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Abstract

Lung health relies on effective mucociliary clearance and innate immune defence mechanisms. In cystic fibrosis (CF), an imbalance in ion
transport due to an absence of chloride ion secretion, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and a
concomitant sodium hyperabsorption, caused by dyregulation of the epithelial sodium channel (ENaC), results in mucus stasis which predisposes
the lungs to cycles of chronic infection and inflammation leading to lung function decline.

An increased understanding of CFTR structure and function has provided opportunity for the development of a number of novel modulators
targeting mutant CFTR however, it is important to also consider other ion channels and transporters present in the airways as putative targets for
drug development. In this review, we discuss recent advances in CFTR biology which will contribute to further drug discovery in the field. We also
examine developments to inhibit the epithelial sodium channel (ENaC) and potentially activate alternative chloride channels and transporters as a
multi-tracked strategy to hydrate CF airways and restore normal mucociliary clearance mechanisms in a manner independent of CFTR mutation.
© 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cystic fibrosis (CF) is the most common life-limiting,
hereditary condition which affects Caucasian populations with
morbidity and premature mortality associated predominantly
with chronic lung disease [1]. It is caused by mutations in the
Abbreviations: ABC, ATP Binding Cassette; AE, anion exchanger; ASL,
airways surface liquid; ATP, adenosine triphosphate; CAP, channel activating
protease; CaCC, calcium activated chloride channel; CF, cystic fibrosis; CFTR,
cystic fibrosis transmembrane conductance regulator; ΔF508, CFTR mutation
encoding a deletion of phenylalanine at position 508; ENaC, epithelial sodium
channel; HAT, human airways trypsin-like protease; NBD, nucleotide binding
domain; NHE, Na+/H+ exchanger; NKCC1, Na-K-Cl cotransporter; PKA,
protein kinase A; siRNA, small-interfering RNA; UTP, uridine triphosphate
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CFTR (cystic fibrosis transmembrane conductance regulator)
gene which encodes an ATP-dependent, apical membrane-
associated chloride ion channel which plays a pivotal role in
the regulation of ion secretion and absorption across epithelial
cells. There are currently over 2000 known CFTR mutations,
although fewer than 20 mutations occur at a frequency of
N0.1% and only 5 at a frequency N1% [2]. These mutations are
grouped into 6 classes depending on the degree to which the
CFTR mutation affects CFTR quantity, transport to or function
at the cell surface, however as our understanding of CFTR
structure and function increases, further sub- or re-classification
may assist current aspirations for a fully personalized medicines
approach to this disease [2].

The CF phenotype, which in addition to the lungs, affects
the pancreas, liver, kidneys and intestines is however not just
the result of abnormal CFTR-mediated Cl− secretion. Indeed, a
loss of CFTR function, can also affect a number of other key
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ion channels, transporters and pumps which contribute to lung
health by working together to ensure effective mucociliary
clearance and innate immune defence mechanisms through
the optimization of cell surface hydration, charge and pH [3].
In particular, the build-up of, and inability to clear, mucus in
CF airways is due to an observed reduction in airway surface
liquid (ASL) volume which is fundamentally a result of sodium
hyperabsorption caused by dysregulation of the epithelial
sodium channel (ENaC) in the cells lining the airways [4].

In this Review, we summarise the key areas covered in
Symposium 6: Cell Physiology and Ion Transport, and high-
light in particular recent developments in our understanding
of CFTR structure and function as well as novel strategies to
target ENaC. Other ion channels, such as the TMEM16A
chloride channel and the calcium-activated potassium channel
KCa3.1, and ion transporters are also presented as alternative
pathways to restore surface hydration and pH in CF airways by
increasing chloride and/or bicarbonate secretion. These ap-
proaches, summarized in Fig. 1, offer very attractive targets for
Fig. 1. Alternative channels and transporters for the regulation of ASL height (A) and
anion and fluid secretion (by activating the blue channels and transporters) and/
transporters). Anion secretion can be increased by activating Ca2+-activated Cl− cha
apical membrane. K+ secretion on the apical surface can also regulate ASL volume.
factor for Cl− entry into the cells and K+ recycling through basolateral K+ channe
Inhibition of ENaC reduces Na+ hyperabsorption and fluid absorption which increas
shown to increase airways hydration. B. Modulation of HCO3

– and H+ transport invo
channels and transporters) and/or decreasing apical H+ secretion and basolateral bicar
activation of any apical HCO3

– transporter could increase ASL pH, such as CaCC or
modifier gene associated with severity of CF lung disease), H+ channels, H+/K+-AT
anhydrase (CA) is involved in the CO2/HCO3

– buffering system and could contribute
the basolateral membrane, activating NHE could prevent apical H+ secretion and inh
for its apical secretion.
pharmacological intervention, and importantly could comple-
ment current drug therapies focused on the correction of CFTR
mutations which together could result in the development of a
broader arsenal of disease-modifying treatments for CF.

2. Recent developments in our understanding of CFTR
structure and function

The CFTR chloride channel is a member of the family of
ATP Binding Cassette (ABC) proteins, and is built from two
homologous halves each containing a transmembrane domain
(TMD) followed by a cytosolic nucleotide binding domain
(NBD). In CFTR these two halves are linked by the unique
cytosolic regulatory (R) domain [5] which inhibits channel
activity unless phosphorylated by cyclic AMP-dependent protein
kinase (PKA) [6,7]. Unlike in other ABC proteins which are
mostly active transporters, in CFTR the TMDs form a trans-
membrane anion-selective pore. Nevertheless, the molecular
motions that drive uphill substrate translocation in ABC proteins
ASL pH (B), in CF. A. Modulation of Cl− and Na+ transport involves increasing
or decreasing Na+ and fluid absorption (by inhibiting the red channels and
nnels (CaCC), such as TMEM16A, or Cl− channels, such as SLC26A9 on the
On the basolateral membrane, a Na-K-Cl cotransporter (NKCC1) is the limiting
ls, such as KCNQ1, provides the driving force for transcellular Cl− secretion.
es ASL volume. Inhibition of pendrin, an anion exchanger (AE) has also been
lves increasing apical HCO3

– secretion or basolateral H+ secretion (through blue
bonate (HCO3

−) secretion (through red channels and transporters). Theoretically,
pendrin. Inhibiting apical Na+/H+ exchangers (NHE; such as NHE3/SLC9A3, a
Pase or V-ATPase could also increase ASL pH. In the cytoplasm, the carbonic
to the regulation of ASL pH by increasing intracellular HCO3

– concentration. In
ibiting anion exchange could sustain intracellular HCO3

– concentration required

Image of Fig. 1
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but pore opening and closing (gating) in CFTR are highly
conserved. The CFTR channel pore opens upon dimerization of
its two NBDs, and closes upon disruption of this dimer following
ATP hydrolysis [8]. In the tight NBD dimer canonical motifs of
both NBDs form two non-equivalent composite ATP binding
sites. Composite site 2, formed by Walker motifs of NBD2 and
the signature sequence motif of NBD1, is catalytically active, and
hydrolyses ATP in each gating cycle. In contrast, composite site
1, formed byWalker motifs of NBD1 and the signature sequence
motif of NBD2, is catalytically inactive, and keeps ATP bound
throughout several gating cycles [9,10]. Thermodynamic studies
suggest that the pore opening conformational transition is
initiated by tightening of the site-2 NBD interface, and that
movements in this composite site are already completed in the
opening transition state [11].

In contrast, little is known about the role and precise timing
of molecular motions in composite site 1. Although profound
effects on channel gating kinetics of site-1 perturbations
suggest gating-associated motions also take place in this site
[12,13], the physical extent of such motions is debated [14–16].
Analysis of energetic profiles of channels gating in the absence
and presence of ATP indicate that ATP bound at the dimer
interface stabilizes the open state relative to the opening transition
state, suggesting that this interface undergoes rearrangements
between the transition state and the open state [17]. Insofar
as motions at the site-2 interface are likely completed in the
transition state, one possible explanation is that these further
rearrangements occur at the site-1 interface. Recent thermody-
namic studies presented at the Symposium indeed support such
an interpretation, and suggest delayed movement in site 1 relative
to site 2 during pore opening.

As described above, the major “driving force” for opening
CFTR's gate is attributed to ATP binding and subsequent NBD
dimerization at composite site 2 [8,18], but how ATP binding at
composite site 1 contributes to this process is unclear. Although
it has been shown that mutating the conserved Walker A lysine
(K464) at this site decreases the apparent affinity of ATP for
CFTR gating by N10-fold [18–20], on the contrary, reported
that mutations such as K464A or W401G, which presumably
weaken ATP binding at composite site 1, do not affect the
sensitivity of CFTR to ATP. These two latter reports, however,
show a shortening of the open time by these mutations. If closing
of CFTR's gate is driven by disruption of the NBD dimer,
normally controlled by ATP hydrolysis at composite site 2 [21],
this result suggests that the structure/function status of site 1 may
affect the hydrolysis rate at composite site 2, and/or the stability
of the pre-hydrolytic NBD dimer.

A potential role of composite site 1 in CFTR gating was
revealed by a study that used the high-affinity ATP analog
N6-phenylethyl ATP (P-ATP) as an alternative ligand [16].
This study lead to a proposition that a complete gating cycle is
coupled to ATP hydrolysis at composite site 2 while composite
site 1 remains occupied. The data presented at the Symposium
extend this idea and suggest that gating becomes much less
effective when composite site 1 is empty, probably because
an unoccupied site 1 enables a wider separation of the two
NBDs and hence hinders NBD dimerization at composite site 2.
Indeed, a pathogenic mutation G1349D that presumably prevents
association of NBDs at composite site 1 drastically dampens
ATP-dependent gating [22]. As both composite ATP-binding
sites are located at the NBD interface, it seems not surprising
that a functional interaction between them should take place.
Deciphering the precise nature of this interaction awaits further
studies.

This continued expansion of our knowledge of CFTR
structure and function will undoubtedly contribute to ongoing
drug development in the field, recent advances in which have
been extensively reviewed elsewhere [2,23].

3. Targeting ENaC

Within the airways, the epithelial sodium channel (ENaC)
has been found to be solely responsible for the absorption of
Na+ and, in CF, its dysregulation is now known to directly
contribute to mucus stasis and impaired mucus clearance [24].

ENaC is composed of three structurally related subunits
(α, β and γ), which include two membrane-spanning domains
connected by a large extracellular loop [25,26]. Although
ENaC can be regulated by multiple pathways e.g. cAMP [24]
and SPLUNC-1 [26], it is activated by the proteolytic processing
of its subunits leading to an increase in channel conductance
[24,27]. The importance of proteases in ENaC activation in CF
is further supported by evidence indicating that wild-type CFTR
physically associates with ENaC, impedes proteolysis and sup-
presses channel opening, whereas ΔF508 CFTR fails to protect
ENaC from proteolytic cleavage and stimulation [28].

Channel activating proteases (CAPs) predominantly belong
to the trypsin-like family of serine proteases as studies
investigating ENaC processing and activation have, to date,
determined multiple Arg and Lys cleavage sites on α and γ
subunits: e.g., γLys194 (plasmin) [29]; αArg205, αArg231 and
γArg143 (furin); γLys186 (prostasin; CAP-1) [30] and γArg138

(CAP-2) [31]. Neutrophil elastase, which is associated widely
with chronic airways disease, can also cleave ENaCγ although
a pre-processing step by furin is thought to be required for
complete elastase-induced activation of ENaC [27]. Although,
the specific CAPs responsible for ENaC activation in CF
airways have yet to be defined, both host and bacterial enzymes
are implicated, the impact of their activities further exacerbated
by the protease-antiprotease imbalance associated with disease
progression. A broad spectrum approach to the inhibition of
trypsin-like serine proteases in CF has however, been validated
using both macromolecular protease inhibitors (aprotinin) and
the low molecular weight inhibitor Camostat, which were
found to attenuate ENaC and improve mucociliary clearance
[32,33].

Recent work, presented at the Symposium, describes the
development of a novel rationally-designed compound (QUB-TL1)
whose inhibition of excessive apical CAP activity is restricted to
the extracellular surface of airway epithelial cells [34]. The broad
spectrum inhibition of putative CAPs, to include human airways
trypsin-like protease (HAT), prostasin, matriptase and furin resulted
in diminished ENaC-mediated Na+ absorption in CF primary
human airway epithelial cells (hAECs) and the internalization of a
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prominent pool of cleaved (active) ENaCγ from the cell surface.
Futhermore, diminished amiloride-sensitive ENaC activity
correlated with an increase in ASL height and restored normal
mucociliary clearance. A further novel trypsin-like inhibitor,
NAP-858 was also reported for the first time. QUB-TL1 and
NAP-858 dampen CAPs-ENaC signaling which improves hydra-
tion status and mucociliary clearance in CF airway epithelial cell
cultures and may provide a mechanism to delay or prevent the
development of CF lung disease in a manner independent of CF
transmembrane conductance regulator mutation.

A number of other approaches targeting ENaC function as
a treatment for CF are at various stages of development [35].
The in vitro and in vivo efficacy of SPX-101, peptide mimetic
of SPLUNC1 has recently been reported [36]. SPX-101 has
been shown to bind to ENaC and to promote internalization of
α, β and γ subunits in both CF and healthy primary hAECs,
which similarly to QUB-TL1 caused a significant decrease
in amiloride-sensitive current. In vivo studies found that once
daily dosing with SPX-101 had the ability to increase survival
of βENaC transgenic mice to N90% and increased mucus
transport in both the βENaC mouse and sheep models of CF.

Genomic approaches to ENaC inhibition has also been
extensively considered and to date has involved the design
of siRNA to αENaC and delivery to airway cells using
nanoparticle formulations [37,38]. Delivery of siRNA using
both liquid nanoparticle formulations [37] and a novel self-
assembly nanocomplex formulation [38] were able to silence
expression of the αENaC subunit gene and warrant further
evaluation as potential novel inhaled therapeutics for CF.

4. Alternative ion channels and transporters in CF

Beyond CFTR and ENaC, other ion channels and trans-
porters are being investigated as potential alternative pathways
to restore airway surface hydration (Fig. 1A) and pH (Fig. 1B)
by increasing chloride and/or bicarbonate secretion.

Airway epithelia respond to Ca2+ agonists, such as ATP and
UTP, by a large increase in Cl− secretion, and therefore possess
a Ca2+-activated Cl− conductance. In 2008, 3 different research
groups have identified TMEM16A, also named Anoctamin-1,
as a calcium dependent chloride channel expressed in airway
epithelial cells [39–41].Moreover, it has been shown that, besides
Cl−, this channel is permeable to HCO3

– [42]. Theoretically,
activating this channel could therefore increase ASL hydration
and pH. However, it has been reported that TMEM16A ex-
pression is increased in response to pro-inflammatory stimuli,
associated with goblet cell metaplasia [43] and increased in
airways of asthmatic patients [44]. Nevertheless, small molecules
activating or inhibiting this channel are being developed as its
role in CF pathophysiology is further investigated [45,46].

The SLC26 family encodes anion exchangers and channels,
two of which are of particular interest in the search for alter-
native pathways in CF lung pathophysiology. SL26A4, also
known as pendrin, is an electroneutral Cl−/HCO3

– exchanger
expressed in epithelial cells of many organs, including the
airways, and plays an important role in the lung innate immune
defence by transporting thiocyanate [47]. In Calu-3 cells, it is
mainly responsible for HCO3
– secretion [48] and could there-

fore be targeted in order to increase ASL pH in CF. However,
a recent study reported that pendrin inhibition increased ASL
hydration [49]. Thus establishing the therapeutic potential of
the modulation of pendrin activity may prove to be difficult.
SLC26A9, unlike the other members of the SLC26 family,
is a Cl− channel involved in resting and cAMP-regulated Cl−

secretion. Multiple reports provide strong evidence for this
channel as a modifier gene in CF and other lung diseases [50]
and Single Nucleotides Polymorphisms in this gene have been
associated with severity of lung pathology in individuals with
CF and asthma. However, regulation of this channel has yet to
be fully understood and to date, no specific modulator of its
activity has been identified. Therefore, although SLC26A9 is a
very strong candidate for an alternative Cl− pathway in CF,
much progress is still required before it can be fully considered
as a therapeutic target.

Basolateral K+ channels maintain the membrane potential
and provide the driving force for Cl− secretion. Moreover,
it was shown that activating a Ca2+ regulated K+ channel
(KCNN4) with 1-EBIO increased Na+ absorption across CF
airways epithelial cells [51]. Therefore, it appears that modulating
K+ channel activity could modulate ASL hydration and might
restore an efficient mucociliary clearance in CF cells.

Finally, recent studies have demonstrated the importance
of ASL pH in airway hydration, bacterial killing, antimicrobial
peptide activity and mucus rheology. Thus adjusting H+ and
HCO3

– secretion could, theoretically, improve the CF lung
physiology. Modulating Na+/H+ exchangers, H+ or HCO3

–

conducting channels and transporters could also increase ASL
pH, reversing different hallmarks of the CF lungs, regardless
of the CFTR mutation. Several reports showed the prominent
role of ATP12A, an H+/K+-ATPase, in the acidic ASL found
in CF airways [52,53] and inhibiting this pump could therefore
be beneficial for CF airways.
5. Conclusion

It is clear that cell physiology and ion transport in CF is
complex and requires an understanding not just of the disease-
causing CFTR gene, and the structure and function of the
CFTR protein but of the number of other ion channels and
transporters that contribute to the electrophysiological balance
within the airways, many of which are impacted by the loss
of functional CFTR. When the CFTR gene and its association
to CF was discovered in 1989 by Dr. Lap-Chee Tsui and
colleagues it was not expected that gene therapy and ultimate
cure for CF would remain a holy grail [5]. Increases in life
expectancy over the last number of decades have instead been
due to improvements in disease management and treatment [1].
It is however hoped that recent progress in the development
of CFTR modulators (potentiators, correctors, amplifiers, read-
through agents and stabilisers) in various combinations will
provide further opportunity to improve both quality of life and
the life expectancy of those living with CF, although it will not
be without its challenges [23].
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An alternative, potentially complementary and highly attrac-
tive strategy is the targeting of other ion channels which offers
an opportunity to develop ion transport modulation therapies
irrespective of an individual's CFTR genotype [2,50]. A
number of pharmacological and genomic approaches to inhibit
ENaC are at various stages of development [34,36–38]. The
identification of alternative chloride channels and potassium
channels involved in the maintenance of ion balance and pH
in the airways also offer new targets for drug development
[39,49]. A multi-track approach to enable Cl− secretion by a
reconstitution of the defective CFTR or through the activation
of alternative Cl− channels and by blocking ENaC to prevent
Na+ hyperabsorption will therefore be critical to ensure future
improvements in the health of individuals with CF.
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