∫ ω
0 In,X(λ)dλ∫ π
0 In,X(λ)dλ

∣∣∣∣∣ dω.
The functional h→

∫ π
0 |h(ω)| dω is a continuous function. By the continuous mapping theorem (see for in-

stance [44]), it is sufficient to prove that
√
n
(∫ ω

0 In,X(λ)dλ∫ π
0 In,X(λ)dλ

−
∫ ω
0 f(λ)dλ∫ π
0 f(λ)dλ

)
and

√
n

(∫ ω
0 I∗n,X(λ)dλ∫ π
0 I∗n,X(λ)dλ

−
∫ ω
0 In,X(λ)dλ∫ π
0 In,X(λ)dλ

)
have the same limiting distributions (seen as processes indexed by ω ∈ [0, π]) say GI(ω) and GI∗(ω),
respectively. But these quantities are actually ratios and hence one can apply Theorem 6.1. Thus, we
have

n1/2Ŵ1
d−→
∫ π

0
|GI(ω)| dω as n −→ ∞

and

n1/2Ŵ ∗
1

d∗−→
∫ π

0
|GI∗(ω)| dω in pr. as n −→ ∞,

which validates the use of the bootstrap for such quantities.
Testing equality between two spectra may be treated similarly (by separating the two estimators

under H0). It follows that the quantile of the FDB distribution can be successfully used to test equality
to a given spectrum or equality of two spectra. The general case with Lp metric is more difficult and
requires more sophisticated tools (as is in the i.i.d. case for Wasserstein distance) but provided that we
use standardized spectra, we still expect the FDB to be valid.

7 A simulation study

In this section we perform some simulations to study the performance of the FDB for some Whittle
estimator. We generate Gaussian and non-Gaussian, linear and non-linear time series.
The following time series are considered:

S1 Xt is an AR(1) process, Xt = ϕXt−1+εt, t = 1, ..., n, with |ϕ| < 1, X0 has distribution N
(
0, σ2

1−ϕ2

)
and is independent of εt, which are i.i.d. N(0, σ2). Thus, the process is Gaussian with the stationary

distribution N
(
0, σ2

1−ϕ2

)
;
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S2 Xt is an AR(1) process Xt = ϕXt−1 + σεt, t = 1, . . . , n, with |ϕ| < 1 and εt i.i.d. Exp(1)− 1. The
process is simulated using a burning period (500 observations are thrown away) to get a stationary
process;

S3 Xt is an ARCH model Xt = (1 + βX2
t−1)

1/2 εt , with |β| < 1, εt i.i.d. N(0, σ2);

S4 Xt is an Exponential Threshold Autoregressive Model say ETAR(1) defined by

Xt+1 =
(
ϕ1 + ϕ2e

−|Xt|2
)
Xt + εt+1,

where the noise (εt)i=1,...,n are i.i.d. Gaussian with variance σ2.

Notice that the model S3 is not linear and hence is not fulfilling assumptions of our theorems. More-
over, all correlations are 0 and hence the spectral density is similar to the one of a white noise and
is unable to capture the dependence structure of the original data. Thus, we expect that the FDB will
perform badly in that case. For S4 assume that |ϕ1| < 1. Note that S4 is a Markov chain with a Gaussian
noise, but is not a Gaussian process. It has a stationary distribution with a very strong dissymmetry.
For large values of |Xt|, it is easy to see that in mean Xt+1 behaves like a simple AR(1) model with
coefficient ϕ1. The condition |ϕ1| < 1 ensures that the process will come back to its mean, equal to 0.
Conversely, for small values of |Xt| (close to 0), the process behaves like an AR(1) model with coefficient
ϕ1 + ϕ2. We may even assume that ϕ1 + ϕ2 ≥ 1, which makes the process almost explosive in the short
term until it reaches a level, which ensures that it will return to 0. This kind of process is able to describe
bursting bubbles in finance (see [4]). It has been shown in [4] that most bootstrap methods including
the Moving Block Bootstrap and the Sieve Bootstrap perform very badly for this kind of processes, in
a case when the considered process exhibits a lot of bubbles. Model S4 is an interesting benchmark to
study bootstrap methods in a dependent framework.

For S1-S4 we set σ2 = 1. One can easily notice that the performance of the method deteriorates as
σ2 is growing. We choose ϕ = 0, 0.5, 0.9 and 0.99 to evaluate the effect of being more and more de-
pendent and close to the unit root process. Additionally, for models S3 and S4, β = 0.5, 0.9 and ϕ2 = 0.5.

Let the parameter θ be the correlation between Xt and Xt−1. In our study we calculate the actual
coverage probabilities of two-sided confidence intervals for θ (when the nominal coverage is 95%). For
that purpose we apply the Whittle procedure assuming that the true spectral density has the form of an
AR(1) model with parameter θ. Thus, for S1 and S2 we have θ = ϕ. For S3, we have θ = 0. For S4 the
true value of θ is computed by Monte-Carlo simulation (over 50 000 simulations, the relative precision is
of order 10−3).
To have an idea of the accuracy of the FDB method in comparison to other bootstrap methods, we addi-
tionally perform all simulation using the Circular Block Bootstrap (CBB). Independently of the chosen
method a clear difficulty is the choice of the tuning parameters. For the FDB, from the simulation, it
appears that the choice of the smoothing parameter for estimating the original spectral density is critical.
Indeed, we realized that when the process becomes more and more dependent the nonparametric esti-
mator tends to be strongly biased resulting in a severe bias on the bootstrap distribution. This was also
recently stressed in a simulation paper for the standardized mean by Kim and Im (2019). A fine analysis of
simulations also shows that the usual nonparametric automatic choice of the smoothing parameter results
in over-smoothing of the spectral density, especially when the process is close to nonstationarity (S1-S2
for ρ ≥ 0.9). Despite this bias the bootstrap distribution still recovers the correct variance of the statistics
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Table 1: Functional T1: actual coverage probabilities of equal-tailed bootstrap percentile (Perc) and
bootstrap-t (B-t) confidence intervals for sample size n = 200. Nominal coverage probability is 95%.

model parameters Perc FDB B-t FDB Perc CBB B-t CBB

ϕ = 0.0 0.914 0.927 0.952 0.931
S1 ϕ = 0.5 0.819 0.924 0.877 0.937

ϕ = 0.9 0.790 0.859 0.570 0.948

ϕ = 0.0 0.920 0.925 0.926 0.912
S2 ϕ = 0.5 0.910 0.893 0.775 0.924

ϕ = 0.9 0.801 0.854 0.592 0.947

S3 β = 0.5 0.714 0.650 0.898 0.846
β = 0.9 0.642 0.552 0.896 0.818

ϕ1 = 0.0, ϕ2 = 0.5 (θ = 0.092) 0.912 0.933 0.957 0.922
S4 ϕ1 = 0.5, ϕ2 = 0.5 (θ = 0.546) 0.965 0.955 0.879 0.960

ϕ1 = 0.9, ϕ2 = 0.5 (θ = 0.910) 0.953 0.902 0.291 0.987

of interest. Thus, we decided to compare the performance of the standard percentile bootstrap confidence
intervals (based on the α/2 and 1−α/2 quantiles) with the bootstrap-t confidence intervals. We chose a
more rough estimator of the spectral density estimator by taking h = n−1/3 ∗ (1 − θ̂2)1/2Var(x)1/2. The
idea is to take a bandwidth smaller than n−1/5 with a constant roughly proportional to the variance of
the noise, but which becomes small when the dependence increases. We tried to apply many bandwidths,
including adaptive bandwidth choice (see bwadap in R based on [36], the program gives actually an in-
correct choice for the bandwidth) and the chosen by us bandwidth provides satisfactory results. For the
CBB the choice of the block size is also problematic. We use an automatic block length choice based on
the method of [39] (see corrections in [34]). It should be noticed that in term of computation, the FDB
in this setting is more efficient (almost 20 times faster), than the CBB, which requires the computation
of a different spectral density estimators for each replication.

Our simulation show (see Tables 1-2) that none of the considered bootstrap methods is a panacae. It
suggests to use several methods to test the robustness of the procedures. First of all, we noticed that in
most cases the bootstrap-t confidence intervals for the FDB and the CBB have relatively good coverage
probabilities, whereas the percentile confidence intervals may be quite inaccurate especially, when the
dependence becomes stronger. It means that both methods (except for the FDB in model S3) are able
to estimate correctly the variance of the statistics of interest. However, depending of the generating
process an important bias (essentially due to the estimation of the spectral density) may jeopardize the
confidence intervals. The percentile confidence intervals become totally irrelevant when one is close to
the unit root (it is known that most bootstrap methods fail in this case). To explain this phenomenon
one must recall that the true distribution of the estimator of θ is highly skewed when alpha becomes close
to 1 and none of the methods is able to reproduce correctly this skewness. That can be clearly observed
for the strongly skewed process S2. Interestingly, for the difficult process S4, the FDB provides better
results than the CBB. In term of coverage we are close to the nominal level, whereas the CBB tends to
be too conservative (due to too high estimates of the variance). Indeed, for most simulations, intervals
lengths are quite similar for both bootstrap methods except for the model S4 for which the CBB provides
wider intervals than the FDB. As was expected, the FDB totally fails for the ARCH process. It can be
explained by the fact that the second order structure of the process is similar to the one of a white noise
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Table 2: Functional T1: actual coverage probabilities of equal-tailed bootstrap percentile (Perc) and
bootstrap-t (B-t) confidence intervals for sample size n = 1000. Nominal coverage probability is 95%.

model parameters Perc FDB B-t FDB Perc CBB B-t CBB

ϕ = 0.0 0.955 0.950 0.947 0.949
S1 ϕ = 0.5 0.859 0.936 0.874 0.948

ϕ = 0.9 0.820 0.932 0.832 0.951

ϕ = 0.0 0.932 0.943 0.945 0.935
S2 ϕ = 0.5 0.950 0.947 0.857 0.946

ϕ = 0.9 0.889 0.906 0.583 0.968

S3 β = 0.5 0.638 0.588 0.905 0.878
β = 0.9 0.593 0.532 0.904 0.875

ϕ1 = 0.0, ϕ2 = 0.5 (θ = 0.092) 0.936 0.939 0.939 0.926
S4 ϕ1 = 0.5, ϕ2 = 0.5 (θ = 0.546) 0.971 0.969 0.880 0.953

ϕ1 = 0.9, ϕ2 = 0.5 (θ = 0.910) 0.948 0.953 0.264 0.978

so that the FDB is unable to reproduce the dependence structure and hence fails to provide even the
correct variance of the estimators. Note that the usual percentile CBB confidence interval completely
fails for S4 model when the bubbles are very explosive (α1 = 0.9, α2 = 0.5). This can be explained by
the fact that the CBB introduces a lot of artificial breaks in the reconstructed bootstrap time series.

Summarizing, before applying the FDB (and even the CBB) procedure for some parameters for which
the FDB is supposed to work asymptotically (function of ratios or function of differentiable functionals
with centered influence function) we recommend to verify if the considered times series does not present
some conditionally heteroscedastic effects or is not too strongly skewed.

8 Summary and conclusions

In this paper we provided sufficient and necessary conditions for the consistency of the FDB in the case
of linear stationary time series. For this purpose we defined the influence function in the time domain
on spectral measures, which allowed us to linearize the functional of interest. Moreover, we introduced
a notion of Fréchet differentiability of functionals of spectral measures. We discussed consistency of the
FDB and its second order correctness for differentiable functionals of spectral density function. Finally,
we stated sufficient and necessary conditions for the FDB validity in the case of empirical processes.
Our results allow to understand why the FDB is valid for some functionals (e.g., the Whittle estimator)
or empirical processes and for which functionals or empirical processes it can be consistent. For instance
only homogeneous functions of degree 0 of linear functionals (including ratios of linear functionals) are
candidates for the asymptotic validity of the FDB when kurtosis of innovations is equal to zero. More-
over, we indicated that the second order correctness can be obtained only for linear time series with
i.i.d. innovations such that Eζ31 = 0. Thus, one should carefully apply the FDB method for particular
functionals. Our simulation study shows that the FDB performs well for standard AR models but may
have problems with ARCH models. Moreover, it outperforms the block bootstrap method in a case of
an ETAR model.
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Appendix

Proof of Theorem 3.2
Proof of Theorem 3.2 follows the same reasoning as presented in [10] and hence we skip the technical
details.
It is sufficient to note that the cumulants of the true distribution and the bootstrap one differ essentially
in the term in M2

3 appearing in the cumulants of order three of the statistics of interest (see (3.9) and
Lemma 2 from [10]). As noticed in Theorem 1 of the same authors the other terms match in the expansion
if M3 = 0. �

Proof of Lemma 5.1
Since T is Fréchet differentiable with gradient g(1), we get

T(F + εδω0)− T(F )= ε

∫ π

0
g(1)(ω)δω0(dω) + r(d(F + εδω0 , F ))d(F + εδω0 , F )

= εg(1)(ω0) + o(ε)

and by definition

T(F + εδω0)− T(F )
ε

−→ g(1)(ω0) = T (1)(ω0, F ) as ε −→ 0.

�

Proof of Theorem 5.1
The representation and the hypothesis on the metric imply that

√
n(T(F̂n)−T(F )) =

√
n

∫ π

0
T (1)(ω, F )(F̂n − F )(dω) + oP (1).

Then applying Corollary 4.1. from [24] one gets the asymptotic distribution.
Similarly for the bootstrap, by applying the Fréchet differentiability assumption twice we have

√
n((T(F̂ ∗

n)− T (F )) + (T (F )− T(F̂n)) =
√
n

∫ π

0
T (1)(ω, F )(F̂ ∗

n − F̂n)(dω) + oP (1).

Applying Theorem 3.1 to the linear part one gets the limiting distribution

N

(
0, 2π

∫ π

0
T (1)(ω, F )T (1)(ω, F )′f(ω)2dω

)
,
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which coincides with the distribution of
√
n(T(F̂n)− T(F )) iff(∫ π

0
T (1)(ω, F )f(ω)dω

)(∫ π

0
T (1)(ω, F )f(ω)dω

)′
= 0.

The last condition implies (by taking the trace) that∥∥∥∥∫ π

0
T (1)(ω, F )f(ω)dω

∥∥∥∥2 = 0,

which ends the proof of the theorem. �

Proof of Theorem 6.1
The proof follows standard arguments from the empirical process literature.
The marginal distribution converges obviously to the marginal distribution of the limit process by The-
orem 3.1. The result concerning (Zn(h), h ∈ H) is a special case of Dahlhaus [8] (with no tapering and
for the univariate time series). Thus, essentially we have to prove the result for the bootstrap empirical
process.
Notice that we have

Z∗
n(h) =

2π

n1/2

 n0∑
j=1

h(λjn)f̂n(λjn)(ε
∗
jn − 1)−

n0∑
j=1

h(λjn)(In(λjn)− f̂n(λjn))


= I + II + III

with

I =
2π

n1/2

n0∑
j=1

h(λjn)f(λjn)(ε
∗
jn − 1),

II =
2π

n1/2

n0∑
j=1

h(λjn)(f̂n(λjn)− f(λjn))(ε
∗
jn − 1),

III =
2π

n1/2

n0∑
j=1

h(λjn)(In(λjn)− f̂n(λjn)).

We are going to show that II and III are uniformly small of order oP (1), so that the limiting distribution
is essentially given by I. But notice that this is simply a process with i.i.d. random variables and hence it
is sufficient to verify for instance the assumptions of Theorem 2.11.9 (p. 211) in [44] to get the convergence
to the Gaussian process given before.
We have that

|II| ≤ sup |f̂n(ω)− f(ω)|2π
n

n0∑
j=1

H(λjn)|ε∗jn − 1|.

Since the ε∗jn are i.i.d, we get that 2π
n

∑n0
j=1H(λjn)|ε∗jn − 1| = OP (1) in probability along the sample and

by condition B5 we obtain the uniform convergence.
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Moreover,

Var(III) = (2π)2
1

n2

n0∑
j=1

h(λjn)
2Var

(
In(λjn)− f̂n(λjn)

)
+ (2π)2

1

n2

n0∑
j=1

n0∑
k=1,k ̸=j

h(λjn)h(λkn)Cov
(
In(λjn)− f̂n(λjn), In(λkn)− f̂n(λkn)

)
.

Note that the first term on the right-hand side in the above expression is bounded by

(2π)2
1

n2

n0∑
j=1

H(λjn)
2Var(In(λjn)− f̂n(λjn)) = O(n−1),

because
∫
H(ω)2f(ω)2dω <∞.

One can easily show that uniformly in j and k

Cov(In(λjn)− f̂n(λjn), In(λkn)− f̂n(λkn)) = o(1).

Since 2π
n2

∑n0
j=1

∑n0
k=1,k ̸=j H(λjn)H(λkn) converges to

∫ π
0 H(ω)f(ω)dω, we get that the second term on the

right-hand side of Var(III) is of order o(1) uniformly in h.
Thus, it follows that uniformly in h, we have that II + III = oP (1) along the sample.
To prove the conclusion of the theorem, now we investigate the behaviour of I. Note that the entropy
condition is automatically satisfied under the stronger entropy condition (needed for Zn(f)) since we
have by the Cauchy-Schwartz inequality∫ 1

0
(log(N(δ,H, ρ2))1/2 <

(∫ 1

0
(log(N(δ,H, ρ2))2

)1/4

<∞.

The Lindeberg-Feller condition of Theorem 2.11.9 p. 211 in [44] is fulfilled because the moments of order
3 of |ε∗jn − 1| are finite in probability along the sample. Thus, it is sufficient to verify an equicontinuity
condition. Notice that we have

sup
h,g∈ H,ρ2(h,g)≤ηn

E∗ |Z∗
n(h)− Z∗

n(g)|
2

= sup
h,g∈ H,ρ2(h,g)≤ηn

(2π)2

n

n0∑
j=1

(
h(λjn)− g(λjn))

2f(λjn
)2

E∗ (ε∗jn − 1
)2
.

Note that E∗(ε∗jn − 1)2 is converging to 1 in probability, it is bounded and as n −→ ∞

2π

n

n0∑
j=1

(h(λjn)− g(λjn))
2 f(λjn)

2 −→ ρ2(f, g).

This convergence is uniform over the set Hηn={h, g ∈ H, ρ2(h, g) ≤ ηn}, because by the same arguments
as in [44] p. 128, we have that

N(δ,Hηn , ρ2) ≤ 4N(δ/2,H, ρ2)2 <∞,
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ensuring the validity of the Glivenko-Cantelli theorem over the class Hηn .
It follows that for n large enough, there exists a constant C > 0 such that

sup
h,g∈ H,ρ2(h,g)≤δ

E|Z∗
n(h)− Z∗

n(g)|2 ≤ C δn in probability,

which converges to 0 when δn −→ 0.
Thus, Z∗

n(h) converges in (l∞(H), ||z||H) to a (different) centered Gaussian process with covariance given
by the limit of covariance, for all h ∈ H, g ∈ H,

1

n
Cov∗

 n0∑
j=1

h(λjn)f(λjn)(ε
∗
jn − 1),

n0∑
j=1

g(λjn)f(λjn)(ε
∗
jn − 1)


=

1

n

n0∑
j=1

h(λjn)f(λjn)g(λjn)f(λjn)E
∗ (ε∗jn − 1

)2
−→ c1(h, g) as n −→ ∞.

The two limits of the empirical processes coincide iff the second term in the covariance c(h, g) vanishes
that is iff k4

∫ π
0 h(ω)f(ω)dω = 0. �

Proof of Theorem 6.2 The proof follows the standard reasoning usually used in the literature on
Hadamard differentiability. It is sufficient to apply the Hadamard differentiability property to the se-
quence hn =

√
n(F̂n−F ), which converges to h = G in B(H,F) , with tN = 1/

√
N −→ 0. We then have,

as n −→ ∞
√
n
(
T(F̂n)− T(F )

)
=

√
n

(
T
(
F +

1√
n
hn

)
− T (F )

)
d−→ dTF .GF .

In the particular case when the influence function is non-degenerate and the variance is finite, we get

dTF . GF = N

(
0, 2π

∫ π

0
T (1)(ω, F )T (1)(ω, F )′f(ω)2dω

+
k4
σ4

(∫ π

0
T (1)(ω, F )f(ω)dω

)(∫ π

0
T (1)(ω, F )f(ω)dω

)′)
.

To obtain the bootstrap convergence we use this Hadamard property again and the continuity of the
differential operator. We have

√
n (T

(
F̂ ∗
n)− T(F̂n)

)
d−→ dTF .G

∗
F ,

where G∗
F is a Gaussian process with covariance operator c1(h, g) = 2π

∫ π
0 h(ω)g(ω)f(ω)

2dω. When the
influence function is non-degenerate, this distribution becomes
N
(
0, 2π

∫ π
0 T

(1)(ω, F )T (1)(ω, F )′f(ω)2dω
)
and again the bootstrap is valid in that case iff the influence

function is centered. �
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[18] FRANKE, J. and HÄRDLE, W. (1992). On bootstrapping kernel spectral estimates. Ann. Statist.
20 121–145.

30



[19] HURVICH, C. M. and ZEGER, S. L. (1987). Frequency domain bootstrap methods for time series.
Technical Report 87-115, Graduate School of Business Administration, New York Univ.

[20] JANAS, D. and DAHLHAUS, R. (1994). A frequency domain bootstrap for time series. In Com-
putationally Intensive Statistical Methods. In Proceedings of the 26th Symposium on the Interface J.
Sall and A. Lehman, eds., 423–425. Interface Foundation of North America, Fairfax Station, VA.

[21] KIM, Y.M. and IM, J. (2019). Frequency domain bootstrap for ratio statistics under long-range
dependence. Journal of the Korean Statistical Society, 48(4) 547–560.

[22] KIM, Y.M. and NORDMAN, D.J. (2013). A frequency domain bootstrap for Whittle estimation
under long-range dependence. Journal of Multivariate Analysis 115C 405–420.

[23] KIRCH C. and POLITIS D.N., (2011). TFT-bootstrap: resampling time series in the frequency
domain to obtain replicates in the time domain. Ann. of Stat. 39 1427–1470.

[24] KREISS, J.-P. and PAPARODITIS, E. (2003). Autoregressive aided periodogram bootstrap for time
series. Ann. Stat. 31 1923–1955.
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