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A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides
at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning
of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic
torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-
length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder as
well as the deformability of the substrate, which we express in term of a single scaled compliance
parameter. By varying this compliance parameter, we show that our experimental results are
consistent with a transition from an edge-effect dominated regime for short cylinders to a gap-
dominated elastohydrodynamic regime when the cylinder is very long.

I. INTRODUCTION

The interplay between lubricated flow and deformable
surfaces is ubiquitous in nature and engineering in set-
tings spanning a broad range of length scales, e.g. earth-
quakes [1], avalanches [2], landslides [3], lubrication of
cartilaginous and artificial joints [4–9] or industrial bear-
ings [10]. Often, this elastohydrodynamic coupling is seen
in the presence of confined flow where pressure gradients
are likely to be large. Previous theoretical works have
studied confined flows in the soft lubrication approxima-
tion and accounted for the roles of elasticity [11–16], fluid
compressibility [17], the inertia of the fluid and the elas-
tic medium [18], and viscoelasticity of the substrate [19].
More recent works have focused on elastohydrodynamic
effects for liquids confined at the micro and nano scales
[20–22], which has important consequences for surface
mechanical characterization [23, 24]. For symmetrical
objects, the results show that elastic deformations lead
to a non-symmetric pressure field and to the emergence
of a friction-reducing lift force. Of particular importance
in nature are cases of freely moving particles close to soft
surfaces as seen in flows of cells in vessels [25] or mi-
crofluidic devices [26, 27], the mobility of suspended or
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falling objects near elastic membranes [28–31], the be-
havior of vesicles near walls [32] or the collisions between
suspended particles [33]. It is only very recently that a
theoretical work [34] addressed freely moving objects and
showed how a free falling cylinder can sediment, slide and
spin along a soft incline. A particularly interesting result
is that the elastohydrodynamic lift force can counteract
sedimentation and lead to an emergent sliding steady
state that has since been confirmed experimentally [35].
The experimental study also raised a new question as-
sociated with observations of rotational motion, which
led to a recent theoretical study of the rotation [36] that
remains untested.

In this article, we experimentally quantify the rotation
of cylinders falling along a soft incline. We show that
there is a steady rotation speed for finite-length cylin-
ders that increases with substrate deformability, quali-
tatively consistent with a recently developed theory for
an infinite cylinder near a soft substrate [36]. However,
the latter fails to describe quantitatively our results. We
show that a complete theory that takes into account both
the elastohydrodynamic torque along the cylinder length
and the viscous friction on the edges of the cylinder is in
quantitative agreement with our experiments and that
our control parameters can be combined into a single di-
mensionless compliance number. When this compliance
increases, i.e., the thickness of the substrate increases
or its stiffness decreases, the angular velocity follows a
relationship that contains two regimes, a first one domi-
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nated by edge effects and the second by the elastohydro-
dynamic stresses due to the substrate deformation. In
contrast with the theory for infinite cylinders developed
previously, here the edge effects do not allow for the ex-
istence of simple power law behaviors in the range of our
experimental parameters.

II. EXPERIMENTAL SYSTEM AND
OBSERVATIONS

The experiments follow the same protocol as described
previously [35], with a metal cylinder of either aluminum
or brass (densities ρ = 2720 and 8510 kg/m3) with radii
a = 12.7 and 6.35 mm. For both cylinders, the length
L = 12.7 mm such that their respective aspect ratios are
a/L = 1 and 1/2. The cylinders are immersed in a sili-
cone oil bath of density ρoil = 970 kg/m3 and viscosity
µ = [0.35 − 30] Pa.s. They freely move down a rigid
glass incline (angle varied in the range α = [11 − 45]◦)
coated with a soft gel with shear moduli G in the range
[100 − 3 × 105] Pa (Fig. 1(a)). The coating thickness is
varied in the range he = [100 − 2000] µm. The coatings
are made of polydimethylsiloxane (PDMS) and polyacry-
lamide (PAA) in which we can change the concentrations
of monomers and crosslinkers to tune the shear modu-
lus. The latter is measured on an Anton Paar MCR501
rheometer with a CP50 cone-plate geometry, using an
amplitude of 0.1% for PAA and 0.5% for PDMS, with an
angular frequency of 10 rad/s. When the cylinder moves
along the incline (undergoing both translation and rota-
tion), it deforms the substrate (Fig. 1(b)) and its motion
is recorded from the side with a camera.

Image analysis allows us to track the center of the
cylinder and provides a direct measurement of the trans-
lation speed of the cylinder uc, and its rotation velocity
uθ = aΩ, with a the cylinder radius and Ω the angu-
lar speed. Figures 2(a) and (b) show the rotation angle
as a function of time for the aluminum cylinder for dif-
ferent coating moduli and thicknesses, respectively. We
observe that the rotation speed Ω is constant, which is
reminiscent of the constant sliding speed observed earlier
in similar experiments [35]. We also observe that this
rotation speed decreases when the coating becomes less
deformable, i.e, when the shear modulus G increases, or
when its thickness h decreases.

III. SCALING ARGUMENTS AND THE FINITE
SIZE EFFECT

To capture the main features of the experimental ob-
servations, we first revisit the scaling arguments for an
immersed infinite cylinder sliding along a soft incline [34].
Due to the confinement of the flow under the cylinder
within a fluid gap of thickness hf � a, the typical trans-
verse length scale of contact scales as ` =

√
2ahf, so that

we can invoke the lubrication approximation [37]. For

0

0 1 2 3 4-1-2-3-4

0.2

-0.2

V

z (
m

m
)

x (mm)

(a)

(b)

u

α

Soft layer (G, λ) 

Rigid substrate

Ω

h e

h f

δ (x,t)

c

z

x

a

Fluid ( , ) Loil

uc

FIG. 1. (a) Sketch of the experimental setup: a negatively-
buoyant rigid cylinder immersed in a viscous bath slides down
a tilted wall that is coated with a thin elastic layer. (b) Ex-
perimental image showing a side view of the soft substrate
deformation (red) by using a laser sheet with fluorescent par-
ticles placed at the surface. The white dashed line represents
the cylinder contour, centered at x = 0. The black dashed
line corresponds to the interface of the undeformed substrate.
The white solid line follows the center of the fluorescent par-
ticles’ emission, obtained by using a Gaussian fit, showing the
asymmetric deformation of the substrate-fluid interface. The
experimental parameters are G = 65 kPa, he = 1.5 mm, µ = 1
Pa.s, a = 12.7 mm, ρ = 8510 kg/m3, and α = 11◦. Figure
adapted and modified from [35].

small deformations δ of the soft layer satisfying |δ| � `
and assuming a localized linear response of the elastic
layer to the applied normal stress p (Winkler approxima-
tion), the deformation can be expressed as δ = he

2G+λp,
where λ denotes Lamé’s first parameter of the substrate
and where the hydrodynamic pressure in the gap scales
from the Stokes equation as p ∼ µuc`/h

2
f . This identifies

the dimensionless compliance of the elastic layer Λ as

Λ ≡ µuchea
1/2

(2G+ λ)h
5/2
f

∼ δ

hf
, (1)

which measures the scale of the substrate deformation
relative to the fluid gap thickness [45]. In this framework,
previous theoretical studies [11–16] have shown that for
Λ � 1 and for given uc and hf the motion of an in-
finite cylinder is accompanied by the emergence of an
elastohydrodynamic lift force F ∼ Λµuc`

2L/h2
f , which

was confirmed experimentally [35]. Since the cylinder
also rotates with negligible inertia, the sum of torques
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FIG. 2. (a) Evolution of the rotation angle of the cylin-
der as a function of time for different shear moduli of the
coating with the aluminium cylinder of radius a = 12.7 mm.
These experiments were conducted at constant coating thick-
ness he = 600 µm. (b) Evolution of the rotation angle as a
function of time for different coating thicknesses with the alu-
minum cylinder. These experiments were made at constant
shear modulus G = 31× 103 Pa. For both panels, the viscos-
ity and the incline angle are fixed at µ = 1 Pa.s and α = 11◦

respectively.

due to elastohydrodynamics (induced by the substrate’s
deformation due to sliding) τs and viscous damping of the
rotational motion τΩ vanish [36]: τΩ +τs = 0. The sliding
torque scales as τs ∼ µuca`L/(hf + δ), where hf + δ is the
typical gap size between the cylinder and the deformed

substrate. Invoking (1), we expand the previous expres-
sion in powers of Λ for Λ� 1 and recognize that the con-
tributions proportional to Λ0 and Λ1 are zero for an infi-
nite cylinder [34, 38] to find that τs ∼ µuca`δ

2L/h3
f . As

the rotational damping torque scales as τΩ ∼ µΩa2`L/hf,
balancing it with the sliding contribution yields the scal-
ing relationship:

aΩ

uc
∼ Λ2 ∼ µ2u2

ch
2
ea

(2G+ λ)2h5
f

(infinite cylinder). (2)

For infinite cylinders, no rotation occurs when Λ = 0
(a rigid substrate), a consequence of a vanishing sliding
torque in this limit [38]. This feature is modified for
compact bodies such as spheres, where translation and
rotation are coupled even when all boundaries are rigid.

For the finite-sized cylinders in experiments, we gener-
ically expect a nonzero rotation rate Ω0(hf/a, a/L) even
as Λ → 0 due to three-dimensional flows near the cylin-
der ends. These flows penetrate a width ` into the fluid
gap from the ends of the cylinder. A rough estimate
of the resulting sliding torque (for a rigid substrate) is
µuca`

2/hf ∼ µuca
2, which is independent of hf. In lubri-

cation flows with gap-independent scaling estimates for
torque, detailed calculations typically reveal logarithmic
corrections [39–41]. Including a log-corrected end torque
µuca

2 log(a/hf) in the torque balance above suggests

aΩ

uc
= k2Λ2 + k1

a

L

(
hf

a

)1/2

log

(
a

hf

)
. (3)

The second term on the right side is identified with
aΩ0/uc and the first with (2), with constants of propor-
tionality k1 and k2. Thus, we expect two independent
sources of rotation, one due to end effects and another
due to the elastohydrodynamic torque over the length of
the cylinder. As we will show, there is indeed a cross-
over from end-dominated to softness-dominated rotation
in our experiments as Λ increases.

IV. THEORY

As discussed above, two-dimensional theory predicts
zero hydrodynamic torque on a non-rotating (infinite)
cylinder sliding along rigid walls (Λ = 0). We show be-
low that three-dimensional end-effects qualitatively mod-
ify this result for a cylinder. End effects are confined to
a penetration depth ` into the lubrication gap, so both
ends are hydrodynamically isolated in our experiments
since L = O(a) � `. We focus on the flow near one
of the ends, which we place at y = 0 so that the gap
lies in y > 0. It is convenient to introduce dimensionless
coordinates (X,Y ) = (x, y)/`, and a dimensionless lubri-
cation pressure P (X,Y ) = p(x, y)/(µuc`/h

2
f ). Since the

gap thickness abruptly diverges at the ends of the cylin-
der, P must vanish at Y = 0. Invoking the parabolic
approximation of the gap profile H(X) = 1 + X2 and
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FIG. 3. (a) Dimensionless angular velocity aΩ/uc as a func-
tion of the elastic substrate’s shear modulus G, for the alu-
minum cylinder of radius a = 12.7 mm (a/L = 1), and the
brass cylinder, of radius a = 6.35 mm (a/L = 1/2). The thick-
ness of the elastic substrate is he = 600 µm. The solid lines
correspond to the theoretical prediction of (9) for a/L = 1
(red) and a/L = 1/2 (blue) with c = −0.715. (b) Dimen-
sionless angular velocity aΩ/uc as a function of the elastic
substrate’s thickness he, for the aluminum cylinder of radius
a = 12.7 mm (a/L = 1), and the brass cylinder of radius
a = 6.35 mm (a/L = 1/2). The shear modulus of the elastic
substrate is G = 31×103 Pa. The solid lines correspond to the
theoretical prediction (9) for a/L = 1 (red) and a/L = 1/2
(blue) with c = −0.715 as a fit parameter. For both studies,
the viscosity and incline angle are µ = 1 Pa.s and α = 11◦

respectively. The standard deviation obtained from the angle
measurements as a function of time, and averaged on all the
experimental points, is 0.05.

focusing on Λ → 0 (the limit of a rigid substrate), the
pressure in the gap satisfies the Reynolds equation

∇ · (H3∇P + 6HeX) = 0 , subject to (4a)

P (X, 0) =
∂P

∂Y
(X,∞) = P (±∞, Y ) = 0, (4b)

where ∇ = eX∂X + eY ∂Y .

We seek a solution P (X,Y ) = P2d(X) + P ′(X,Y ),
where P2d(X) = 2X/(1 + X2)2 is the pressure due to
an sliding infinite cylinder, which satisfies (4) except for
the condition at Y = 0. As we discuss below, it is suf-
ficient to analyze the large-X behavior of P ′. Defin-
ing η = Y/X (the tangent of the angle in the XY
plane), we seek an asymptotic solution in inverse pow-
ers of X with the form P ′(X � 1, Y ) ∼

∑
nX

−nfn(η).
From the boundary condition at Y = 0 and the asymp-
totic behavior P2d(X � 1) ∼ 2X−3, it is clear that
the leading term of the expansion introduced above is
P ′(X � 1, Y ) ∼ −2X−3Q(η). Substituting this expres-
sion into (4a) and retaining the most slowly decaying
terms at large X yields

(1 + η2)
d2Q

dη2
+ 2η

dQ

dη
− 6Q = 0, subject to (5a)

Q(0) = 1 and
dQ

dη

∣∣∣∣
η→∞

→ 0, (5b)

which admits the solution

Q(η) =
(
3η2 + 1

)(
1− 2

π
arctan η

)
− 6η

π
. (6)

This determines the asymptotic behavior P ′(X �
1, Y ) ∼ −2X−3Q(Y/X). The perturbation scheme can
developed further to obtain corrections to P ′ [the next
term is of the form X−5f5(η)] although the leading term
suffices for our purposes.

The dimensionless horizontal velocity in the reference
frame of the sliding cylinder, expressed in units of uc is
V = 1

2Z(Z − H)∇P + Z−H
H eX . The component of the

shear stress responsible for its rotation, in units of µuc/h,
is σXZ = ∂VX

∂Z

∣∣
Z=H

= H
2
∂P
∂X + 1

H , whose integral over the
area of the lubrication gap yields the hydrodynamic slid-
ing torque on the cylinder. Noting the symmetry of σXZ
about X = 0, including both (hydrodynamically non-
interacting) ends of the cylinder, and recalling that the
torque generated by the two-dimensional case is iden-
tically zero, the dimensionless torque can be expressed

(in units of µuca`
2/hf) as 4

∫X∞
0

∫∞
0

H
2
∂P ′

∂X dY dX, where
X∞ = O(a/`) [corresponding to x = O(a)] is the outer
“edge” of the lubrication gap. An estimate of the previ-
ous integral at large X shows that it diverges as logX∞.
Formally, we make a change of variables in the integral
from (X,Y ) to (X, η) and isolate the divergence to obtain
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the dimensional sliding torque

τc =
4µuca`

2

hf

∫ X∞ ∫ ∞
0

1

X

(
3Q+ η

dQ

dη

)
dη dX

=
32

3π
µuca

2

(
log

(
a

hf

)
+ c

)
. (7)

The constant c absorbs the ambiguity in defining X∞,
nonsingular contributions from the lubrication flow (i.e.
from terms of P ′ decaying as X−5 or faster) and the
torque due to end-effects outside the fluid gap. The lat-
ter contribution includes the torque on the flat faces of
the cylinder, which is generated by stresses of O(µuc/a)
acting over an area of O(a2) with a moment arm of O(a).
Evaluating c requires a matched asymptotic approach
that we do not pursue here; instead we will estimate it
from a fit to our experiments. The result (7) is reminis-
cent of the torque on a translating sphere of radius a, for
which the factor of 32/(3π) is replaced by 4π/5 and the
constant c ≈ −1.895 [39].

Since the cylinder is free to rotate and has negligible
inertia, the sum of the sliding torque and the rotational
torque τΩ = −2

√
2πµa2LΩ0(a/hf)

1/2 [38] vanishes, yield-
ing the rotation rate of a translating finite cylinder near
a rigid wall

aΩ0

uc
=

8
√

2

3π2

a

L

(
hf

a

)1/2(
log

(
a

hf

)
+ c

)
. (8)

This result is expected to dominate for stiff substrates
(Λ� 1) in our experiments. The leading contribution to
Ω due to the softness of the substrate (denoted Ω2) was
shown for an infinite cylinder to be aΩ2/uc = (21/128)Λ2

[36]. Modifications to Ω2 due to end effects scale as
`/L� 1 and will be neglected here.

Thus, the angular speed of a translating finite cylinder
is Ω ≈ Ω0 + Ω2, or

aΩ

uc
=

8
√

2

3π2

a

L

(
hf

a

)1/2(
log

(
a

hf

)
+ c

)
+

21

128
Λ2. (9)

This theoretical prediction makes precise the estimate
(3) and reduces to the infinite-cylinder and the rigid-wall
results in the respective limits a/L→ 0 and Λ→ 0.

For gravity-driven motion along a soft incline, the gap
thickness is not an independently controlled quantity but
is instead set by a balance of the cylinder’s buoyant
weight, the elastohydrodynamic lift force and the hydro-
dynamic drag on the cylinder. Introducing the Poisson
ratio ν [so that λ = 2Gν/(1 − 2ν)], this balance yields
for a thin, compressible, elastic layer [34, 36]

hf

a
=

(
3

8
Λ tanα

)2

with (10a)

Λ =

{
221/10

34/5

(
1− 2ν

1− ν

)1/5
}
κ (10b)

where κ =
(
ρ∗ghe cosα
2G tan3 α

)1/5

and ρ∗ = ρ−ρoil. In (10b), the

quantity in braces is a dimensionless constant with val-
ues 1.78–0.93 for ν in the range 0–0.49, while all parame-
ters involved in κ are either known or directly measured.
Substituting (10a) into (9) yields the angular speed for
gravity-driven motion near a thin, compressible coating
on an incline of angle α;

aΩ

uc
=

√
2 a

π2L
(Λ tanα)

(
2 log

(
8

3Λ tanα

)
+ c

)
+

21

128
Λ2. (11)

End effects dominate the rotation rate at small Λ, al-
though the gap thickness is still set by elastohydrody-
namic stresses. The term quadratic in Λ becomes im-
portant when Λ >∼ (a/L) tanα. In the limit of very stiff

substrates, we expect aΩ/uc ∝ (he/G)
1/5

log (G/he), in
contrast with the two-dimensional prediction aΩ/uc ∝
(he/G)

2/5
.

V. COMPARISON BETWEEN EXPERIMENTS
AND THEORY

We now compare the prediction of the theory with the
results of the experiments. The evaluation of the compli-
ance Λ in (1) and (10)(a) requires us to know the value
of the Poisson ratio ν. Since we did not measure it di-
rectly, we choose ν = 0.47 based on experimental studies
found in the literature for polyacrylamide gels and thin
films of PDMS [42–44]. The theoretical prediction for
the scaled rotational speed aΩ/uc in (9) includes a con-
stant c that is expected to be independent of the com-
pliance Λ. As `/L � 1 we assume the end flows to be
decoupled from each other and we thus expect c to be
independent as well of the aspect ratio of the cylinder.
In order to compare the theory to the experiments we
force c to be the same for experiments involving differ-
ent cylinders (and thus aspect ratios). In Fig. 3, we
show the behavior of the scaled angular speed aΩ/uc as
a function of the coating film’s shear modulus G (Fig. 3a)
and thickness he (Fig. 3b). We observe that the finite-
size theory, which includes both the cylinder edge-effect
term and an elastohydrodynamic term (the latter corre-
sponding to an infinite soft-lubricated cylinder) predicts
remarkably well the experimental results with a single
constant c = −0.715, with increasing scaled angular ve-
locities for decreasing stiffness G and increasing coating
thickness he (increasing κ). The value for c is consistent
with the typical value obtained for a sphere near a rigid
wall (c ≈ −1.895 [39]).

Combining all these experimental results allows us to
plot a master curve for aΩ/uc as a function of the mod-

ified scaled compliance κ =
(
ρ∗ghe cosα
2G tan3 α

)1/5

, as shown in

Fig. 4(a). We choose to plot the data as a function of κ
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FIG. 4. (a) Experimental dimensionless angular velocity
aΩ/uc as a function of the modified scaled compliance κ =(
ρ∗ghe cosα
2G tan3 α

)1/5

. The red symbols correspond to the alu-

minum cylinder with a/L = 1, while the blue symbols cor-
respond to the brass cylinder with a/L = 1/2. The circles
and the squares correspond, respectively, to variations in G
and he. The black dashed line corresponds to the infinite
cylinder case (9) with a/L = 0, ν = 0.47. The colored dashed
lines correspond to the theory taking into account only the
end effect (8), with c = −0.715. The solid lines corresponds to
the finite-size theory (9), with c = −0.715. (b) Experimental
scaled angular velocity (aΩ/uc)

exp as a function of the theo-
retical scaled angular velocity (aΩ/uc)

theory (9). Red circles -
aluminum cylinder with a/L = 1, blue circles - brass cylinder
with a/L = 1/2, triangles - aluminum cylinder (a/L = 1) with
viscosities µ ∈ [0.35− 30] Pa.s, incline angles α ∈ [11− 45◦],
moduli G ∈ [16− 280] kPa, thicknesses he ∈ [300− 1000] µm,
and the black line has slope 1.

rather than Λ as the former only accounts for the exper-
imental parameters that we can directly measure, and
not ν or hf. The values of κ are very similar to those
of Λ for ν = 0.47 (Λ ≈ 1.15κ). In fact the factor be-
tween Λ and κ is rather insensitive to ν (e.g. about 0.93
for ν = 0.49), and so κ is a good physical estimate of
the scaled compliance Λ for our experimental conditions.
We observe that, with a unique constant c = −0.715, the

experimental results are very consistent with the theo-
retical master curves. In Fig. 4(b), we have plotted the
values measured for aΩ/uc as a function of its theoretical
prediction from (9), for the same c constant and the same
data as in Fig. 4(a), but also with experiments where all
parameters were varied, including the inclination angle.
This unique master curve for both cylinders confirms the
good agreement between theory and experiments over
more than a decade.

VI. DISCUSSION

We have also plotted separately the contributions of
both terms in (9), namely the contribution of end effects
for a finite-length cylinder, and the elastohydrodynamic
contribution for an infinite cylinder, as shown in Fig.
4(a). Our experimental data lie in the crossover region
between these two limiting behaviors. At high values of
the compliance i.e., for soft or thick substrates, the ex-
perimental data for both aspect ratios appear to collapse
together and converge toward the infinite cylinder the-
ory, consistent with a regime where edge effects (and thus
cylinder length) do not affect the rotation behavior. We
note that at intermediate values of the compliance, edges
effects tend to increase the scaled angular velocity with
respect to the infinite-cylinder prediction. Finally, at
small compliances, the elastohydrodynamic torque does
not affect the rotation anymore, and the latter is solely
generated by end effects (near a rigid wall). The crossover
location depends on the aspect ratio. We can indeed see
that, for the brass cylinder with a/L = 1/2, the rotation
behavior is closer to the infinite cylinder one than in the
case of the aluminum cylinder, with a/L = 1, where end
effects play a more significant role.

It is also interesting to note that the theory pre-
dicts an angular velocity either smaller or larger than
in aΩ/uc ∼ 1. The latter regime corresponds to the
rolling of a cylinder in no-slip dry contact with a rigid
incline and should be reached in our system typically for
κ ∼ 2. However, the range of parameters explored in our
experiments could not allow us to verify the existence of
“super-rolling” behaviors for higher compliances.

VII. CONCLUSION

Our experiments on the rotation of an immersed finite-
size cylinder moving down and near a soft incline have
shown that there is a steady-state rotation with an angu-
lar speed that increases with the compliance of the sub-
strate. While this observation is qualitatively consistent
with a recent theoretical prediction for an infinite cylin-
der [36], this earlier infinite cylinder (2D) theory fails to
describe our experimental observations quantitatively. A
modified theoretical description for a finite-length cylin-
der that takes into account the additional torque created
by viscous friction on both its edges does allow for a quan-
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titative agreement with our experiments, which are typ-
ical of many applications. In particular, we have shown
that for small compliances and small cylinder lengths, the
contribution of the elastohydrodynamic torque to the ro-
tation becomes small relative to those contributions from
end effects, even when the gap thickness is still set by a fi-
nite elastohydrodynamic lift force. This result gives more
realistic insights on the behaviors of finite-size objects in
motion or in interaction close to soft interfaces, and pave
the way for new theoretical development accounting for
geometric and mechanical properties that are relevant to

more specific biological, geophysical and engineering pro-
cesses.
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