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Abstract First-order necessary conditions for optimality reveal the Hamiltonian
nature of optimal control problems. Regardless of the overwhelming awareness of
this result, the implications that it entails have not been fully explored. We discuss
how the symplectic structure of optimal control constrains the flow of sub-volumes
in the phase space. Special emphasis is devoted to dynamics in the neighborhood
of optimal trajectories and insight is gained into how errors in the initial states
affect terminal conditions. Specifically, we prove that if the optimal trajectory does
not satisfy a particular condition, then there exists a set of variations in the initial
states yielding a greater error in norm when mapped to the terminal time through
the state transition matrix. We relate this result to the sensitivity problem in
solving indirect problems for optimal control.

Keywords Hamiltonian systems - Optimal control - Symplectic structures

1 Introduction

The symplectic structure of Hamiltonian systems is responsible for fundamen-
tal restrictions that apply to the phase flow [Arnold, 1989,de Gosson, 2011]: the
conservation of any full-dimensional volume stated by the Liouville’s theorem is
arguably the most renown among them, whereas other oftentimes-unintuitive con-
straints impose limitations on how this volume can be deformed or stretched,
e.g., Gromov’s non-squeezing theorem, Poincaré-Cartan integral invariants, and
the Wirtinger inequality [Gromov, 1985, Maruskin et al., 2009].

Understanding these dynamics provides valuable insight into the propagation of
uncertainties in Hamiltonian systems [de Gosson and Luef, 2009], with applications
to quantum mechanics and astrodynamics [de Gosson, 2009, Hsiao and Scheeres,
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2007]. In the context of optimal control, the necessary conditions outlined by the
Pontryagin maximum principle reveal the well-known Hamiltonian nature of the
problem, where the adjoint variables associated to the enforcement of the equations
of movement serve as conjugate momenta [Pontryagin, 1987]. Nonetheless, the
implications of this result in the perspective of symplectic structures have not
been comprehensively investigated in the literature.

Indirect approaches for optimal control, e.g., shooting method, are of interest
because they lend themselves to low-dimensional optimization problems. Nonethe-
less, their success is often jeopardized by their high sensitivity to variations in the
initial states and adjoints, so that direct techniques, e.g., collocation, are used
instead. An adequate scaling of the problem can mitigate these effects, but deep
understanding of this sensitivity mechanism is missing. The ideal situation for the
exploitation of indirect techniques is that any perturbation of the initial conditions
is systematically mapped to a ‘small’ perturbation of the terminal ones.

This work is aimed at assessing how the aforementioned constraints mani-
fest themselves in an optimal control problem and how indirect techniques might
benefit from the understanding of this mechanism. Specifically, two questions are
tackled: (1) What are the features of symplectic structures when constraints on
their terminal states are imposed? (2) What is the sensitivity of optimal trajec-
tories with these constraints with respect to variations in the initial states and
adjoints?

After briefly recalling some fundamentals on the Hamiltonial nature of optimal
control problems in Section 2, the first question is answered in Section 3, where we
focus on Poincaré-Cartan integral invariants. We show that they equal zero when
evaluated on the manifold that drives the states to the desired terminal point. The
second question is approached in Section 4. Here, we introduce a requirement on
the state transition matrix of an optimal trajectory whose fulfillment guarantees
that, in the presence of any perturbation of the initial state, the norm of the error
on the terminal conditions is smaller than the norm of the perturbation at the
initial time. Finally, the outcomes of the paper are illustrated in Section 5 by
means of a simple example considering a time optimal planar low-thrust orbital
transfer.

2 Hamiltonian nature of optimal control problems

Let g € R™ and uw € Y C R™ be a set of dynamical and control variables, respec-
tively. The flow of q is governed by the differential equation ¢ = f (g, u). Consider
a maneuver aimed at steering the state vector from some initial conditions, g, to
a desired target point, gy, after a prescribed time, ¢y. The trajectory is required
to minimize the integral of the convex cost function g(x,u), so that the optimal
control problem is formulated as

ty
[q",u"] = arg <min/ g(q,u)dt) s.t.:
@ Jyo

q=f(q,u),u€U Vte[t()atf]u
q(to) = qo, q(ty) =q;.
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Denote by H’ the pre-Hamiltonian,

H' (q,p.u) = —g(q.w) +p" fg,u),

where p € R™ are the time-varying Lagrange multipliers associated to the con-
straints ¢ = f(q,u). In the context of optimal control, p(¢) is generally referred
to as adjoint vector. Without loss of generality, we assume that both g and p are
dimensionless in this paper.

The Pontryagin maximum principle (PMP) [Pontryagin, 1987] outlines neces-
sary conditions that the solution of Problem (1) is required to satisfy. Specifically,
the PMP states that the optimal control, u*, has to maximize the pre-Hamiltonian,
ie.,

u”(q,p) = arg (mng’ (q,p, u)) 7

and that the trajectory of the state and adjoint variables is governed by the Hamil-
ton’s equations

L OH . M

where the Hamiltonian, H : R*" — R, is defined as

H(q,p) =H (q,p,u"(q,p)) .

Indeed, the solution of Problem (1) has also to satisfy the boundary conditions,
q(to) = qo and q(ty) = q;-.

Defining the vector of canonical coordinates © = [qT,pT]T, Eq. (2) can be
recast in the compact form

. O

-[58]

where

—I, On

and I, and 0, denote the n x n identity and null matrices, respectively,
The solution of Eq. (3) for given initial conditions, xo, is denoted by ¢(t, o).
Hence, in the framework of Problem (1), o must be such that

[In On] 925(07260) = dy;
[In On] o(te, xo) = q;.
In this paper we are interested in the flow of the neighborhood of the optimal

trajectory. By perturbing the initial conditions with the 2n-dimensional vector dxg
so that (0) = xo + dxo, the resulting trajectory can be expressed as

6(t, @0 + 60) = B(t,0) + B(t, z0)oo + O (|ldwol ) (4)
where Bo(t
B(t,0) = 22 20) Q

denotes the state transition matrix (STM). In the remainder of the paper, the
initial condition x¢ in Eq. (5) is understood, so that the shorthand notation &(t)
is used.
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The second-order term of Eq. (4) is such that

O (|16zol[?)
I620l|—0 ||z ||

for a fixed time ¢. Although this quantity may become large and non-negligible
when regarded as a function of time for a fixed dxo, it is neglected in this paper.
The evolution of the STM is governed by the initial value problem
2
siy=0 L s,
0% | (1) (6)
®(0) = I2n.

From Eq. (6), it is straightforward to verify that % (@TJQS) = 0, so that
Eq. (6) is an infinitesimal symplectomorfism. For this reason and by noting that

®(0) = I2nx2n € Sp(n) is symplectic, it holds that
&(t) € Sp(n) Vte [to,th

where Sp(n) = {A e R . AT JA = J} denotes the group of 2n-dimensional
real-valued symplectic matrices.

All results discussed in the remainder of the paper are intimately related to
the Hamiltonian nature of optimal control disclosed by Eq. (2), which holds true
in more general formulations than Problem (1), e.g., non-autonomous system, un-
specified maneuvering time, and additional path constraints. However, all devel-
opments of this work are built upon Problem (1) to avoid unnecessary notations.

3 Poincaré-Cartan integral invariants

Integral invariants are quantities that are defined by means of an integral on an
arbitrary region of the configuration manifold and that conserve their value for
any symplectomorfism of the region itself.

Let 2(to) be an arbitrary 2k-dimensional sub-volume in the 2n-dimensional
configuration space at time to. The sum of the signed projections of £2(to) on all
combinations of the symplectic subspaces,

{qi17pi17“’7Qikapik}a 1S11SS7’kSn7

is preserved under any symplectomorfism, which includes the mapping of {2 under
the Hamiltonian flow, i.e.,

L (2) = Ti (6, 2)) VL€ [to,ty],

where

T (2) = > /Q dgi, Adpi, A ... Adgi, Adpi,, (7)

1<i;<...<ip<n
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Fig. 1 Projection of a surface on the j-th symplectic plane. The dotted region denotes the
magnitude of the signed projection. The unsigned projection also includes the dashed region.

and the wedge denotes the exterior product. The quantity Zx({2) is referred to as
Poincaré-Cartan invariant of the volume 2. An intuitive visualization of Poincaré-
Cartan invariants is obtained when a 2-dimensional surface is considered. In this
case, the integral becomes

T () = Z/ﬂ dgi A dp;,
=1

and it consists of the sum of signed projections of the surface {2 on all symplectic
planes (gj,pj). When subject to the dynamical flow, the surface (2(t) may fold.
In this case the norm of the unsigned and signed projections can differ from each
other, as shown in Figure 1. However, the sum of the signed projections on all
symplectic planes (gj, p;) is preserved.

When a 2n-dimensional (2 is considered, the Poincaré-Cartan invariant states
that a non-degenerate volume of the phase space is preserved under any symplec-
tomorfism. This result is also referred to as Liouville’s theorem, and it can be
alternatively deduced by noting that Hamiltonian flows are divergence-less.

Poincaré-Cartan integrals assume an additional compelling feature in the con-
text of optimal feedback control [Bryson and Ho, 1975], where for any initial state
vector, qg, the corresponding adjoint vector is tuned such that q(tf) = g;. The
solution to this problem satisfies the Hamilton-Jacobi-Bellman equation and it
defines an n-dimensional manifold on the phase space,

F= {mo € R*" : q(ty) :qf}’

such that the projection of its volume on the space of the dynamical variables
g at time t; is equal to zero. As a consequence, all projections of F (and of
any arbitrary subset of F) on the symplectic planes are zero at tf, so that the
corresponding Poincaré-Cartan invariant is also zero. When mapped back to to,
the invariance of the integral imposes a fundamental constraint to the manifold
F: any subvolume with non-zero Poincaré-Cartan integral cannot belong to the
manifold F. For example, a surface parallel to the j-th symplectic plane cannot
reside in F, since all terms of Eq. (7) but the j-th one are zero, this giving a
non-zero Z1. The same holds true for any 2k-dimensional volume with its faces
parallel to k symplectic planes.

Additional insight is obtained by considering a differential neighborhood of
the optimal initial conditions, x*(to). Denote by @qq, Pgp, Ppq, and Ppp the n xn
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dn
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T q2

Fig. 2 Optimal feedback control surface (shaded region) and violating direction d;.

blocks of the STM such that

Baa(t) Bap(1)
o) = [%(t) %(t)} :

The tangent space of F at point *(0) is given by
dF = {5.’1,'0 : [@qq(t) @qp(t)] oxo = 0},

and it is illustrated in Figure 2.

Arbitrary subsets of the n-dimensional space, dF, satisfy the aforementioned
requirement of zero Poincaré-Cartan integral. In addition, the first n rows of the
STM,

di
D = [Paa(t) Pap(t) ],
dy,
form a complementary basis for d.F,

dF Uspan (d1,...,d,) = R*".

Any perturbation of the initial conditions with some components in the space
spanned by di, ..., d, yields dq(ty) # 0.

4 Symplectic eigenskeleton and contracting directions

Differently of various applications in Hamiltonian mechanics, trajectories of in-
terest in optimal control do not coincide with fixed points of the system, so that
the associated STMs are time variant and stability results of linear time invariant
systems cannot be exploited to characterize the flow in the neighborhood of the
trajectories themselves. For this reason, the developments of this Section are based
on the symplectic eigenskeleton introduced in [Maruskin et al., 2009] instead.

Denote by @(t) the STM associated to the trajectory ¢(t,xo). The symplectic
eigenskeleton of the transformation ¢(¢,xo) is defined as the eigenbasis of the
STM’s Gramian, 7 (£)®(t). The eigenvectors of &7 (£)®(t) occur in pairs, (£;,v;)
such that

Vj:J€j7 j:1,...,n.
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In addition, the eigenvalues associated to §; and v; are A; and )\j_l, respectively,
with 0 < A; < 1. The vectors {&,,...,&,,V1,...,Vs} form an orthonormal basis,
so that, by defining the matrices & = [£,,...,&,] and N = [v1,...,Vy], it holds

e { ;ﬂ = Ton. (8)

The symplectic eigenskeleton and the eigenvalues \; provide insight into how
errors in the initial conditions are mapped to final states. For example, consider
a small sphere in the phase space encircling xg. After applying the Hamiltonian
flow, the sphere is squeezed in the directions ®(¢)€; and stretched in the directions
&(t)v;. The amount of stretch, \/x , is closely related to the finite-time Lyapunov
exponents.

The symplectic eigenskeleton, allow to decompose the STM in the form

AY? 0, =T
@:R|: On A71/2:| |:NT:|7 (9)

where A = diag (A1,...An) and R is a symplectic rotation, i.e.,
R € (Sp(n) NnSO(2n)) . (10)

Here, SO(2n) = {R e R7x2n . RTR = Izn} denotes the special orthogonal group
in dimension 2n.

To show that Eq. 10 holds true, we note that the last two factors of Eq. (9)
are invertible and, by using Eq. (8) and the definition of A, the matrix R is given
by

(11)

R=®[= N] [A_m O, }

On A1/2
The right-hand term of Eq. (11) consists of the product of three symplectic ma-

trices, so that R is also symplectic. In addition, the matrix &7 P can be expressed
by means of both Eq. (9) and its spectral decomposition, which gives

_ AY2 o, r-[AY2 o, =T _ A O =T
= N][ N A,W]R R{ " A,m} [NT}:[: N) [On A_l] [NT]
(12)

Pre- and post-multiplying Eq.(12) by

A—1/2 0r, ET _ A—1/2 On
[ 0, /11/2} {NT} and [=Z N][ 0, A1/2:|7

respectively, yields
RTR = To,,

which shows that R is also a 2n-dimensional orthogonal matrix.

As mentioned in the introduction of the paper, indirect techniques would ben-
efit if any perturbation of the initial conditions were systematically mapped to a
‘small’ perturbation of the terminal states. Because qo is given, this requirement
can be formulated as

llog(t,)ll < [lop(0)I]  Vop(0) € R™, (13)
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The more restrictive notion of omni-directional contraction is now introduced.
Specifically, an STM is referred to as an omni-directional contraction if

l0g(tp)ll < [lézoll Voxo € R*™,

where
[16g(ts)|l = l[[Zn On] 2(tg)émo)l| -

The concept of contraction helps understanding how a favorable formulation
of the problem relates to the violating directions defined in Section 3.

Below, we establish a necessary and sufficient condition for an STM to be an
omni-directional contraction and, consequently, we provide a sufficient condition
for the satisfaction of Eq. (13). For this purpose, we recall that any symplectic
rotation, R, can be written in the form

R— {_ABi], (14)

where A and B are n X n matrices such that

ATA+B"B=1,,
ATB - BTA=0,.
Theorem 1 Consider an STM and its decomposition according to Eq. (9). Let A

and B be the n-dimensional block matrices of the symplectic rotation as defined in
Eq. (14). Then, the STM is an omni-directional contraction if and only if

C=Tn— (AAAT n BA*lBT) > 0. (15)
In the remainder, C is referred to as contracting matriz.

Proof Equation (15) can be proven by expressing the norm of dg(tys) as

16a(ts)lI* = da(ts)" da(ty)

= 51135 {quTq(t)] [Pgq(t) Pap(t)] 0z0

Pop(?)
Hence, the difference ||dxol|® — ||dq(ts)]|? is nonnegative if
0] 0
Daq(t) Pgp(t)] = Ton = [Pgq(t) Pep(t i = Tn 16
2D 20 @) (Buolt) P 1) (16)

because of the properties of singular values. Substituting Egs. (9) and (11) into
Eq. (16) yields the requirement on the positive definiteness of the contracting
matrix defined in Eq. (15).



Sensitivity of Optimal Control Problems Arising From Their Hamiltonian Structure 9

We emphasize that Theorem 1 provides a necessary and sufficient condition, so
that if the STM is not an omni-directional contraction, then there exists at least
one direction in the phase space, dxo, such that its mapping through the STM
yields a perturbation dq(¢s) larger in norm than dzo, i.e.,

{0mo : [|0g(ty)ll > ||5zol|} # 0.

Hence, if Eq. (15) does not hold true, as it is most often the case in real-life
applications, the effectiveness of indirect techniques often deteriorates for large ¢
owing to the generally-exponential increase of the eigenvalues /\j_l.

To gain insight into the concept of omni-directional contraction, consider the
case where B = 0. In this case, ATA = T, so that Eq. (15) simplifies to Z,, = A,
which holds true because A\; < 1, 7 = 1,...,n. In this case, all the violating
directions d; defined in Section 3 can be written as a linear combination of the
contracting directions §;. When B # Ox, it is required that the contribution of the
expanding directions v is small enough to guarantee the satisfaction of Eq. (15).

However, being an omni-directional contraction is neither a property of the
system nor of the STM, and the eigenvalues of the contracting matrix are prone to
be modified if a canonical change of variables is performed. Block-diagonal trans-
formations are particularly of interest because they do not mix states and adjoints.
In addition, it is straightforward to show that these eigenvalues are invariant to
symplectic rotations with null off-diagonal blocks, so that the canonical transfor-
mation should either include some stretching, i.e., scaling, and/or it does not have
to preserve angles. This conjecture is further argued in Section 5.

5 Example

We consider the extremal flow of a planar time-optimal maneuver in the two-body
problem. The Hamiltonian of the problem in equinoctial elements is

3
H :p41/qﬁ3 (14 g2cosqa +nginq4)2 —f—Fq;1
1

where p and F denote the gravitational parameter and the maximum thrust-to-
mass ratio, respectively, and

2p1qu
0 14 g2 cosqsa + g3 sinqa
sin cos g4 + g2 + o8 g4
hi(q) = d4 and ha(q) = 14+ g2cosqa + g3singy
€OS g4 . q3 +singa
0 sSin q4 +

1+ g2cosqa + g3singa
0

Table 1 lists the numerical values of the parameters and the initial conditions of
the trajectory.

Figure 3(a) depicts the eigenvalues of the contracting matrix for the unscaled
problem, i.e., the length of the semi-latus rectum is measured in kilometers. The
stretching of two violating directions grows up quickly at the very beginning of
the maneuver and the condition outlined in Eq. (15) is never attained.
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Table 1 Parameters and initial conditions for the simulations.

Parameter
Gravitational parameter, p 3.986 - 10° km3s™2
Thrust-to-mass ratio, F' 107* Nkg~!
Initial conditions
Semi-latus rectum, q1 10* km
x-component of the eccentricity vector, g2 0.75
y-component of the eccentricity vector, g3 0
True longitude, g4 0 rad
Adjoint vector, p [0,1,0,0]
2 2
0 0 T( W (,
S [
& =
[ (]
-4
0 10 20 30 w0 % 10 20 30 40
Time [h] Time [h]
(a) Bad scaling (b) Good scaling

Fig. 3 Eigenvalues of the contracting matrix as a function of time.

0.1 \/ V T
IS
[%2]
o
(]
0.1
0 10 20 30 40

Time [h]

Fig. 4 Eigenvalues of the contracting matrix as a function of time. Zoomed view with the
good scaling.

Rescaling the problem consist of applying the canonical transformation

&= 8 Onxn x
Onxn 5_1 ’

where s is a diagonal matrix. Figure 3(b) and the close-up view of Figure 4
depict the eigenvalues of the contracting matrix of the rescaled problem with
diag(s) = [20 -10% km, 1,1, 100 rad]. At the beginning of the maneuver, the STM
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4
1.1 10 0.76
El o
=
~ &
S
1
0.75
0 20 40 60 0 20 40 60
Time [h] Time [h]
(a) (b)
-3
6 x10 6
__4
=, z
s S
2
-6 0
0 20 40 60 0 20 40 60
Time [h] Time [h]

(c) (d)

Fig. 5 Solution of the shooting problem (state trajectory). Blue squares indicate terminal
conditions at perigee.

is nearly an omni-directional contraction over several hours. This suggests that
the re-scaled problem exhibit less sensitivity with respect to the non-scaled one.
In addition, the positive definiteness of the contracting matrix is also attained
whenever the satellite is close to the apogee of the orbit. Hence, solving a two-
point boundary value problem with a shooting algorithm is supposedly easier if
the desired terminal conditions of the maneuver are close to the apogee. This in-
formation could be also exploited for choosing when to update the solution during
its execution. As an example, Figure 5 depicts the trajectory obtained as a so-
lution of a two-point boundary value problem with terminal conditions equal to
q(ty) = [11*km,0.75,0,nx] for an arbitrary odd n (i.e., the terminal state is at
apogee). Initial conditions and guess of the initial adjoints are provided in Ta-
ble 1. The guess of the maneuvering time is set to 50 hours'. Then, a second set
of terminal conditions is chosen on this trajectory such that the final anomaly
occurs at perigee (blue squares in Figure 5), and the guess of the maneuvering
time is re-scaled accordingly. Hence, the initial adjoint vector solution of the two
problems is the same. However, convergence is faster in the first case, as shown in
Figure 6. Indeed, a thorough and exhaustive investigation is mandatory to confirm

1 For repeatability purposes, the shooting problem is solved by means of the fsolve function
of MATLAB using default settings
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3
o S
= N
~ v
= —Apogee '
+~ : 1
g 0 " Perigee '
= 0 5 10 15
Iteration [-]

Fig. 6 Convergence of the two-point boundary value problems with terminal conditions at
apogee and perigee.

this intuition. We also note that the solver is not able to converge to a feasible
solution if states are not scaled.

6 Conclusion

This paper discussed fundamental constraints on the flow of dynamical systems
in optimal control. The symplectic structure of the problem and the imposition
of terminal constraints resulted in findings that are not usual in other fields of
Hamiltonian mechanics.

Useful resources are readily available by computing the STM of optimal trajec-
tories. First, we identified the local directions orthogonal to the manifold returning
the exact terminal conditions. Any perturbation of the initial states with compo-
nents in this subspace returns a non-zero error in the terminal conditions. Second,
after introducing the notion of omni-directional contraction, we derived necessary
and sufficient conditions guaranteeing that any perturbation of the initial states
is mapped to a ‘small’ perturbation of the terminal conditions. This condition ex-
poses one mechanism to which an optimal control problem has high sensitivity to
errors in the initial adjoint variables.
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