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(3)University of Arizona, Tucson, United States
(4)INRIA, Sophia Antipolis Mediterranean, France

Abstract: Most cartographic stability maps advocated for use in the new passive debris removal
ideology based on orbital resonances are obtained through crude averaging methods. This means
that from an operational perspective, its not clear where in the osculating space one should actually
target to place the satellite on a natural disposal trajectory. It is also not obvious what effects the
short-periodic terms may have on these re-entry solutions. We will derive the periodic corrections
terms for the dominant perturbations affecting Earth satellites and investigate these considerations.
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1. Introduction

The basic idea in the averaging method is to obtain approximate equations for the system evolution
that contain only slowly changing variables by exploiting the presence of a small dimensionless
parameter ε that characterizes the size of the perturbation. The tacit assumption is that the perturbing
forces are sufficiently weak enough that these approximate secular equations of motion can be used
to describe the orbital evolution. The perturbation equations in celestial mechanics, relating the time
variation of the orbit parameters to the perturbing accelerations, are nonlinear first-order differential
equations of the general form

ẋxx = εggg(xxx, t), (1)

where ggg(xxx, t) is assumed to be T -periodic in t. Equation 1 is trivially solved when ε = 0, yielding
the integrals (Keplerian elements) in the unperturbed problem. The method of averaging consists in
replacing Equation 1 by the averaged autonomous system

˙̄xxx = ε ḡgg(x̄xx), (2)

ḡgg(x̄xx) =
1
T

∫ T

0
ggg(xxx, t)dt, (3)

in which the average is performed over time, and it is understood that xxx in the integrand is to
be regarded as a constant during the averaging process. The basis for this approximation is the
‘averaging principle’ which states that in the general (non-resonant) case, the short period terms
removed by averaging cause only small oscillations, which are superimposed on the long-term drift
described by the averaged system.

The removal of time or (what amounts to the same thing) mean anomaly requires computing the
quadrature of functions depending implicitly on this variable through the true anomaly. Given a
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quantity F (ααα,M), defined as a function of the dimensionless time variable M in addition to the
other orbital elements represented as ααα , the average is defined by

F (ααα) =
1

2π

∫ 2π

0
F (ααα,M)dM, (4)

where the orbital elements ααα are held constant in the integration. Although the average is defined
with respect to mean anomaly, it is often more easily calculated by means of the true or eccentric
anomaly, using the differential relationships

dM
2π

=
rdE
2πa

=
r2d f
2πab

, (5)

where b = a
√

1− e2 is the semi-minor axis; yielding the equivalent forms for averaging:

F (ααα) =
1

2π

∫ 2π

0
F (ααα,M)dM =

1
2πa

∫ 2π

0
F (ααα,E)r dE =

1
2πab

∫ 2π

0
F (ααα, f )r2 d f . (6)

Note that r can be expressed in terms of f and E as

r =





a(1−e2)
1+ecos f ,

a(1− ecosE).
(7)

The general form of Gauss perturbation equations of the element set HHH (angular momentum vector),
eee(eccentricity vector), and l can be stated as

ḢHH = r̃rr ·aaad, (8a)

ėee =
1
µ

(
ṽvv · r̃rr− H̃HH

)
·aaad, (8b)

l̇ =
(
− e

µ(1+
√

1− e2)

[
H(êee · r̂rr)r̂rr+(r+ p)(êee · vvv)θ̂θθ

]
− 2

na2 rrr+
ẑzz · rrr

H(H + ẑzz ·HHH)
HHH
)
·aaad +n, (8c)

where rrr and vvv are the position and velocity vectors; θ̂θθ = H̃HH · r̂rr/H.
In this work, using the direct approach of Kozai [1], we will derive the short-period correction
terms in the vectorial formulation for the J2 effect only (contributions due to other perturbing forces
will be addressed in future research) and apply these to determine the appropriate initial conditions
in the osculating sense for targeting disposal regions depicted in mean element space in stability
maps.

2. Body of paper, give a title

We want to characterize the general form of Equations (8) to include the Earth oblateness disturbing
effect. The quadrupole disturbing function arising from an oblate planet can be stated in a general
vector expression as follows

R2 =
µJ2R2

2r3

[
1−3(r̂rr · p̂pp)2] , (9)
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where J2 is the dominant oblateness gravity field coefficient, R is the mean equatorial radius of the
planet, and p̂pp is a unit vector aligned with the planet’s rotation pole, assumed to be fixed in inertial
space. The perturbing acceleration is then given by

aaa2 =−
3µJ2R2

2r4

{[
1−5(p̂pp · r̂rr)2] r̂rr+2(r̂rr · p̂pp)p̂pp

}
. (10)

Therefore the perturbation equations in Gaussian form can be stated as

ḢHH2 = r̃rr ·aaa2

=−3µJ2R2

r3 (p̂pp · r̂rr)˜̂rrr · p̂pp, (11)

ėee2 =
1
µ

(
ṽvv · r̃rr− H̃HH

)
·aaa2

=−3J2R2

2r4

{
−
[
1−5(r̂rr · p̂pp)2] H̃HH · r̂rr+2(r̂rr · p̂pp)(ṽvv · r̃rr− H̃HH) · p̂pp

}
. (12)

The averaged equations of motion have the form

ḢHH2 =
3µJ2R2

2a3h3 (p̂pp · ĥhh)˜̂hhh · p̂pp, (13)

ėee2 =−
3nJ2R2

4a2h4

{[
1−5(p̂pp · ĥhh)2

]˜̂hhh+2(p̂pp · ĥhh)˜̂ppp
}
· eee. (14)

The differential equations for the periodic term can be written by substracting Eq.(13) from Eq.(11)

ḢHHsp
2 = ḢHH2− ḢHH2

=−3µJ2R2 p̂pp ·
[

r̂rrr̂rr
r3 +

ĥhhĥhh
2a3h3

]
· ˜̂ppp, (15)

where sp denotes the short-period perturbation and the orbital elements are taken as constant. Note
that the independent variable can be transformed from time to true anomaly by using the relation

dt =
r2

H
d f . (16)

The short-period perturbations of the first-order can be obtained as

∆HHHsp =−3µJ2R2 p̂pp ·
∫ (

r̂rrr̂rr
r3 +

ĥhhĥhh
2a3h3

)
dt · ˜̂ppp (17)

where

r̂rr = cos f êee+ sin f êee⊥, (18)

Then the mean value with respect to M can be computed from

∆HHHsp =
1

2π

∫ 2π

0
∆HHHsp dM. (19)
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Let us solve the integral in Eq.17 dividing it into part A

A =

∫ t

0

r̂rrr̂rr
r3 dt =

µ

H3

∫ f

0

[
cos2 f êeeêee+ cos f sin f (êeeêee⊥+ êee⊥êee)+ sin2 f êee⊥êee⊥

]
(1+ ecos f )d f

=
µ

12H3 (6 f +3sin2 f +9esin f + esin3 f ) êeeêee

+
µ

12H3 (6 f −3sin2 f +3esin f − esin3 f ) êee⊥êee⊥ (20)

+
µ

12H3 (−3ecos f − ecos3 f −3cos2 f +4e+3)(êeeêee⊥+ êee⊥êee)

and part B

B =

∫ t

0

ĥhhĥhh
2a3h3 dt =

ĥhhĥhh
2a3h3 t =

ĥhhĥhh
2na3h3 M (21)

Substituting Eq.(20) and Eq.(21) in Eq.(17) we get

∆HHHsp =−3µJ2R2 p̂pp · (A+B) · ˜̂ppp (22)

To obtain the average short period correction, as stated in Eq.(19), we have to integrate again over
the mean anomaly. The core integrals are given by the following equations Eqs.(23),(24),(25),(26):

B1 =
1

2π

∫ 2π

0

ĥhhĥhh
2na3h3 M =

π

2na3h3 ĥhhĥhh (23)

A1 =
µ

12H3
1

2π

∫ 2π

0
(6 f +3sin2 f +9esin f + esin3 f ) êeeêeedM = 0 (24)

A2 =
µ

12H3
1

2π

∫ 2π

0
(6 f −3sin2 f +3esin f − esin3 f ) êee⊥êee⊥dM = 0 (25)

Eq.(24) and Eq.(25) are equal to zero being the integrals of odd functions over an interval from 0 to
2π

A3 =
µ

12H3
1

2π

∫ 2π

0
(−3ecos f − ecos3 f −3cos2 f +4e+3)dM

=− µ

12H3

[
3eX0,1

0 +3X0,2
0 + eX0,3

0 −4e−3
]

(26)
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Where the Hansen’s coefficients of interest are

X0,m
0 =

1
2π

∫ 2π

0
cos(m f )dM =

(−e)m(1+m
√

1− e2)

(1+
√

1− e2)m
; m = 1,2,3, ... (27)

therefore we finally get the short period correction for the angular momentum vector

∆HHHsp = ∆HHHsp =−3µJ2R2 p̂pp ·
[
A3(êeeêee⊥+ êee⊥êee)+

π

2na3h3 ĥhhĥhh
]
· ˜̂ppp (28)

where the dyadic term can be written in classical notation as follows

p̂pp ·A3(êeeêee⊥+ êee⊥êee) · ˜̂ppp = A3
[
(p̂pp · êee)(˜̂ppp · êee⊥)+(p̂pp · êee⊥)(˜̂ppp · êee)

]
(29)

The same procedure has to be applied on the eccentricity vector so we substract Eq.(14) from
Eq.(12)

ėeesp
2 = ėee2− ėee2 (30)

The differential equations for the periodic term can be written as

ėeesp
2 =

3J2R2

4

{
2H̃HH · r̂rr

r4 −
10
r4 (r̂rr · p̂pp)

2r̂rr · H̃HH− 4
r4 (r̂rr · p̂pp)(ṽvv · r̃rr− H̃HH) · p̂pp

+
n

a2h4

[
1−5(p̂pp · ĥhh)2

]˜̂hhh · eee+ 2n
a2h4 (p̂pp · ĥhh)˜̂ppp · eee

}
(31)

We have to integrate Eq.(31) over time (or true anomaly) to obtain the short-period perturbations of
the first-order. To do that, let us rearrange separately some of its terms introducing a new notation
that, through the use of dyadic and tryadic expressions, allows to isolate time dependent terms that
have to be subsequently integrated.

C1 =
rrr
r5 (32)

C2 =
1
r4 (r̂rr · p̂pp)

2r̂rr · H̃HH =
p̂
·

p̂· rrr
r7 ·H̃HH

(33)

C3 =
1
r4 (r̂rr · p̂pp)(ṽvv · r̃rr− H̃HH) · p̂pp =

1
r4 (r̂rr · p̂pp)

[
− µ

H2 (rrreee+
rrrrrr
r
) · H̃HH− µe

H
(rrr · êee⊥)U− H̃HH

]
· p̂pp

=− µ

H2

(
p̂ · rr

r5 · H̃HH
)
(eee · p̂)− µ

H2
H̃HH
·

p̂· rrr
r6 ·p̂

− µe
H

(p̂ · rr
r5 · êee⊥)p̂−

(
p̂ · r

r5

)
(H̃HH · p̂) (34)
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In Eq.(34) we considered:

ṽvv · r̃rr = rrrvvv− (rrr · vvv)U (35)

where

rrrvvv =− µ

H2 (rrreee+
rrrrrr
r
) · H̃HH (36)

rrr · vvv =− µ

H2

[
rrr · (ẽee ·HHH)+ rrr · ( r̃rr

r
· H̃HH)

]
=

µ

H2 [eH(rrr · êee⊥)] (37)

U is identity dyadic that has the general property: U · ppp = ppp ·U = ppp. In Eqs.(33); Eq.(34) the new
notation means that the central part (a dyad or a tryad) is subjected to a scalar or vector product with
the surrounding quantities. In this way we can recognize and isolate the core integrals of interest:

I =
∫ t

0

rrrrrrrrr
r7 dt =

∫ t

0

1
r4

[
cos3 f êeeêeeêee+ cos2 f sin f (êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+cos f sin2 f (êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)+ sin3 f êee⊥êee⊥êee⊥
]

dt

=
µ2

H5

∫ f

0

[
cos3 f êeeêeeêee+ cos2 f sin f (êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+ cos f sin2 f (êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)+ sin3 f êee⊥êee⊥êee⊥
]
(1+ ecos f )2d f

=
µ2

16H5

[
10e2 sin f +

5
3

e2 sin3 f +
1
5

e2 sin5 f +8esin2 f + esin4 f +12sin f +
4
3

sin3 f +12e f
]

êeeêeeêee

+
µ2

16H5

[
−2e2 cos f − e2 cos3 f − 1

5
e2 cos5 f −4ecos2 f − ecos4 f −4cos f − 4

3
cos3 f

+
16
5

e2 +5e+
16
3

]
(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+
µ2

16H5

[
2e2 sin f − 1

3
e2 sin3 f − 1

5
e2 sin5 f − esin4 f +4sin f − 4

3
sin3 f +4e f

]
(êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)

+
µ2

16H5

[
−2e2 cos f − 1

3
e2 cos3 f +

1
5

e2 cos5 f −4ecos2 f + ecos4 f −12cos f − 4
3

cos3 f

+
32
15

e2 +3e+
32
3

]
êee⊥êee⊥êee⊥

(38)

II =
∫ t

0

rrrrrr
r5 dt = A (39)
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III =
∫ t

0

rrr
r5 dt =

1
H

∫ f

0

r̂rr
r2 d f =

µ2

H5

∫ f

0
(cos f êee+ sin f êee⊥)(1+ ecos f )2d f

=
µ2

12H5 (9e2 sin f + e2 sin3 f +6esin2 f +12sin f +12e f )êee

− µ2

12H5 (3e2 cos f + e2 cos3 f +6ecos2 f +12cos f −4e2−6e−12)êee⊥ (40)

IV =

∫ t

0

rrrrrrrrr
r6 dt =

∫ t

0

1
r3

[
cos3 f êeeêeeêee+ cos2 f sin f (êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+cos f sin2 f (êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)+ sin3 f êee⊥êee⊥êee⊥
]

dt

=
µ

H3

∫ f

0

[
cos3 f êeeêeeêee+ cos2 f sin f (êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+cos f sin2 f (êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)+ sin3 f êee⊥êee⊥êee⊥
]
(1+ ecos f )d f

=
µ

8H3 (2esin2 f +
1
4

esin4 f +6sin f +
2
3

sin3 f +3e f )êeeêeeêee

+
µ

8H3 (−ecos2 f − 1
4

ecos4 f −2cos f − 2
3

cos3 f +
5
4

e+
8
3
)(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+
µ

8H3 (−
1
4

esin4 f +2sin f − 2
3

sin3 f + e f )(êeeêee⊥êee⊥+ êee⊥êeeêee⊥+ êee⊥êee⊥êee)

+
µ

8H3 (−ecos2 f +
1
4

ecos4 f −6cos f +
2
3

cos3 f +
3
4

e+
16
3
)êee⊥êee⊥êee⊥ (41)

Equations (38);(39);(40);(41) are substituted into Eqs (32);(33);(34) that are subsequently plugged
into Eq.(31) to obtain the first-order short-period perturbations.

∆eeesp
2 =

3J2R2

4

{
2H̃HH · III−10

p̂
·

p̂· I ·H̃HH

+
4µ

H2

(
p̂ · II · H̃HH

)
(eee · p̂)+ 4µ

H2
H̃HH
·

p̂· IV ·p̂
+

4µe
H

(p̂ · II · êee⊥)p̂+4 (p̂ · III)(H̃HH · p̂)

+
M

a2h2

[
1−5(p̂pp · ĥhh)2

]˜̂hhh · eee+ 2M
a2h2 (p̂pp · ĥhh)˜̂ppp · eee

}
(42)
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Then the mean value with respect to the mean anomaly is calculated through the following integrals

I =
1

2π

∫ 2π

0
I dM =

µ2

16H5

[
−2e2X0,1

0 − e2X0,3
0 −

1
5

e2X0,5
0 −4eX0,2

0

−eX0,4
0 −4X0,1

0 −
4
3

X0,3
0 +

16
5

e2 +5e+
16
3

]
(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+
µ2

16H5

[
−2e2X0,1

0 −
1
3

e2X0,3
0 +

1
5

e2X0,5
0 −4eX0,2

0

+ eX0,4
0 −12X0,1

0 −
4
3

X0,3
0 +

32
15

e2 +3e+
32
3

]
êee⊥êee⊥êee⊥ (43)

= Ia(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)+ Ib(êee⊥êee⊥êee⊥)

II =
1

2π

∫ 2π

0
II dM = A3(êeeêee⊥+ êee⊥êee) (44)

III =
1

2π

∫ 2π

0
III dM =− µ2

12H5

[
3e2X0,1

0 + e2X0,3
0 +6eX0,2

0 +12X0,1
0 −4e2−6e−12

]
êee⊥

= IIIaêee⊥ (45)

IV =
1

2π

∫ 2π

0
IV dM =+

µ

8H3 (−eX0,2
0 −

1
4

eX0,4
0 −2X0,1

0 −
2
3

X0,3
0 +

5
4

e+
8
3
)(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)

+
µ

8H3 (−eX0,2
0 +

1
4

eX0,4
0 −6X0,1

0 +
2
3

X0,3
0 +

3
4

e+
16
3
)êee⊥êee⊥êee⊥

= IVa(êeeêeeêee⊥+ êeeêee⊥êee+ êee⊥êeeêee)+ IVb(êee⊥êee⊥êee⊥) (46)
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Finally we obtain the short period correction for the eccentricity vector

∆eeesp
2 =

3J2R2

4

{
2H̃HH · III−10

p̂
·

p̂· I ·H̃HH

+
4µ

H2

(
p̂ · II · H̃HH

)
(eee · p̂)+ 4µ

H2
H̃HH
·

p̂· IV ·p̂
+

4µe
H

(p̂ · II · êee⊥)p̂+4
(
p̂ · III

)
(H̃HH · p̂)

+
π

a2h2

[
1−5(p̂pp · ĥhh)2

]˜̂hhh · eee+ 2π

a2h2 (p̂pp · ĥhh)˜̂ppp · eee
}

(47)

The notation we introduced simplify the final expression but, for sake of clarity and to allow an
easier implementation, we also report below the expanded algebra written in classical notation
summarizing the main steps we did in previous calculations.
In order, the first term to consider as it appears in the final expression of Eq.(47) is:

H̃HH · III = IIIa(H̃HH · êee⊥) (48)

The second term is

1
r4 (r̂rr · p̂pp)

2r̂rr · H̃HH =
p̂
·

p̂· rrr
r7 ·H̃HH

(49)

after integrating twice, it becomes:

p̂
·

p̂· I ·H̃HH
= Ia

[
(p̂pp · êee)(p̂pp · êee)(H̃HH · êee⊥)+(p̂pp · êee)(p̂pp · êee⊥)(H̃HH · êee)+(p̂pp · êee⊥)(p̂pp · êee)(H̃HH · êee)

]

+ Ib

[
(p̂pp · êee⊥)(p̂pp · êee⊥)(H̃HH · êee⊥)

]
(50)

Then

1
r4 (r̂rr · p̂pp)

[
− µ

H2 (rrreee+
rrrrrr
r
) · H̃HH

]
· p̂pp

=− µ

H2

(
p̂ · rr

r5 · H̃HH
)
(eee · p̂)− µ

H2
H̃HH
·

p̂· rrr
r6 ·p̂

(51)

Eq.(51) consists of two terms that, after the two integration processes, become as in Eqs(52);(53):
(

p̂ · II · H̃HH
)
(eee · p̂) = A3

[
(p̂pp · êee)(H̃HH · êee⊥)+(p̂pp · êee⊥)(H̃HH · êee)

]
(eee · p̂) (52)

H̃HH
·

p̂· IV ·p̂
= IVa

[
(p̂pp · êee)(H̃HH · êee)(p̂pp · êee⊥)+(p̂pp · êee)(H̃HH · êee⊥)(p̂pp · êee)+(p̂pp · êee⊥)(H̃HH · êee)(p̂pp · êee)

]

+ IVb

[
(p̂pp · êee⊥)(H̃HH · êee⊥)(p̂pp · êee⊥)

]
(53)
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Another term is:

1
r4 (r̂rr · p̂pp)

[
−µe

H
(rrr · êee⊥)U

]
· p̂pp =−µe

H
(p̂ · rr

r5 · êee⊥)p̂ (54)

after the double integration we have:

(p̂ · II · êee⊥)p̂ = A3 [(p̂pp · êee)(êee⊥ · êee⊥)+(p̂pp · êee⊥)(êee⊥ · êee)] p̂ = A3 [(p̂pp · êee)+(p̂pp · êee⊥)(êee⊥ · êee)] p̂ (55)

The following is the last term to analyze:
(

p̂ · r
r5

)
(H̃HH · p̂) (56)

In the final expression it becomes
(
p̂ · III

)
(H̃HH · p̂) (57)

3. Results

The short period correction curves are obtained correcting only the initial conditions. This corrected
set represents the new initial conditions for the singly averaged model. A first-order averaged
model, based on the Milankovitch vector formulation of perturbation theory [2] which govern the
long-term evolution of satellite orbits is summarized in Table 3. where, for completeness, are
reported the effects of solar radiation pressure and third-body perturbations, as well as that of the
Earth oblateness, studied in this paper. Future work is intended to extend the results here provided
to the other perturbations, too.

Table 1. Singly-averaged equations of motion governing solar radiation pressure, planetary oblate-
ness, and third-body gravitational perturbations, where the notation follows from [3], to which we
refer for the omitted details.

SRP Oblateness Third-Body

ḣ �Hs tan⇤

d2
s

ê
ds · e �3nJ2R

2

2a2h5
(p̂ · h)êp · h

3µp

2nd3
p

d̂p · (5ee � hh) · êdp

ė �Hs tan⇤

d2
s

ê
ds · h �3nJ2R

2

4a2h5

⇢
1 � 5

h2
(p̂ · h)2

�
eh + 2(p̂ · h)êp

�
· e

3µp

2nd3
p


d̂p · (5eh � he) · êdp � 2eh · e

�

We test the equations on a reference orbits comparing our result with the following initial orbital
elements (semi major axis, eccentricity, inclination, RAAN, argument of perigee and true longitude
respectively):
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a = 7136.6km; e = 0.1; i = 15deg; Ω = 150deg; ω = 40deg;L = Ω+ω + f = 210deg
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a = 7136.6km; e = 0.01; i = 15deg; Ω = 150deg; ω = 40deg;L = Ω+ω + f = 210deg
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a = 7136.6km; e = 0.001; i = 15deg; Ω = 150deg; ω = 40deg;L = Ω+ω + f = 210deg
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