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Abstract: In this paper consistency of the Frequency Domain Bootstrap
for differentiable functionals of spectral density function of a linear station-
ary time series is discussed. The notion of influence function in the time
domain on spectral measures is introduced. Moreover, the Fréchet differen-
tiability of functionals of spectral measures is defined. Sufficient and neces-
sary conditions for consistency of the FDB in the considered problems are
provided and the second order correctness is discussed for some functionals.
Finally, validity of the FDB for the empirical processes is considered.
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1. Introduction

Bootstrap for dependent data has been developed over the last three decades.
Most of existing bootstrap approaches are designed for the time domain. Widely
applied for stationary time series are block bootstrap methods. For instance, the
Moving Block Bootstrap (Künsch (1989), Liu and Singh (1992)), the Circular
Block Bootstrap (Politis and Romano (1992)), the Stationary Bootstrap (Poli-
tis and Romano (1994)), the Tapered Block Bootstrap (Paparoditis and Poli-
tis (2001)), the Regenerative Block Bootstrap (Bertail and Clémençon(1996)) .
Some of these techniques can be also adapted for nonstationary data. Addition-
ally, there exist methods introduced for particular classes of nonstationary time
series. Among them we have the Seasonal Block Bootstrap (Politis (2001)), the
Periodic Block Bootstrap (Chan et al. (2004)), the Generalized Seasonal Block
Bootstrap (Dudek et al. (2014)), the Generalized Seasonal Tapered Block Boot-
strap (Dudek et al. (2016), the Extension of Moving Block Bootstrap (Dudek
(2015), Dudek (2018)). Sometimes in the parametric setting it is also possible
to apply to dependent sequences the techniques designed for i.i.d. data like the
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i.i.d. bootstrap of Efron (1979) or wild bootstrap of Wu (1986) (see e.g., Lahiri
(2003) and Shimzu (2010)).
Alternatively, one may bootstrap the time series in the frequency domain. In
that case the usual approach is to apply the i.i.d. bootstrap to studentized pe-
riodogram estimates ( Hurvich and Zeger 1987, Franke and and Härdle, 1992,
Nordgaard 1992). The most classical example of this idea is the Frequency Do-
main Bootstrap (FDB). Other method called the Local Bootstrap (LB) was
proposed by Paparoditis and Politis (1999). In this approach one bootstraps the
periodogram ordinates locally around the frequency of interest. In contrary to
the FDB, the LB does not require estimation of the spectral density function.
Both methods share same limitations of applicability, i.e. they are consistent
only for some classes of functionals. To extend applicability of the bootstrap
in the frequency domain a few other bootstrap methods were proposed: the
Autoregressive Aided Periodogram Bootstrap (Kreiss and Paparoditis (2003)),
the Convolved Bootstrapped Periodograms of Subsamples (CBPS) (Meyer et al.
(2018)) and the Time Frequency Toggle (TFT)-bootstrap (Kirsch and Politis
(2011)). All these approaches are much more difficult to implement than the
FDB. They depend on unknown tuning parameters. Moreover, in contrary to
other techniques the TFT-bootstrap is not purely a frequency domain technique.
Indeed, the idea is to bootstrap Fourier coefficients obtained after applying a
fast Fourier transform to the considered time series, and at the end, to back-
transformed these quantities to obtain a bootstrap sample in the time domain.
It should be also noticed that the CBPS is asymptotically valid in quite general
framework for linear functionals and could be adapted to the general functional
considered in this paper, but it seems very challenging to study its second order
properties.
In this paper we focus on the classical Frequency Domain Bootstrap. Till now
its consistency/inconsistency was proven in some particular cases, mainly for
stationary linear processes. Franke and Härdle (1992) considered the problem
of spectral density estimation, while Dahlhaus and Janas (1996) obtained va-
lidity of the FDB for ratio statistics and Whittle estimator. Finally, Kim and
Nordman (2013) extended its applicability for Whittle estimator to long-range
dependent linear models. It is worth to indicate that the FDB works for Whittle
estimator since the functional corresponding to the Whittle estimator may be
expressed approximately as a ratio statistic as will be seen later. Moreover, it
is known that the FDB is not consistent for some functionals e.g., the auto-
covariance function. This originates from the fact that the FDB assumes that
periodogram ordinates are independent while for non-Gaussian processes this
condition usually does not hold. As a result bootstrap variance for the consid-
ered statistics not always converges to the asymptotic one (see e.g., Janas and
Dahlhaus (1994), Paparoditis (2002)). However, till now in the literature there
is no result stating the form of the class of functionals for which the FDB is
consistent, while for particular functional it is important to know if the simplest
bootstrap approach is valid or some generalization is essential. The main advan-
tage of the FDB method is the fact that it is based on the i.i.d. bootstrap and
does not require choosing any tuning parameters like for instance block length.
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Moreover, till now the second order correctness was proven only for the FDB in
some specific cases.
The aim of this paper is twofold. At first, we revisit some well known the FDB
consistency results for spectral density function. We focus on smooth functions
of linear functionals of spectral density. In particular we give necessary and suf-
ficient conditions for the validity of the FDB. Essentially, in the general (non-
Gaussian) case, the FDB works for functions (of linear functionals), which are
homogeneous of degree 0. We then generalize existing results to differentiable
functionals of spectral density function in the framework of stationary linear
processes. For that purpose we introduce a concept of influence function in the
time domain analogously to the i.i.d. case, but on spectral measures instead of
cumulative distribution functions. These influence functions behave quite dif-
ferently than in the usual i.i.d. set-up and may not be automatically centered.
Moreover, we define the notion of the Fréchet differentiability of functionals of
spectral measures. The FDB is asymptotically valid if and only if the kurtosis
of the process is 0 (for instance in the Gaussian case) or if the functional of
interest has a centered influence function, which is the case for ratio statistics
as well as some Whittle estimators. We then study under what conditions the
empirical process in the frequency domain, as considered in Dahlhaus (1988),
converges to some Gaussian process and when its bootstrap version is valid. We
essentially show that this holds if and only if all the functions are centered with
respect to the given spectral density. In other cases, the bootstrap will fail to
give the correct asymptotic distributions.
Paper is organized as follows. In Section 2 notation is introduced and the FDB
algorithm is recalled. Consistency of the FDB for differentiable functions of lin-
ear functionals and its second order correctness is discussed in Section 3. Influ-
ence function in the time domain is introduced in Section 4 and some examples
are presented. Section 5 is dedicated to the sufficient and necessary conditions
for asymptotic validity of the FDB for Fréchet differentiable functionals in the
time domain. The analogous conditions for empirical processes are formulated in
Section 6. Section 7 contains short discussion of the obtained results. All proofs
can be found in the Appendix.

2. Problem formulation

Let {Xt, t ∈ Z} be a real valued stationary time series. For simplicity we assume
that EXt = 0. Moreover, let Xt admit an infinite moving average representation

Xt =

∞∑
j=0

ajζt−j with

∞∑
j=1

j2|aj | <∞, a0 = 1,

where (ζt)t∈Z is an i.i.d. sequence with Eζ2t = σ2 and Eζ8t <∞. Such conditions
allow to verify easily the conditions for asymptotic normality of the estimators
that we are going to consider (see Dahlhaus, 1985, Corollary 3.2)
Let R(k) = Cov(X1, X1+k) be the autocovariance function of the process Xt
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and let

f(ω) = 1/(2π)

∞∑
k=−∞

R(k) exp(−ikω)

be its spectral density function.
By In(ω) we denote the periodogram i.e.,

In(ω) =
1

2πn
dn(ω)dn(−ω), (1)

where

dn(ω) =

n∑
t=1

Xt exp(−itω), ω ∈ [−π, π] (2)

is the discrete Fourier transform of {Xt, t ∈ Z}. It is known that In(ω) is not a
consistent estimator of the spectral density f but it is asymptotically unbiased
and may serve as a basis for estimating many parameters.

In this paper we are interested in functionals of the spectral density T (f) and in
particular, smooth functions g (second order differentiable) of linear functionals

T (f) = g(A(ξ, f)),

where

A(ξ, f) =

(∫ π

0

ξ1(ω)f(ω)dω,

∫ π

0

ξ2(ω)f(ω)dω, . . . ,

∫ π

0

ξp(ω)f(ω)dω

)′

and
ξ = (ξ1, . . . , ξp) : [0, π] → Rp.

We usually estimate T (f) using the plug-in estimator T (In). Its bootstrap coun-
terpart is obtained using the Frequency Domain Bootstrap (FDB), which we
recall in Section 2.2.

2.1. Discretized versions

In general, to compute integrals in A(ξ, f) we estimate the functional by using
the Riemann approximation of the integral at specific frequencies, most of the
time the Fourier frequencies λ̃jn = 2πj/n, j = 1, . . . , n0, where n0 = [n/2] is
the integer part of n/2. We denote

Ãn(ξ, f) =

2π

n

n0∑
j=1

ξ1(λ̃jn)f(λ̃jn),
2π

n

n0∑
j=1

ξ2(λ̃jn)f(λ̃jn), . . . ,
2π

n

n0∑
j=1

ξp(λ̃jn)f(λ̃jn)


′

.

However, it is known that the error of approximation in this case is of order
O(n−1)

2π

n

n0∑
j=1

ξi(λ̃jn)f(λ̃jn)−
∫ π

0

ξi(ω)f(ω)dω ∼ n−1π (ξi(π)f(π)− ξi(0)f(0)) /2.
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Assume in addition that ξ1(ω)f(ω) is twice differentiable, which, under the
condition that we introduce later, will reduce to the assumption that the spectral
density is twice differentiable. Then one can rather choose an approximation at
the midpoint frequencies λjn = (2πj+π)/n. By the well known Polya’s theorem,
we have

2π

n

n0∑
j=1

ξi(λjn)f(λjn)−
∫ π

0

ξi(ω)f(ω)dω ∼ π2

24n2

(
(ξif)

′
(π)− (ξif)

′
(0)
)
.

If the spectral density is not twice differentiable, then the approximation will
be of order O(n−1). Notice that the periodogram is infinitely differentiable as a
function of ω. Thus, when we replace f by In we automatically get

2π

n

n0∑
j=1

ξi(λjn)In(λjn)−
∫ π

0

ξi(ω)In(ω)dω = O(n−2).

As a consequence we will always gain in using the discretization at midpoint
frequencies λjn = (2πj + π)/n and hence such λjn are chosen in the sequel.
This is a minor point if we are interested only in the first order asymptotics
but it can have important consequence for one and two sided confidence in-
tervals. The approximation error in the case of the standardized version of

n1/2
(

2π
n

∑n0

j=1 ξi(λ̃jn)f(λ̃jn)−
∫ π

0
ξi(ω)f(ω)dω

)
typically implies a bias of a

size 1/
√
n, when the standard Fourier frequencies are used. To our knowledge,

this has not been discussed before in the bootstrap literature.

2.2. Frequency Domain Bootstrap

The main idea underlying the FDB is based on the observation that the peri-
odogram values evaluated at different frequencies 0 < ω1 < ω2 < · · · < ωk < π,
In(ωj), j = 1, . . . , k are asymptotically independent and exponentially dis-
tributed i.e., asymptotically we have

In(ωj)

f(ωj)

d−→
n→∞

Exp(1).

The FDB essentially consists in ”bootstrapping” these standardized frequencies,
once f is estimated by some convergent estimator.
Recall that for linear processes considered here, we have (see Priestley (1981),
Lahiri (2003), p. 235)

E

(
In(ωj)

f(ωj)

)
= 1 +O(n−1),

Var

(
In(ωj)

f(ωj)

)
= 1 +O(n−1),

Cov

(
In(ωj)

f(ωj)
,
In(ωk)

f(ωk)

)
= n−1k4 + o(n−1), for j ̸= k,
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where
k4 = Eζ4/σ4 − 3

is the kurtosis of the innovations.
This means that even if the random variables are asymptotically independent,
they are not independent for finite n and hence we expect the i.i.d. bootstrap
of the frequencies to have problem when k4 ̸= 0.

Below we recall the FDB algorithm together with its simple modification and
the consistency result.

Step 0 Compute an estimator of the spectral density f , for instance the kernel
estimator

f̂n(ω) = f̂n(ω, h) =
(2π)2

nh

n0∑
j=−n0

k

(
ω − λjn

h

)
In(λjn) (3)

=
1

nh

n0∑
j=−n0

2πk

(
ω − λjn

h

)
|dn(λjn)|2,

where n0 = [n/2] and λjn = (2πj + π)/n. Moreover, k is a kernel on
[−π, π], that is a real valued, non-negative, symmetric function such that∫∞
−∞ k(x)dx = 1. The smoothing window parameter h = hn converges to
0 as n→ ∞.

Step 1 Approximate the functional

T (f) = g(A(ξ, f))

by the sequence of Tn = Tn(In) = g(An(ξ, In)), where

An(ξ, f) =

2π

n

n0∑
j=1

ξ1(λjn)f(λjn),
2π

n

n0∑
j=1

ξ2(λjn)f(λjn), . . . ,
2π

n

n0∑
j=1

ξp(λjn)f(λjn)

 .

The correcting factor 2π appears because we are evaluating the functions
at ”the Fourier frequencies”.

Step 2 Compute for j = 1, . . . , n0 the standardized periodogram ordinates

ϵ̂jn =
In(λjn)

f̂n(λjn)
.

Because of the estimated standardization, the mean of ϵ̂jn may be neither
equal nor close to 1. To solve this problem, compute the rescaled values

ϵ̃jn =
ϵ̂jn
ϵ̂·n

with

ϵ̂·n =
1

n0

n0∑
i=1

ϵ̂jn.
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Step 3 Generate ϵ∗jn i.i.d. from the empirical distribution Pn0 = 1
n0

∑n0

i=1 δϵ̃jn
(by construction EPn0

ϵ∗jn = 1 and VarPn0
(ϵ∗jn) → 1) that is, draw the

bootstrap values randomly with replacement from these rescaled values
and compute the bootstrapped periodogram values

I∗n(λjn) = f̂n(λjn)ϵ
∗
jn, j = 1, . . . , n0.

In Step 0 of the FDB algorithm we used the standard kernel estimator with a
normalization of the kernel to 1 on R (

∫∞
−∞ k(x)dx = 1) instead of 2π which may

be found in Lahiri (2003) (see p. 299 below expression (9.20)) or other papers.
This standardization by 2π is a source of confusion in many applications and
in several expressions, all the more than the conventions are not same in signal
theory.
The (2π)2 in the expression for f̂n(ω) (see formula (3)) may be surprising,
but is essentially due to the fact that the functions are taken at the Fourier

frequencies. Thus, 1/(nhn)
∑n0

j=−n0
k
(

ω−λjn

h

)
is a Riemann integral equivalent

to 1/(2πh)
∫ −1/2

−1/2
k(ω−2πx

h )dx, which converges to 1/(2π) as h → 0. Integrating

locally In(2πx) also results in an additional 1/2π term.
In Step 1 in some cases it is possible to consider the estimator

Tn = g
(
An(ξ, f̂n)

)
,

where f̂n is an estimator of f . In the parametric case one may use the parametric
estimator

f̂n(ω) = fθ̂n(ω),

where θ̂n is a convergent estimator of the parameter θ (for instance a Whittle
estimator of θ, under specific assumptions).

Remark 2.1. Notice that ϵ̂jn =
In(λjn)

f̂n(λjn)
essentially aims at reproducing the

behavior of
In(λjn)
f(λjn)

which is asymptotically Exp(1). If one is only interested in

asymptotic result, then Step 2 can be skipped and Step 3 can be replaced by the
following more parametric bootstrap procedure.

Step 3∗ Generate ϵ∗jn i.i.d. Exp(1), then compute

I∗n(λjn) = f̂n(λjn)ϵ
∗
jn, j = 1, . . . , n0.

Once the frequencies are resampled, then compute the corresponding value
of the statistics Tn, that is

T ∗
n = Tn(I

∗
n) = g(An(ξ, I

∗
n)),

where

An(ξ, I
∗
n) =

2π

n

n0∑
j=1

ξ1(λjn)I
∗
n(λjn),

2π

n

n0∑
j=1

ξ2(λjn)I
∗
n(λjn), . . . ,

2π

n

n0∑
j=1

ξp(λjn)I
∗
n(λjn)


′

.
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3. Consistency of FDB for differentiable functions of linear
functionals

The following theorem, which summarizes the main known results, shows that
the FDB is valid only for specific processes or specific functionals (see Lahiri
(2003) ch. 9.2 and references therein).

Theorem 3.1. Assume that

(i) {Xt, t ∈ Z} is a stationary linear process of the form

Xt =

∞∑
j=0

ajζt−j with

∞∑
j=

j2|aj | <∞, a0 = 1,

where (ζt)t∈Z is an i.i.d. white noise with Eζ2t = σ2 and Eζ8t <∞;

(ii) the spectral density estimator f̂n converges to f uniformly over [0, π];
(iii) infλ∈[0,π] f(λ) > 0.

Then we have

√
n(An(ξ, In)−A(ξ, f))

d−→
n→∞

N(0,Σξ),

where

Σξ =

[
2π

∫ π

0

ξi(ω)ξj(ω)f(ω)
2dω +

k4
σ4

∫ π

0

ξi(ω)f(ω)dω

∫ π

0

ξj(ω)f(ω)dω

]
1≤i≤p
1≤j≤p

.

Moreover, the frequency domain bootstrap satisfies

√
n(An(ξ, I

∗
n)−An(ξ, f̂n))

d∗

−→
n→∞

N(0,Σ∗
ξ),

where

Σ∗
ξ =

[
2π

∫ π

0

ξi(ω)ξj(ω)f(ω)
2dω

]
1≤i≤p
1≤j≤p

.

Notice that we have

Σξ = Σ∗
ξ +

k4
σ4
A(ξ, f)A(ξ, f)′. (4)

Thus, the bootstrap asymptotically works when either κ4 = 0 or if the functional
of interest is such that the quantities

∫ π

0
ξi(ω)f(ω)dω = 0. The first condition is

for instance satisfied in the Gaussian case, but is very restrictive in the frame-
work of bootstrap.
Let us recall that we are interested in a smooth functional T (f) = g(A(ξ, f)),
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which is differentiable around A(ξ, f). Using Slutsky’s lemma (or the delta
method) we derive the corresponding equation to (4). We have

∇g(A(ξ, f))′Σξ∇g(A(ξ, f))

= ∇g(A(ξ, f))Σ∗
ξ∇g(A(ξ, f))′ +

k4
σ4

||A(ξ, f)′∇g(A(ξ, f))||2,

where ∇ is the gradient operator. Thus, the FDB has the correct asymptotic
variance iff k4 = 0 or

A(ξ, f)′∇g(A(ξ, f)) = 0. (5)

In that case we have that (under appropriate assumptions)

√
n(An(ξ, In)−A(ξ, f))

d−→
n→∞

N(0,∇g′(A(ξ, f))Σξ∇g(A(ξ, f))),
√
n(g(An(ξ, I

∗
n))− g(An(ξ, f̂n)))

d∗

−→
n→∞

N(0,∇g(A(ξ, f))′Σξ∇g(A(ξ, f))).

In particular it is easy to check that for p = 2, if g(x, y) = x/y then (5) holds
immediately. This explains why the bootstrap is asymptotically valid for any
ratio statistics

T (f) =

∫ π

0
ξ1(ω)f(ω)dω∫ π

0
ξ2(ω)f(ω)dω

,

for which the second coordinate of A(ξ, f) is nonzero (see Dahlhaus and Janas
(1996), Lahiri (2003)). But actually this result covers more functionals for gen-
eral p. Indeed, if we want to have

A(ξ, f)′∇g(A(ξ, f)) = 0

for any value of the parameter A(ξ, f) in an open set, then equivalently we have

x′∇g(x) = 0

for any x = (x1, . . . , xp)
′ in an open set. This equation is known as the Euler

differential equation and is equivalent to the fact that g is homogeneous of degree
zero. Let us recall that g is homogeneous of degree zero iff

g(λx1, . . . , λxp) = λ0g(x1, . . . , xp),

which yields by derivation in λ to

x′∇g(x) = 0.

Recall also that if at least one of the coordinates does take the value 0 (a.s), then
the function g can always be expressed as a function of ratio (which explains
why ratio plays such an important role in the validity of the FDB).

Corollary 3.1. When k4 ̸= 0 and g is differentiable in each component in
the neighbourhood of A(ξ, f), homogeneity of degree 0 of g is a necessary and
sufficient condition for the FDB to work asymptotically for g(A(ξ, f)) (provided
that ∇g(A(ξ, f)) ̸= 0).
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Examples:

1. the FDB for the spectral distribution function, of the variance estimator
or of the autocovariance function R(k) fails unless the kurtosis of the
innovations k4 = 0;

2. the FDB for autocorrelation, which can be expressed as ratio statistics,
asymptotically works;

3. if T (f) = g(A(ξ, f)) with ξ = (ξ1, . . . , ξp) and g(x1, . . . , xp) =

p∏
i=1

xαi
i with∑p

i=1 αi = 0, then the FDB works asymptotically;
4. the FDB is also valid for functionals that are not directly ratios. For

instance for p = 2 one can take g(x, y) = xy
(x2+y2) , or for p = 3, g(x, y, z) =

xyz
(x2z+y2x+z2y) . These functions are differentiable outside the set of points

for which the denominator equals 0 and they are homogeneous of degree
zero. Moreover, they all can be expressed as functions of different types of
ratios.

3.1. Second order theory for the FDB

Janas and Dahlhaus (1996) proved the second order validity of the FDB in the
particular case when the statistics of interest are ratio of linear functionals.
Following their proof it is easy to show that the same result holds for any
function of linear functionals that is smooth and homogenous of degree 0.
Recall that we consider the process with linear representation

Xt =

∞∑
j=−∞

ajζt−j with

∞∑
j=−∞

j2|aj | <∞, a0 = 1. (6)

Its transfer function is given by

A(ω) =

∞∑
t=−∞

aj exp(itω), ω ∈ [−π, π] (7)

and the spectral density is such that for any ω ∈ [−π, π],

f(ω) =
1

2π
|A(ω)|2 > η, for some η > 0.

Moreover, let f̂ be a tapered estimator of f of the form

f̂(ω) =
1

2π
|dn(ω)|2

with

dn(ω) =

n∑
t=1

h(ρ)
(
t

n

)
Xt exp(−iωt), (8)
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where for some ρ ∈ (0, 1] (the proportion of tapered data), we define the taper
function h(ρ) : R → [0, 1] by

hρ(x) = u(x/ρ)I{x∈(0,ρ/2)} + I{x∈[ρ/2,1−ρ/2]} + u((1− x)/ρ)I{x∈(1−ρ/2,1]},

where u : [0, 1/2] → [0, 1] is twice differentiable with bounded second order
derivative, u(0) = 0, u(1/2) = 1.

To obtain the second order validity of the FDB we consider the following as-
sumptions.

A1 The function g is twice differentiable, homogeneous of degree 0, such that
∇g(A(ξ, f)) ̸= 0.

A2 (ζt)t∈N (see (6)) are i.i.d r.v’s with distribution P such that EP ζt =
0, VarP (ζt) = 1 and EP ζ

8
t <∞.

A3 M3 := Eζ3t = 0.
A4 The spectral density function f(ω) is such that

inf
ω∈[0,π]

f(ω) > 0.

Moreover, the tapered estimator f̂(ω) is uniformly strongly consistent i.e.,

sup
ω∈[0,π]

|f̂(ω) − f(ω)| −→ 0 a.s. as n −→ ∞.

A5 ξ = (ξ1, . . . , ξp) : [0, π] → Rp is a vector of bounded functions having
bounded variation, which are extended to the whole real line in a way
that the extension is symmetric around 0 and periodic (with period 2π).

A6 The proportion of tapered data ρ = ρn (see (8)) is such that

ρn ∼ n−δ, δ < 1/6.

A7 The filter coefficients {aj}j∈Z and the Fourier coefficients ξ̂(ω) of ξ(ω) are
decreasing exponentially that is, there exists C > 0 such that

|aj | ≤ exp(−C|j|),

||ξ̂(ω)||2 ≤ exp(−C|ω|),

for all large ω.
A8 The following Cramér condition holds: for some some 0 < δ < 1 and some

M > 0, for any t = (t1, t2), ||t|| > M,∣∣EP exp(it′(ξ1, ξ
2
1))
∣∣ < 1− δ.

A9 Let Wn,1 = n−1/2
(
dn(

2π
n j1), dn(

2π
n j2), . . . , dn(

2π
n j8)

)′
, (j1, . . . , j8) ∈ {1, . . . , n2−

1}8 and Wn,2 =
∫
(ξ(ω)′, 1)′In(ω) dω . Then the limits of Cov(Wn,1) and

Cov (Wn,2) exist and are nonsingular. Moreover,
∫
(ξ(ω)′, 1)′(ξ(ω)′, 1)f2(ω)

dω is nonsingular.
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Assumption A3 is very strong. It is clearly satisfied in the Gaussian case
but not for general processes. Condition A8 is automatically satisfied if ξ has
an absolutely continuous part with respect to Lebesgue measure on R. Finally,
A9 ensures that the cumulants of order 4 are not degenerate and that their
empirical versions are close to the true ones.
Theorem below states the second order correctness of the FDB for functions or
ratio functionals of the spectral density (when standardized by the true vari-
ance).

Theorem 3.2. Let A1−A2 and A4−A9 hold. Then we have almost surely
as n→ ∞ uniformly in x

Pr ∗
(
Var∗(g(An(ξ, I

∗
n)))

−1/2(g(An(ξ, I
∗
n))− g(An(ξ, f̂n))) ≤ x

)
− Pr

(
Var(g(An(ξ, In))

−1/2(g(An(ξ, In))− g(A(ξ, f))) ≤ x
)

= −4π
M2

3

σ6n1/2
C(ξ)(x2 − 1) + o(n−1/2),

where C(ξ) is a constant dependent of ξ and f . If in addition A3 holds (the
skewness of the residuals is 0), then the bootstrap is second order correct.

Theorem 3.2 shows that the FDB is asymptotically valid and/or second order
correct under very specific conditions:

• for any smooth functional, the bootstrap will be second order correct if

Eζ31 = 0 and k4 = Eζ41/
(
Eζ21

)2 − 3 = 0 that is typically in the Gaussian
case;

• only homogeneous functions of degree 0 of linear functionals (including
ratios of linear functionals) are candidates for the asymptotic validity when
k4 ̸= 0;

• only linear time series with i.i.d. innovations such that Eζ31 = 0 can be
second order correct without corrections.

Thus, one should be careful while applying the FDB method on specific
functionals and should not expect second order corrections without some further
modification of the procedure.

A solution to obtain second order valid confidence intervals via calibration
of the quantile of the bootstrap distribution is to use the Edgeworth expansion
inversion (see Abramovitz and Singh (1985)) when M3 ̸= 0. Indeed it is easy
to see with their results that if one has estimator of the quantities M3, σ

2 and
C(ξ) say M̂3, σ̂

2 and Ĉ(ξ) such that

P

(∣∣∣∣∣M̂2
3

σ̂6
Ĉ(ξ)(T 2

n − 1)− M2
3

σ6
C(ξ)(T (f)2 − 1)

∣∣∣∣∣ > ε

)
= o(n−1/2),

then we can correct either the original statistics or the bootstrap quantiles to get
second order correction. However, such methods may require some complicated
computations to obtain a valid estimator of C(ξ).
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4. Influence function in the time domain

In this section we introduce a concept of an influence function in the time
domain that will allow us later to state sufficient and necessary conditions for
consistency of the FDB.
Note that the functional T (f) = g(A(ξ, f)) can be seen as a functional of the
spectral measure F on [0, π]. We have

A(ξ, f) =

(∫ π

0

ξ1(ω)F (dω),

∫ π

0

ξ2(ω)F (ω), . . . ,

∫ π

0

ξp(ω)F (dω)

)
.

We denote A(ξ, f) and T (f) by A(ξ, F ) and T(F ), respectively, to stress the
dependence of F rather than of f. The natural estimator of T(F ) is simply

T(F̂n), where

F̂n(λ) =

∫ λ

0

In(ω)dω

may be also seen by extension as a positive measure

F̂n ([λ1, λ2)) =

∫ λ2

λ1

In(ω)dω.

Since we know that it is easier to get asymptotic distribution of the process√
n(F̂n − F ), than of the corresponding process based on non-integrated peri-

odogram, it is natural to try to study the differentiability property of T in the
time domain, to get an analogue of the functional delta-method. In this case we
will see that it is possible to introduce a contaminated version of F by some
Dirac measure to compute an equivalent of the influence function but in the
time domain.

Let T be a functional defined on a vectorial space of positive measure on [0, π]
including Dirac measures, denoted by F . We define the following notion of influ-
ence function in the time domain analogously to the i.i.d. case, but on spectral
measures instead of cdf’s.

Definition 4.1. Let T : F →RK be a functional of spectral measures. The
uncentered influence function (with value in RK) or the first order gradient of
T in the periodic direction ω0 is given by

T (1)(ω0, F ) =
∂T(F + εδω0

)

∂ε

∣∣∣∣
ε=0

.

It is known that the purely periodic process

ηt(ω0) = A cos(ω0t) +B sin(ω0t),

where EA = EB = 0 and Var(A) = Var(B) = 1, has spectral measure given by

hω0 =
δ−ω0

+ δω0

2
.
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Then for a general process Xt with spectral measure F on [0, π], the con-
taminated process Xt +

√
2εηt, where Xt and ηt are independent, has spectral

measure F + εδω0
on [0, π]. Thus, the influence function can be interpreted as

the infinitesimal variation of the functional T(F ) when F is contaminated by a
purely periodic process with variance going to 0 at rate

√
2ε.

Examples:

1. The linear functional A(ξ, F ) has influence function given by

T (1)(ω0, F ) = (ξ1(ω0), . . . , ξp(ω0)) .

Notice that in general ∫ π

0

T (1)(ω0, f)F (dω) ̸= 0.

A particular case is the covariance function of order k

R(k) = EXtXt+k =

∫ π

0

cos(ωk)f(ω)dω,

for which we have
T (1)(ω0, f) = cos(ω0k)

and for some k ∫ π

0

cos(ωk)f(ω)dω ̸= 0.

2. Whittle estimators.
For simplicity all the calculus are made for θ ∈ R, but the final result
actually also holds for the multidimensional case. A Whittle estimator
can be seen as a M-estimator that is a solution of the equation∫ π

0

ḟθ(ω)

fθ(ω)

(
In(ω)− fθ(ω)

fθ(ω)

)
dω = 0

or equivalently ∫ π

0

ḟθ(ω)

fθ(ω)2
F̂n(dω)−

∫ π

0

ḟθ(ω)

fθ(ω)
dω = 0,

where

ḟθ(ω) =
∂fθ(ω)

∂θ
.

Thus, we can define θ = T(F ), the functional solution of the equation

0 =

∫ π

0

ḟθ(ω)

fθ(ω)2
F (dω)−

∫ π

0

ḟθ(ω)

fθ(ω)
dω

=

∫ π

0

ḟθ(ω)

fθ(ω)2
F (dω)−

∫ π

0

ḟθ(ω)

fθ(ω)2
Fθ(dω)
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or similarly ∫ π

0

∂

∂θ

(
1

fθ(ω)

)
(F − Fθ)(dω) = 0.

To compute the influence function of T(F ), we consider θ◦ε = T(F + εδω0
)

the solution of the equation∫ π

0

ḟθ◦
ε
(ω)

fθ◦
ε
(ω)2

F (dω) + ε
ḟθ◦

ε
(ω0)

fθ◦
ε
(ω0)2

−
∫ π

0

ḟθ◦
ε
(ω)

fθ◦
ε
(ω)

dω = 0.

Then calculating the derivative with respect to ε, we get that

−
(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
F (dω)

)
T (1)(ω0, F )

+
ḟθ(ω0)

fθ(ω0)2
−
(∫ π

0

∂2 log(fθ(ω))

∂θ2
dω

)
T (1)(ω0, F ) = 0,

which yields the influence function

T (1)(ω0, F ) =

(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
F (dω) +

∫ π

0

∂2 log(fθ(ω))

∂θ2
dω

)−1

·
(
− ∂

∂θ

(
1

fθ(ω0)

))
. (9)

Moreover, one may note that in the particular case of ARMA or FARIMA

models, we have
∫ π

0
∂2 log(fθ(ω))

∂θ2 dω = 0 and
∫ π

0
∂
∂θ

(
1

fθ(ω)

)
F (dω) = 0 (see

the comment under Remark 1, p. 409 of Kim and Nordmann, 2013). Thus,
we get

T (1)(ω0, Fθ) = −
(∫ π

0

∂2

∂θ2

(
1

fθ(ω)

)
Fθ(dω)

)−1
∂

∂θ

(
1

fθ(ω0)

)
.

3. General contrasts.
Notice that the Whittle estimators are a simple case of contrast estimators
satisfying some estimating equation∫ π

0

ψ(ω, Fθ)(F − Fθ)(dω) = 0.

Assuming that ψ is twice differentiable and that there exists a unique
solution to this problem for any F in F , it is easy to compute the cor-
responding influence function. Consider θ

◦

ε = T(F + εδω0) the solution
of

0 =

∫ π

0

ψ(ω, Fθ◦
ε
)(F + εδω0 − Fθ◦

ε
)(dω)

=

∫ π

0

ψ(ω, Fθ◦
ε
)F (dω) + εψ(ω0, Fθ◦

ε
)−

∫ π

0

ψ(ω, Fθ◦
ε
)Fθ◦

ε
(dω).
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By derivation, we get

0 = T (1)(ω0, F )

∫ π

0

ψ′(ω, Fθ)F (dω) + ψ(ω0, Fθ)

− T (1)(ω0, F )

(∫ π

0

ψ′(ω, Fθ)Fθ(dω) +

∫ π

0

ψ(ω, Fθ)
.

fθ(ω)dω

)
and hence the influence function is of the form

T (1)(ω0, F ) = −
(∫ π

0

ψ′(ω, Fθ)F (dω)−
∫ π

0

ψ′(ω, Fθ)Fθ(dω)

−
∫ π

0

ψ(ω, Fθ)
.

fθ(ω)dω

)−1

ψ(ω0, Fθ).

The main benefit of having the influence function is that it allows to linearize
the functional of interest. Typically we expect that

T(F̂n)− T(F ) =
∫ π

0

T (1)(ω, F )(F̂n − F )(dω) +Rn,

where Rn is a remainder, which needs to be controlled either by choosing an
adequate metric or directly by hand. In many applications (e.g., Whittle esti-
mator) this remainder is typically of order Rn = oP (n

−1/2). As a consequence

the limiting behavior of
√
n(T(F̂n)−T(F )) is determined by the linear part i.e.,∫ π

0
T (1)(ω, F )(F̂n − F )(dω).

5. Sufficient and necessary conditions for asymptotic validity of
FDB

To establish conditions for the consistency of the FDB, we introduce below a
notion of Fréchet differentiability of functionals of spectral measures. For this
purpose we first endow the space F with a metric d between measures. We
assume that this metric is compatible with the linear structure of the space i.e.,
that we have d(F + εG, F ) ≤ |ε|CG,F for some constant CG,F depending on G
and F.

Definition 5.1. Let T : F →RK be a functional (with no constraint on the
total mass of these measures). T is said to be Fréchet differentiable on F ∈ F
for the metric d, with gradient g(1) iff there exists a linear continuous operator
DT(1) : F →RK and a continuous function r : R → RK with r(0) = 0 such that
for any G ∈ F

T(G)− T(F ) =DT(1)(G− F ) + r(d(G,F ))d(G,F ),

where

DT(1)(G− F ) =

∫ π

0

g(1)(ω)(G− F )(dω).
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Remark 5.1. Exhibiting the correct metric, which makes a functional Fréchet
differentiable, is a challenging task. In the i.i.d. case such a task was consid-
ered in Barbe and Bertail (1995), Dudley (1990) who proposed to use Zolotalev
metrics indexed by class of functions. This idea can be also adapted in our frame-
work since we know from Dahlhaus (1988) that an empirical process indexed by
classes of functions in the frequency domain behaves like an empirical process
for i.i.d. data under some entropy metric condition on the class F . The ques-
tion of the validity of the FDB then comes down to study separately the validity
of the FDB of the linear part and the rate of convergence of the residual part
(which is considered in Section 6).

Lemma 5.1. If T : F →RK is Fréchet differentiable at F for the metric d, then
T (1)(ω, F ) is a gradient of T and we have

T(F̂n)−T(F ) =
∫ π

0

T (1)(ω, F )(F̂n − F )(dω) + r(d(F̂n, F ))d(F̂n, F ).

A von Mises’ type of theorem follows immediately from the representation
above. Moreover, under an additional assumption controlling the behavior of
the remainder evaluated at F̂ ∗

n , we establish a necessary and sufficient condition
for the asymptotic validity of the FDB of a non-degenerate general functional.

Theorem 5.1. Assume that the assumptions (i)-(iii) of Theorem 3.1 hold and
that T : F →RK is Fréchet differentiable at F for the metric d, with influence
function T (1)(ω, F ). If d(F̂n, F ) = OP (n

−1/2) and 0 <
∫ π

0
T (1)(ω, Fθ)T

(1)(ω, Fθ)
′fθ(ω)

2dω <
∞, then we have

√
n(T(F̂n)− T(F )) d−→

n→∞
N

(
0, 2π

∫ π

0

T (1)(ω, Fθ)T
(1)(ω, Fθ)

′fθ(ω)
2dω

+
k4
σ4

(∫ π

0

T (1)(ω, Fθ)fθ(ω)dω

)(∫ π

0

T (1)(ω, F )f(ω)dω

)′
)
.

If additionally d(F̂ ∗
n , F ) = OP (n

−1/2) in probability along the sample, we have

√
n(T(F̂ ∗

n)− T(F̂n))
d−→

n→∞
N

(
0, 2π

∫ π

0

T (1)(ω, Fθ)T
(1)(ω, Fθ)

′fθ(ω)
2dω

)
in probability along the sample. Then the bootstrap is asymptotically valid iff

k4

∫ π

0

T (1)(ω, Fθ)fθ(ω)dω = 0. (10)

Remark 5.2. The condition (10) essentially means that either k4 = 0, which
is true in the Gaussian case, or the influence function is centered. As already
noticed the latter may not be the case with our definition of the influence function
as shown in the following.

Examples:
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1. The FDB for a linear functional with only one function (p = 1) i.e., for
A(ξ1, F ), is valid iff k4

∫ π

0
ξ1(ω)fθ(ω)dω = 0. In particular one can notice

that for the autocovariance the FDB does not work.
2. The influence function of the ratio T (F ) =

∫ π

0
ξ1(ω)F (dω)/

∫ π

0
ξ2(ω)F (ω)

is given by

T (1)(ω0, Fθ) =
d

dε

( ∫ π

0
ξ1(ω)F (dω) + εξ1(ω0∫ π

0
ξ2(ω)F (dω) + εξ2(ω0)

)∣∣∣∣∣
ε=0

=
ξ1(ω0)∫ π

0
ξ2(ω)F (dω)

−
ξ2(ω0)

∫ π

0
ξ1(ω)F (dω)(∫ π

0
ξ2(ω)F (dω)

)2
=
ξ1(ω0)− T (F )ξ2(ω0)∫ π

0
ξ2(ω)F (dω)

.

Note that the influence function is automatically centered.
3. Whittle estimators.

In this case, for ARMA or FARIMA models, we have the recentering
property ∫ π

0

T (1)(ω, Fθ)Fθ(dw) = 0.

T (1)(ω0, Fθ) is precisely the linear part obtained in Dahlaus and Janas
(1996). It is automatically centered under their assumptions. This explains
why the limiting distribution does not depend on k4 and why the bootstrap
works (asymptotically) in that case. However, notice that in models where
the variance depends on θ, the influence function given by (9) should be
considered and may not be centered, so that the bootstrap may fail in
that case!

4. (continuation of Example 3 from Section 4)
If the M-estimator is constructed in the way that∫ π

0

ψ(ω, Fθ)fθ(ω)dω = 0,

then under the assumptions of Theorem 5.1 the FDB is valid. In particular
notice that the Whittle estimator satisfies this property.

6. Invalidity/validity of the bootstrap for empirical processes in the
time domain

Empirical spectral processes indexed by some class of real functions F satisfying
some integrability conditions are studied in Dahlhaus (1988). The framework in
the time domain is a bit different from the usual one. We consider class of
functions of the following form

F =

{
h : [0, π] → R such that

∫ π

0

h(w)2f(ω)2dω <∞
}
.
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We are interested in the behavior of the (infinite) dimensional vectors of the
form {

n1/2
(∫

h(ω)In(ω)−
∫
h(ω)f(ω)dω

)
, h ∈ F

}
and more precisely in the discretized version of this quantity at the Fourier
frequencies. We put

Zn(h) =
2π

n1/2

 n0∑
j=1

h(λjn)In(λjn)−
n0∑
j=1

h(λjn)f(λjn)

 , h ∈ F .

Let us introduce dF the pseudo-distance between spectral densities defined by

dF (f1, f2) = sup
h∈F

{∣∣∣∣∫ h(ω)f1(ω)dω −
∫
h(ω)f2(ω)dω

∣∣∣∣} .
In the following, we will also be interested in the rate of convergence dF (In, f).

Indeed typically to ensure that Theorem 5.1 yields a CLT or to study gen-
eral M-estimators including the Whittle estimators, we end-up with controlling
dF (In, f) for a specific class of function (see examples in Dahlhaus and Polonik
(2002)). Moreover, we want to check under which conditions we have conver-
gence of the bootstrap versions to the same limit or at least when we have
d(F̂ ∗

n , F ) = OP (n
−1/2) as assumed in Theorem 5.1 for this kind of metrics.

Additionally, we introduce the computable discretized version of dF (f1, f2) given
by

dF,n(f1, f2) =
2π

n
sup
h∈F

∣∣∣∣∣∣
n0∑
j=1

h(λjn) (f1(λjn)− f2(λjn))

∣∣∣∣∣∣ ,
which obviously converges to dF (f1, f2) as n→ ∞.

As in Dahlhaus (1988) the process (Zn(h), h ∈ F) is a random element of
l∞(F) (the space of all bounded functions from F to R) equipped with the met-
ric, ||z||F = suph∈F |z(h)|. Moreover, as in the usual case (l∞(F), ||z||F ) is a
(generally non-separable) Banach space. It was proven in Dahlhaus (1988) that
under the conditions discussed below (Zn(h))h∈F converges to a Gaussian pro-
cess in l∞(F).

Define the semi-metric on F

ρ2(h, g) =

∫ π

0

(h(ω)− g(ω))2f(ω)2dω.

When f is bounded (as will be the case later), it is possible to use

ρ̃2(h, g) =

∫ π

0

(h(ω)− g(ω))2dω
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as in Dahlhaus and Polonik (2002). However, notice that if one wants to gen-
eralize the results presented below to fractional stationary times series with a
singularity at 0, then ρ2 should be used.

The bracketing number N(δ,F , ρ2) is defined as as the smallest number m
such that, there exist functions g1, g2, . . . , gm ∈ F such that for any g ∈ F ,
inf1≤i≤m ρ2(g, gi) ≤ δ. At this point we refer the reader to the discussion in
Dahlhaus and Polonik (2002) explaining the link between bracketing numbers
and regular covering numbers (the number of balls needed to cover F with balls
of size δ) and providing examples of calculus of this quantity for many classes
of functions. In many examples, when f is bounded,

N(δ,F , ρ2) ≤ N(δ,F , ρ̃2)

and these quantities can be bounded by a polynomial Cδ−V for some positive
constants C and V.

Following Dahlhaus (1988) we assume the following conditions:

B0 the process (Xt)t∈Z is strictly stationary and centered;
B1 function f is continuous and Hölder of order k > 1/2 (and thus bounded)

that is, for some positive constant K

|f(ω1)− f(ω2)| ≤ K|ω1 − ω2|k;

B2 the fourth order spectrum is continuous and the spectrum of all order
m ≥ 2 are bounded by Cm, where C is some positive constant;

B3 (F , ρ2) is totally bounded and is a permissible subset of the set of all
real functions such that

∫ π

0
h(w)2f(ω)2dω <∞. Moreover, there exists an

envelop H such that |h(ω)| ≤ H(ω), ω ∈ [0, π] with∫ π

0

H(w)2f(ω)dω <∞;

B4 the covering number satisfies the integrability condition∫ 1

0

(log(N(δ,F , ρ2))2 <∞;

B5 the spectral density estimator f̂n converges to f uniformly over [0, π].

In this section similarly to Dahlhaus (1988) we make a stronger assumption
B0 on the generating process. The reason for this is that exponential inequali-
ties (here on weighted sums of the periodogram at the Fourier frequencies) are
essential to obtain maximal inequalities and to control increments of empirical
processes as was done in the i.i.d. case. Condition B4 comes from the paper
by Dahlhaus and Polonik (2002) who have improved the original condition of
Dahlhaus (1988). Notice that B4 is stronger than the usual assumption (in the

i.i.d. case) which would rather be of the form
∫ 1

0
(log(N(δ,F , ρ2))1/2 <∞. This
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means that N(δ,F , ρ2) should be of the order much smaller than exp(δ−1/2)
(rather than the ”Gaussian” rate exp(δ−2)). In most applications (in partic-
ular if the bracketing number is polynomial) this condition will be satisfied.
This restriction is due to the fact that the exponential inequalities obtained in
this framework are typically proved with a suboptimal rate of order exp(−t1/2)
instead of the Gaussian rate exp(−t2).

In the following we consider the bootstrap version of (Zn(f), h ∈ F), say
(Z∗

n(f), h ∈ F), obtained using the standard FDB procedure described be-
fore (either with a parametric estimator of the spectral density or with a non-
parametric one), where

Z∗
n(h) =

2π

n1/2

 n0∑
j=1

h(λjn)I
∗
n(λjn)−

n0∑
j=1

h(λjn)In(λjn)

 .

Theorem 6.1. Under assumptions B0-B5, the empirical spectral process (Zn(h), h ∈
F) converges in (l∞(F), ||z||F ) to a centered Gaussian process with continuous
sample paths and covariance operator, given, for all h ∈ F , g ∈ F by

c(h, g) = 2π

∫ π

0

h(ω)g(ω)f(ω)2dω +
k4
σ4

∫ π

0

h(ω)f(ω)dω

∫ π

0

g(ω)f(ω)dω.

Moreover, the bootstrap empirical spectral process Z∗
n(h) also converges in (l∞(F),

||z||F ) to a (different) centered Gaussian process with continuous sample paths
and covariance operator given, for all h ∈ F , g ∈ F ,

c1(h, g) = 2π

∫ π

0

h(ω)g(ω)f(ω)2dω.

As as consequence the FDB of the empirical spectral process is only asymptoti-
cally valid on classes of functions satisfying the additional conditions, for ALL
h ∈ F

k4

∫ π

0

h(ω)f(ω)dω = 0.

Moreover, in any case we have

dF (In, f) = OP (n
−1/2)

and
dF (I

∗
n, In) = OP (n

−1/2) in probability along the sample.

7. Summary and conclusions

In this paper we provided sufficient and necessary conditions for the consistency
of the FDB in the case of linear stationary time series. For this purpose we de-
fined the influence function in the time domain on spectral measures, which
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allowed us to linearize the functional of interest. Moreover, we introduced a no-
tion of Fréchet differentiability of functionals of spectral measures. We discussed
consistency of the FDB and its second order correctness for differentiable func-
tionals of spectral density function. Finally, we stated sufficient and necessary
conditions for the FDB validity in the case of empirical processes.
Our results allow to understand why the FDB is valid for some functionals (e.g.,
the Whittle estimator) or empirical processes and for which functionals or em-
pirical processes it can be consistent. For instance only homogeneous functions
of degree 0 of linear functionals (including ratios of linear functionals) are can-
didates for the asymptotic validity of the FDB when kurtosis of innovations is
equal to zero. Moreover, we indicated that the second order correctness can be
obtained only for linear time series with i.i.d. innovations such that Eζ31 = 0.
Thus, one should carefully apply the FDB method for particular functionals.

Appendix

Proof of Theorem 3.2
The cumulants of the true distribution and the bootstrap one differ essentially
in the term in M2

3 appearing in the cumulants of order three of the statistics
of interest (see (3.9) and Lemma 2 of Dalhaus and Janas (1996)). As noticed
in Theorem 1 of the same authors the other terms match in the expansion if
M3 = 0. �

Proof of Lemma 3.2
Proof of Theorem 3.2 follows the same reasoning as presented in Dahlhaus and
Janas (1996) and hence we skip the technical details. �

Proof of Lemma 5.1
Since T is Fréchet differentiable with gradient g(1), we get

T(F + εδω0)− T(F )= ε

∫ π

0

g(1)(ω)δω0(dω) + r(d(F + εδω0 , F ))d(F + εδω0 , F )

= εg(1)(ω0) + o(ε)

and by definition

(T(F + εδω0
)− T(F ))

ε
−→ g(1)(ω0) = T (1)(ω0, F ) as ε −→ 0.

�

Proof of Theorem 5.1
The representation and the hypothesis on the metric imply that

√
n(T(F̂n)−T(F )) =

√
n

∫ π

0

T (1)(ω, F )(F̂n − F )(dω) + oP (1).
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Then applying Corollary 4.1. from Kreiss and Paparoditis (2003) one gets the
asymptotic distribution.
Similarly for the bootstrap, by applying the Fréchet differentiability assumption
twice we have

√
n((T(F̂ ∗

n)−T (F ))+(T (F )−T(F̂n)) =
√
n

∫ π

0

T (1)(ω, F )(F̂ ∗
n−F̂n)(dω)+oP (1).

Applying Theorem 3.1 to the linear part one gets the limiting distribution

N

(
0, 2π

∫ π

0

T (1)(ω, Fθ)T
(1)(ω, Fθ)

′fθ(ω)
2dω

)
,

which coincides with the distribution of
√
n(T(F̂n)− T(F )) iff(∫ π

0

T (1)(ω, Fθ)fθ(ω)dω

)(∫ π

0

T (1)(ω, F )f(ω)dω

)′

= 0.

The last condition implies (by taking the trace) that∥∥∥∥∫ π

0

T (1)(ω, Fθ)fθ(ω)dω

∥∥∥∥2 = 0,

which ends the proof of the theorem. �

Proof of Theorem 6.1
The proof follows standard arguments from the empirical process literature.
The marginal distribution converges obviously to the marginal distribution of
the limit process by Theorem 3.1. The result concerning (Zn(h), h ∈ F) is a
special case of Dahlhaus (1988) (with no tapering and for the univariate time
series). Thus, essentially we have to prove the result for the bootstrap empirical
process.
Notice that we have

Z∗
n(h) =

2π

n1/2

 n0∑
j=1

h(λjn)f̂n(λjn)(ε
∗
jn − 1)−

n0∑
j=1

h(λjn)(In(λjn)− f̂n(λjn))


= I + II + III

with

I =
2π

n1/2

n0∑
j=1

h(λjn)f(λjn)(ε
∗
jn − 1),

II =
2π

n1/2

n0∑
j=1

h(λjn)(f̂n(λjn)− f(λjn))(ε
∗
jn − 1),

III =
2π

n1/2

n0∑
j=1

h(λjn)(In(λjn)− f̂n(λjn)).
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We are going to show that II and III are uniformly small of order oP (1), so
that the limiting distribution is essentially given by I. But notice that this is
simply a process with i.i.d. random variables and hence it is sufficient to verify
for instance the assumptions of Theorem 2.11.9 (p. 211) of van der Vaart and
Wellner (1996) to get the convergence to the Gaussian process given before.
We have that

|II| ≤ sup |f̂n(ω)− f(ω)|2π
n

n0∑
j=1

H(λjn)|ε∗jn − 1|.

Since the ε∗jn are i.i.d, we get that 2π
n

∑n0

j=1H(λjn)|ε∗jn − 1| = OP (1) in proba-
bility along the sample and by condition B5 we obtain the uniform convergence.
Moreover,

Var(III) = (2π)
2 1

n2

n0∑
j=1

h(λjn)
2Var

(
In(λjn)− f̂n(λjn)

)
+ (2π)

2 1

n2

n0∑
j=1

n0∑
k=1,k ̸=j

h(λjn)h(λkn)Cov
(
In(λjn)− f̂n(λjn), In(λkn)− f̂n(λkn)

)
.

Note that the the first term on the right-hand side in the above expression is
bounded by

(2π)
2 1

n2

n0∑
j=1

H(λjn)
2Var(In(λjn)− f̂n(λjn)) = O(n−1),

because
∫
H(ω)2f(ω)2dω <∞.

One can easily show that that uniformly in j and k

Cov(In(λjn)− f̂n(λjn), In(λkn)− f̂n(λkn)) = o(1).

Since 2π
n2

∑n0

j=1

∑n0

k=1,k ̸=j H(λjn)H(λkn) converges to
∫ π

0
H(ω)f(ω)dω, we get

that the second term on the right-hand side of Var(III) is of order o(1) uniformly
in h.
Thus, it follows that uniformly in h, we have that II + III = oP (1) along the
sample.
To prove the conclusion of the theorem, now we investigate the behaviour of
I. Note that the entropy condition is automatically satisfied under the stronger
entropy condition (needed for Zn(f)) since we have by the Cauchy-Schwartz
inequality∫ 1

0

(log(N(δ,F , ρ2))1/2 <
(∫ 1

0

(log(N(δ,F , ρ2))2
)1/4

<∞.

The Lindeberg-Feller condition of Theorem 2.11.9 p. 211 of van der Vaart and
Wellner (1996) is fulfilled because the moments of order 3 of |ε∗jn − 1| are finite
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in probability along the sample. Thus, it is sufficient to verify an equicontinuity
condition. Notice that we have

sup
h,g∈ F,ρ2(h,g)≤ηn

E∗ |Z∗
n(h)− Z∗

n(g)|
2

= sup
h,g∈ F,ρ2(h,g)≤ηn

(2π)2

n

n0∑
j=1

(
h(λjn)− g(λjn))

2f(λjn
)2

E∗ (ε∗jn − 1
)2
.

Note that E∗(ε∗jn − 1)2 is converging to 1 in probability, it is bounded and as
n −→ ∞

2π

n

n0∑
j=1

(h(λjn)− g(λjn))
2
f(λjn)

2 −→ ρ2(f, g).

This convergence is uniform over the set Fηn={h, g ∈ F , ρ2(h, g) ≤ ηn}, because
by the same arguments as in van der Vaart and Wellner(1996) p. 128, we have
that

N(δ,Fηn
, ρ2) ≤ 4N(δ/2,F , ρ2)2 <∞,

ensuring the validity of the Glivenko-Cantelli theorem over the class Fηn .
It follows that for n large enough, there exists a constant C > 0 such that

sup
h,g∈ F,ρ2(h,g)≤δ

E|Z∗
n(h)− Z∗

n(g)|2 ≤ C δn in probability,

which converges to 0 when δn −→ 0.
Thus, Z∗

n(h) converges in (l∞(F), ||z||F ) to a (different) centered Gaussian
process with covariance given by the limit of covariance, for all h ∈ F , g ∈ F ,

1

n
Cov∗

 n0∑
j=1

h(λjn)f(λjn)(ε
∗
jn − 1),

n0∑
j=1

g(λjn)f(λjn)(ε
∗
jn − 1)


=

1

n

n0∑
j=1

h(λjn)f(λjn)g(λjn)f(λjn)E
∗ (ε∗jn − 1

)2
−→ c1(h, g) as n −→ ∞.

The two limits of the empirical processes coincide iff the second term in the
covariance c(h, g) vanishes that is iff k4

∫ π

0
h(ω)f(ω)dω = 0. �
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