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Existence of a cointegration relationship between two time series in the time domain imposes restrictions on the series zero-frequency behaviour in terms of their squared coherence, phase, and gain, in the frequency domain. I derive these restrictions by studying cross-spectral properties of a cointegrated bivariate system. Specifically, I demonstrate that if two difference stationary series, t X and t Y , are cointegrated with a

cointegrating vector [ ] b 1
and thus share a common stochastic trend, then at the zero frequency, the squared coherence of ( )

t X L - 1 and ( ) t Y L - 1
will equal one, their phase will equal zero, and their gain will equal b .

Introduction

Since the introduction of cointegration and common trend analysis in econometrics and statistics by [START_REF] Engle | Cointegration and error correction: representation, estimation, and testing[END_REF] and [START_REF] Stock | Testing for common trends[END_REF], integration and cointegration tests have by now become an essential part of the applied econometricians' and macroeconomists' standard tool kit. These tests are routinely applied to economic time series because the notion of cointegration has a natural economic interpretation: existence of a cointegration relationship between two variables indicates that the series "move together" in the long run, and so they share a common stochastic trend, although in the short run the series may diverge from each other. Since many economic theories make these kinds of long-run and short-run differential predictions about economic time series co-movements, many economic models (and particularly macroeconomic models) lend themselves naturally to cointegration testing (Engle and Grange, 1987).

The cointegtation property is a long-run property, and therefore in frequency domain it refers to the zero-frequency relationship of the time series. Therefore, there is a frequency-domain equivalent of the time-domain cointegration property.

Specifically, existence of a cointegration relationship between two time series in the time domain imposes restrictions on the series zero-frequency behavior in terms of their cross spectral measures in the frequency domain. The purpose of this paper is to use a bivariate setting to derive these frequency-domain restrictions in terms of the time series' squared coherence, phase and gain, which are the measures practitioners typically consider when studying cross spectral properties of time series.

Squared coherence is analogous to the square of the correlation coefficient and measures the degree to which one series can be represented as a linear function of the other. Phase measures the phase difference or the timing (i.e., lead or lag) between the frequency components of the two series. Gain indicates how much the spectrum of one series has been amplified to approximate the corresponding frequency component of the other. It is essentially the regression coefficient of one series on another at frequencyω . Thus, the squared coherence, phase and gain are frequency-domain equivalents of the correlation coefficient, time-delay (lag), and regression coefficient, respectively, and, therefore, they have a natural interpretation in terms of the standard time domain regression analysis.

The paper proceeds as follows: I derive cross spectral properties of a cointegrated bivariate system by beginning with two non-stationary time series that are cointegrated with a cointegration vector [ ] b 1 , and using standard Fourier Transform methods and matrix algebra, I derive frequency domain properties of the series' comovement in terms of their squared coherence, phase and gain. Specifically, I show that the squared coherence between such series, after differencing, will equal one, their phase will equal zero, while their gain will equal b . The paper ends with a brief conclusion in Section 3.

Cross-Spectral Properties of a Cointegrated Bivariate System

Let the time series of t X and t Y be difference stationary. 

( ) ( ) 2 , 0 iid , 1 z t t t z z T L σ = -
is a white noise process, t x ~ I(0), and t y ~ I(0).

Applying difference operator ( )

L - = ∆ 1 to (1) yields a bivariate stationary process ( ) ( ) ( ) ) 2 ( 1 1 ) 1 ( 1       - + - + =       - - t t t t t t y L bz x L z Y L X L with the special matrix f ( ) ) 3 (       = ∆ ∆ ∆ ∆ ∆ ∆ Y X Y Y X X f f f f ω
The diagonal elements of the f ( ) ω matrix are the spectral density functions of

( ) t X L - 1 and ( ) t Y L - 1
, defined by: ( )

) a 4 ( 2 1 τ τ γ π τω d e f i X X - ∞ ∞ - ∆ ∆ ∫ = ( ) ) b 4 ( 2 1 τ τ γ π τω d e f i Y Y - ∞ ∞ - ∆ ∆ ∫ = where ( ) τ γ X ∆ and ( ) τ γ Y ∆ are the autocovariance functions of ( ) t X L - 1 and ( ) t Y L - 1 , defined by ( ) ( )( ) [ ] ) a 5 ( X t X t X X X E ∆ ∆ + ∆ - ∆ - ∆ = µ µ τ γ τ ( ) ( )( ) [ ] ) b 5 ( , Y t Y t y Y Y E ∆ ∆ + ∆ - ∆ - ∆ = µ µ τ γ τ respectively, where X ∆ µ and Y ∆ µ denote the means of ( ) t X L - 1 and ( ) t Y L - 1 ,
respectively. The off-diagonal elements of the f ( ) ω matrix are the cross-spectral density functions of ( )

t X L - 1 and ( ) t Y L - 1
, defined by ( )

) a 6 ( 2 1 τ τ γ π τω d e f i Y X Y X - ∞ ∞ - ∆ ∆ ∆ ∆ ∫ = ( ) ) b 6 ( 2 1 τ τ γ π τω d e f i X Y X Y - ∞ ∞ - ∆ ∆ ∆ ∆ ∫ = where ( ) τ γ Y X∆ ∆ and ( ) τ γ X Y∆ ∆ are the crosscovariance functions of ( ) t X L - 1 and 
( ) t Y L - 1 , and ( ) t Y L - 1 and ( ) t X L - 1 , defined by ( ) ( )( ) [ ] ) a 7 ( Y t X t Y X Y X E ∆ ∆ + ∆ ∆ - ∆ - ∆ = µ µ τ γ τ ( ) ( )( ) [ ] ) b 7 ( , X t Y t X Y X Y E ∆ ∆ + ∆ ∆ - ∆ - ∆ = µ µ τ γ τ respectively.
To compute the elements of the f ( ) ω matrix, first compute the autocovariance- crosscovariance matrix of (2), which is given by: Applying the Fourier Transform to both sides of equation ( 8), multiplying through by π 2 1 , and using the spectrum and cross-spectrum definitions provided by (4a)-4(b) and 6(a)-6(b), we get the special matrix
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The cross spectrum in (10) can be written in Cartesian form because the spectral matrix f ( ) ω is in general a complex valued function. Thus, for example, we can write 

ω 2 z f , ( ) ( ) ( 
)

) a 13 ( 1 1 1 ω ω ω z z z q i c f - = and ( ) ( ) ( ) ) b 13 ( 2 2 2 ω ω ω z z z q i c f - = yields ( ) ( ) ) 14 ( ) ( 2 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( ) ( ) ( 2 2 21 1 2 12 2 1 1 1 2       + + + + + + +       = ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω z z z z z z z z z z bc f f bf f f f bf c f f b bf bf f f
Now, consider the value of the spectral matrix f ( ) ω at frequency , 0 = ω which using ( 3) and ( 14) can be written as ( )

) 12 ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 2 2 21 1 2 12 2 1 1 1 1 2         + + + + + + + + +       = ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω z z z z z z z z z z z z f b bf f f bf f f f bf f f f f b bf bf f f ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) 15 ( . 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 2 21 1 2 12 2 1 1 1 2       + + + + + + +       =       = ∆ ∆ ∆ ∆ ∆ ∆ z z z z z z z z z z Y X Y Y X X bc f f bf f f f bf c f f b bf bf f f f f f ω f Recall that t
z is a white noise process, and therefore, its theoretical spectrum is flat and equals ( )

π σ ω 2 / 2 z z f = for all frequencies π ω π ≤ ≤ -
. In addition, x ∆ and y ∆ are I ) 1 (-, and therefore their zero-frequency spectral density, cross spectral density and cospectral density functions equal zero. Thus, every element of the second matrix of the right hand side of (15) vanishes, and therefore the spectral matrix, evaluated at

frequency 0 = ω , becomes ( ) ( ) ( ) ( ) ( ) 
) 16 ( . 2 2 2 2 0 0 0 0 0 2 2 2 2 2               =       = ∆ ∆ ∆ ∆ ∆ ∆ π σ π σ π σ π σ z z z z Y X Y Y X X b b b f f f f f
To see the implications of this result for the behavior of the theoretical squared coherence, phase and gain, recall from polar representation of f ( )

ω that ( ) ( ) ( ) ( ) [ ] ) 17 ( 1 2 2 - ∆ ∆ ∆ ∆ ∆ ∆ = ω ω ω ω Y X Y X Y X f f f K ( ) ( ) [ ] ( ) ) 18 ( , ] Re[ Im arctan       - = ∆ ∆ ∆ ∆ ∆ ∆ ω ω ω φ Y X Y X Y X f f and ( ) ( ) ( ) [ ] ) 19 ( , 1 - ∆ ∆ ∆ ∆ ∆ = Γ ω ω ω X Y X Y X f f where Im ( ) [ ] ω Y X f ∆ ∆ and Re ( ) [ ] ω Y X f ∆ ∆
denote the imaginary and real parts of

( ) [ ] ω Α∆ ∆X f , and 
( ), 2 ω Y X K ∆ ∆ ( ) ω φ Y X∆ ∆ , and 
( ) ω Y X∆ ∆ Γ
denote the squared coherence, phase, and the gain of ( )

t X L - 1 and ( ) t Y L - 1
, respectively [START_REF] Jenkins | Spectral Analysis and its Applications[END_REF]).

Then, using the matrix ( 16) along with the definitions of squared coherence, phase, and gain provided in ( 17), ( 18) and ( 19), we get that at the zero frequency the following equalities hold.

For the squared coherence of ( )

t X L - 1 and ( ) t Y L - 1
, ( 16) and ( 17) imply that at

frequency 0 = ω , ( 
)

) 20 ( 1 2 2 2 0 1 2 2 2 2 2 =         = - ∆ ∆ π σ π σ π σ z z z Y X b b K
To determine the phase of ( ) t 

). 21 ( ω ω ω Y X Y X Y X q i c f ∆ ∆ ∆ ∆ ∆ ∆ - =
However, from ( 16) we know that at zero frequency ( )

) 22 ( . 2 0 2 π σ z Y X b f = ∆ ∆ Rewrite (21) for , 0 = ω ( ) ( ) ( ) ) 23 ( 0 0 0 Y X Y X Y X q i c f ∆ ∆ ∆ ∆ ∆ ∆ - =
and compare the resulting equation ( 23) to equation ( 22). The equality of the two equations requires that their right hand sides be equal. However, we know that for a complex number to equal a real number, it is necessary that the imaginary part of the complex number be zero. In other words, it is necessary that the imaginary part of the complex number be zero. In other words, for equality of ( 22) and ( 23), it is necessary that at the frequency 0 = ω , the cospectrum of ( )

t X L - 1 and ( ) t Y L - 1 satisfy ( ) ( ) [ ] ) 24 ( 2 0 Re 0 2 π σ z Y X Y X b f c = = ∆ ∆ ∆ ∆
and the quadrature spectrum of ( ) 

( ) ( ) [ ] ) 25 ( . 0 0 Im 0 = = ∆ ∆ ∆ ∆ Y X Y X f q ( ) [ ] [ ] ) 26 ( , 0 ) 0 arctan( ) 0 ( Re ) 0 ( Im arctan 0 = =       - = ∆ ∆ ∆ ∆ ∆ ∆ Y X Y X Y X f f φ

Conclusion

The contigration property is a long-run property, and therefore in the frequency domain, it refers to the zero-frequency relationship of the time series. Therefore there is a frequency-domain equivalent of the time-domain cointegration property: existence of a cointegration relationship between two time series in the time domain, imposes restrictions on the series zero-frequency behavior in terms of their squared coherence, phase, and gain in the frequency domain. In this paper, I derive these frequencydomain restrictions in a bivariate setting. Specifically, I demonstrate that if two difference stationary series, t X and t Y , are cointegrated with the cointegrating vector 

  2 denote x ∆ and y ∆ , respectively, for notational simplicity, the diagonal elements of the last matrix in (8) are the autocovariance functions, as defined in (5a)-5(b) and 7(a)-7(b).

  density function of m and n . Therefore, using Priestley's

  zero frequency squared coherence, phase, and gain of ( ) one, zero, and , b respectively. This is a generalization of[START_REF] Levy | Investment-saving comovement and capital mobility: evidence from century-long US time series[END_REF], which only focuses on the behaviour of squared coherence and gain,

  zero frequency squared coherence, phase, and gain of ( ) one, zero, and , b respectively.

It is well known that the standard time series cointegration tests have a low power. The results derived in this paper suggest that it may be useful to test for cointegration in the frequency domain. Future work should examine limiting null distributions and finite sample properties of such tests, in order to assess their practical usefulness.