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Abstract

For each n, let An = (σij) be an n × n deterministic matrix and let Xn = (Xij)

be an n × n random matrix with i.i.d. centered entries of unit variance. We study
the asymptotic behavior of the empirical spectral distribution µY

n of the rescaled
entry-wise product

Yn =

(
1√
n
σijXij

)
.

For our main result we provide a deterministic sequence of probability measures µn,
each described by a family of Master Equations, such that the difference µY

n − µn

converges weakly in probability to the zero measure. A key feature of our results is to
allow some of the entries σij to vanish, provided that the standard deviation profiles
An satisfy a certain quantitative irreducibility property. An important step is to obtain
quantitative bounds on the solutions to an associate system of Schwinger–Dyson
equations, which we accomplish in the general sparse setting using a novel graphical
bootstrap argument.
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1 Introduction

For an n× n matrixM with complex entries and eigenvalues λ1, . . . , λn ∈ C (counted
with multiplicity and labeled in some arbitrary fashion), the empirical spectral distribu-
tion (ESD) is given by

µM =
1

n

n∑
i=1

δλi
. (1.1)

A seminal result in non-Hermitian random matrix theory is the circular law, which
describes the asymptotic global distribution of the spectrum for matrices with i.i.d.
entries of finite variance. The following strong form of the circular law was established
by Tao and Vu [60], and is the culmination of the work of many authors [30, 48, 31, 15,
17, 33, 50, 61] – see the survey [19] for a detailed historical account.

Theorem 1.1 (Circular law). Let ξ be a complex random variable of zero mean and unit
variance, and for each n let Xn = (X

(n)
ij ) be an n×n matrix whose entries are i.i.d. copies

of ξ. Then almost surely, the ESDs µ 1√
n
Xn

converge weakly to the circular measure

µcirc(dx dy) :=
1

π
1{|x|2+|y|2≤1} dx dy.

One of the remarkable features of the circular law is that the asymptotic behavior of
ESDs is insensitive to specific details of the entry distributions, apart from the first two
moments. This is an instance of the universality phenomenon in random matrix theory.

The circular law has been an important tool for understanding the stability of dy-
namical systems on complex networks, going back to work of May in ecology [47], and
later work of Sompolinski et al. in neuroscience [57]. May used an i.i.d. matrix Xn

to model the community matrix for a food network of n species, where the entry Xij

determines the rate of growth (or decay) of the population of species i due to species j.
The stability of the system is determined by the spectrum of Xn – specifically by whether
it has eigenvalues with sufficiently large real part – and May used the circular law1 to
derive a criterion for stability.

1At the time the circular law was only known to hold in the complex Gaussian case thanks to work of Ginibre
and Mehta [30, 48]. Strictly speaking, May’s argument assumes that there are asymptotically no eigenvalues
outside the limiting support, which is now known to hold under some moment hypotheses [16, 21].
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Non-Hermitian random matrices with a variance profile

Recently there has been increasing interest in extending the arguments of [47, 57] to
matrix models with more structured distributions. In neural networks, where random
matrices are used to model the synaptic matrix, the work [53] considered perturbed i.i.d.
matrices of the form Xn +Mn, whereMn is a fixed matrix with all entries within a fixed
proportion of columns taking a fixed positive value µ+, and all remaining entries taking
a fixed negative value µ−. Their motivation was to conform to Dale’s Law, stating that
neurons are either inhibitory or excitatory. In this caseMn is a rank-one perturbation;
as was later shown rigorously in work of Tao [58], low rank perturbations do not affect
the limiting spectral distribution, but may lead to the creation of outlier eigenvalues.

Several recent works have studied the limiting spectral distribution for random
matrices of the form

An �Xn = (σijXij) (1.2)

(suitably rescaled) where An = (σij) is a fixed (deterministic) standard deviation profile.
From a modeling perspective the σij can reflect the varying degrees of interaction
between species/neurons. In theoretical ecology the works [7, 8] considered asymmetric
standard deviation profiles, i.e. taking σij 6= σji, in order to create more realistic
predator-prey cascading relationships. In neuroscience the works [6, 5] considered
matrices An partitioned into a bounded number of block submatrices having constant
entries within each block, in order to model networks with a bounded number of cell
types. We also note that predating these works, Girko [32, Chap. 25, 26] (see also the
references therein) studied non-Hermitian matrices with standard deviation and mean
profiles and provided canonical equations to describe the limiting spectral densities.

Some works have also gone beyond matrices with independent entries of specified
mean and variance, for instance considering products and sums of deterministic matrices
with a random matrix having i.i.d. entries [1], or allowing correlations between entries
Xij , Xji [9]. We also mention that parallel to the study of non-Hermitian matrices there
have been many works devoted to the study of Hermitian random matrices with a
variance profile, both Wigner and Gram-type – see for instance Girko [32, Chapter 7,
8], Shlyakhtenko [56], Guionnet [35], Anderson and Zeitouni [12], Hachem et al. [36],
Ajanki et al. [2].

As has been pointed out in the ecology literature [8], a key feature that is missing
from the literature on models of the form (1.2) is to allow An to have zero entries.
Indeed, the nodes in large real-world ecological or neural networks do not interact with
all other nodes. One fix has been to take An to have i.i.d. Bernoulli(p) indicator entries,
independent of Xn, i.e. to model the support of the network by a sparse Erdős–Rényi
digraph. As was shown by Wood [64] the circular law still holds for An � Xn (after
rescaling by (pn)−1/2) if p ≥ nα−1 for any fixed α ∈ (0, 1]. However, the valence of the
nodes in the resulting network is highly concentrated around pn, while the valence
distribution for real-world networks is highly non-uniform [8]. With the ability to set An
deterministically one can reflect some known underlying geometry of the network.

In the present work, our main focus is to understand the asymptotic global spectral
distribution under minimal assumptions on the variance profile. Key features of our
results, which also present significant challenges in the proofs, are to allow a large
number of the entries σij to be zero, as well as to allow asymmetry (i.e. σij 6= σji). As
an example, we are able to handle variance profiles satisfying a robust irreducibility
condition (see Definition 2.7), which includes matrices that are close in the cut norm to
an irreducible graphon (Lemma 2.5).

As compared with the proof of the circular law, the identification and description of a
limiting measure is significantly more involved. In this article we prove the existence of
a sequence of deterministic measures – called deterministic equivalents – which asymp-
totically approximate the random ESDs. In particular we obtain non-trivial information
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Non-Hermitian random matrices with a variance profile

even when the ESDs themselves do not converge to a limit. The identification of the
deterministic equivalents involves analysis of a (cubic) polynomial system of Master
Equations determined by the variance profile. A relative of the Master Equations known
as the Quadratic Vector Equation was studied in recent work of Ajanki, Erdős and Krüger
and Alt, Erdős and Krüger on the spectrum of Hermitian matrices with a variance profile
[3, 10].

Since the initial release of this paper, a local law version of our main statement
(Theorem 2.3) was proved in [11] under the restriction that the standard deviation
profile σij is uniformly strictly positive and that the distribution of the matrix entries
possesses a bounded density and has all its moments finite. In this case, it is also proved
that the density of the deterministic equivalents is positive and bounded on its support.
The latter properties may no longer hold if the standard deviation profile has zero entries
or is not uniformly lower bounded. In these cases, the limiting distribution may offer a
wider variety of behavior, such as a blowup or vanishing density at zero, or a point mass
at zero; see [22].

It is by now well known that the study of ESDs for non-Hermitian random matrices is
intimately connected with proving the quantitative invertibility of such matrices – that
is, establishing lower tail estimates for small singular values. The possible sparsity of
the matrices considered here gives rise to significant challenges for this task. Bounds
on the smallest singular value sufficient for our purposes were established by the first
author in [23]. In the present work we obtain control on the remaining small singular
values from Wegner-type bounds, which are established by a quantitative analysis of the
Master Equations. Specifically, the key is to show solutions to the Regularized Master
Equations (see (2.7)) are uniformly bounded in the spectral scale parameter t and the
dimension n. For this task we use an iterative graphical bootstrap argument (reminiscent
of bootstrap arguments from the theory of differential equations) that exploits expansion
properties of a directed graph naturally associated to the variance profile. (Graph
expansion properties were also key for the analysis of the smallest singular value in
[23].) We discuss these aspects of the proof in more detail after presenting the results in
Section 2.

1.1 The model

In this article we study the following general class of random matrices with non-
identically distributed entries.

Definition 1.2 (Random matrix with a variance profile). For each n ≥ 1, let An be a
(deterministic) n× n matrix with entries σ(n)

ij ≥ 0, let Xn be a random matrix with i.i.d.

entries X(n)
ij ∈ C satisfying

EX
(n)
11 = 0 , E|X(n)

11 |2 = 1 (1.3)

and set

Yn =
1√
n
An �Xn (1.4)

where � is the matrix Hadamard product, i.e. Yn has entries Y (n)
ij = 1√

n
σ
(n)
ij X

(n)
ij . The

empirical spectral distribution of Yn is denoted by µYn . We refer to An as the standard

deviation profile and to An � An =
(
(σ

(n)
ij )2

)
as the variance profile. We additionally

define the normalized variance profile as Vn = n−1An �An. When no ambiguity occurs,
we will drop the index n and simply write σij , Xij , V , etc.

Remark 1.1. Note we do not assume the (X
(n)
ij )’s are independent or identically dis-

tributed for different n’s.
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Non-Hermitian random matrices with a variance profile

Our goal is to describe the asymptotic behavior of the ESDs µYn given a sequence of
standard deviation profiles An which can be sparse, and may not converge in any sense
to a limiting standard deviation profile.

1.2 Master equations and deterministic equivalents

The main result of this article states that under certain assumptions on the sequence
of standard deviation profiles An and the distribution of the entries of Xn, there exists a
sequence of deterministic probability measures µn that are deterministic equivalents of
the spectral measures µYn such that

µYn ∼ µn in probability (n→ ∞),

see Section 2.1.2 for notation.
The measures µn are described by a polynomial system of Master Equations. Denote

by V T
n the transpose matrix of Vn and by ρ(Vn) its spectral radius. For a parameter

s ≥ 0, the Master Equations are the following system of 2n+1 equations in 2n unknowns
q1, . . . , qn, q̃1, . . . , q̃n: 

qi =
(V T
n q)i

s2 + (Vnq̃)i(V T
n q)i

q̃i =
(Vnq̃)i

s2 + (Vnq̃)i(V T
n q)i

∑
i∈[n] qi =

∑
i∈[n] q̃i

, qi, q̃i ≥ 0, i ∈ [n], (1.5)

where q, q̃ are the n× 1 column vectors with components qi, q̃i, respectively.
If s ≥

√
ρ(Vn), it can be proved that the Master Equations admit the unique trivial

solution (q, q̃) = 0. Provided that 0 < s <
√
ρ(Vn) and that the matrix Vn is irreducible, it

can be shown that the Master Equations admit a unique positive solution (q, q̃) which
depends only on s. This solution s 7→ (q(s), q̃(s)) is continuous on (0,∞). With this
definition of q and q̃, the deterministic equivalent µn is defined as the radially symmetric
probability distribution over C satisfying

µn{z ∈ C , |z| ≤ s} = 1− 1

n
qT(s)Vnq̃(s) , s > 0 .

It readily follows that the support of µn is contained in the disk of radius
√
ρ(Vn).

Acknowledgments. The work of NC was partially supported by NSF grants DMS-
1266164 and DMS-1606310. The work of WH and JN was partially supported by the
program “modèles numériques” of the French Agence Nationale de la Recherche under
the grant ANR-12-MONU-0003 (project DIONISOS). Support of the Labex BEZOUT from
the Université Paris Est is also acknowledged. The work of DR was partially supported
by Austrian Science Fund (FWF): M2080-N35. The authors thank the referee for their
careful reading and insights which enabled to substantially shorten the paper.

2 Presentation of the results

2.1 Notational preliminaries

Denote by [n] the set {1, · · · , n} and let C+ = {z ∈ C , Im(z) > 0}. For X = C or R,
let Cc(X ) (resp. C∞

c (X )) the set of X → R continuous (resp. smooth) and compactly
supported functions. Let B(z, r) be the open ball of C with center z and radius r. If z ∈ C,
then z̄ is its complex conjugate; let i2 = −1. The Lebesgue measure on C will be either
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Non-Hermitian random matrices with a variance profile

denoted by `( dz) or dxdy. For x, y ∈ R we write max(x, y) = x ∨ y and min(x, y) = x ∧ y.
The cardinality of a finite set S is denoted by |S|. For S ⊂ [n] and when clear from the
context we will abbreviate Sc = [n] \ S.

2.1.1 Matrices

We denote by 1n the n× 1 vector of 1’s. Given two n× 1 vectors u,v, we denote their
scalar product 〈u,v〉 =

∑
i∈[n] ūivi.

For a given matrix A, denote by AT its transpose and by A∗ its conjugate transpose.
Denote by In the n× n identity matrix. If clear from the context, we omit the dimension.
For a ∈ C and when clear from the context, we sometimes write a instead of a I and
similarly write a∗ instead of (aI)∗ = āI. For matrices A,B of the same dimensions we
denote by A�B their Hadamard, or entrywise, product (i.e. (A�B)ij = AijBij).

Given two Hermitian matrices A and B, the notations A ≥ B and A > B refer to
the usual positive semidefinite ordering. Notations � and < refer to the elementwise
inequalities for real matrices or vectors. Namely, if A and B are real matrices,

A � B ⇔ Aij > Bij ∀i, j and A < B ⇔ Aij ≥ Bij ∀i, j.

The notation A <6= 0 stands for A < 0 and A 6= 0. Given a matrix A, ‖A‖ refers to its
spectral norm, and |||A|||∞ to its max-row norm, defined as: |||A|||∞ := maxi∈[n]

∑n
j=1 |Aij | =

max‖u‖∞≤1 ‖Au‖∞. We denote the spectral radius of an n × n matrix A by ρ(A) :=

max
{
|λ| : λ is an eigenvalue of A

}
. If A is a square matrix, we write Im(A) = (A −

A∗)/(2i). For an n-dimension vector a, diag(ai) denotes the n× n diagonal matrix with a
as its diagonal elements.

2.1.2 Convergence of measures

Given probability distributions νn, ν over some set X (= R or C), we will denote the weak
convergence of νn to ν by νn

w−−−−→
n→∞

ν. If νn is random, νn
w−−−−→

n→∞
ν almost surely (resp. in

probability) stands for the fact that for all f ∈ Cc(X ),∫
f dνn −−−−→

n→∞

∫
f dν almost surely (resp. in probability).

Let (µn) and (νn) be deterministic sequences of probability distributions over X , and let
(νn) be tight, i.e. for all ε > 0, one can find a compact set Kε such that supn νn(X \Kε) ≤ ε.
We will denote by

µn ∼ νn as n→ ∞

the fact that the signed measure µn−νn weakly converges to zero, i.e.
∫
f dµn−

∫
f dνn →

0 for all f ∈ Cc(X ). If the sequence (µn) is random while (νn) is deterministic and tight,
then

µn ∼ νn almost surely (resp. in probability)

stands for ∫
f dµn −

∫
f dνn −−−−→

n→∞
0 almost surely (resp. in probability),

for all f ∈ Cc(X ). Notice that µn ∼ ν∞ is equivalent to µn
w−−−−→

n→∞
ν∞.
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2.1.3 Stieltjes transforms

Let µ be a nonnegative finite measure on R and

gµ(η) =

∫
µ(dλ)

λ− η
, η ∈ C+ (2.1)

its Stieltjes transform. Then the following properties are standard

(i) gµ(η) ∈ C+ , (ii) |gµ(η)| ≤
µ(R)

Im(η)
, (iii) lim

y→+∞
−iygµ(iy) = µ(R) .

Moreover, −(z + gµ(z))
−1 is the Stieltjes transform of a probability measure, see for

instance [63, Theorem B.3]. In particular

|z + gµ(z)|−1 ≤ Im−1(z) , z ∈ C+. (2.2)

2.1.4 Graph-theoretic notation

Given an n× n non-negative matrix A = (σij) we form a directed graph Γ = Γ(A) on the
vertex set [n] that puts an edge i→ j whenever σij > 0. We denote the out-neighborhood
of a vertex i ∈ [n] in the graph Γ by

NA(i) := {j ∈ [n] : σij > 0}. (2.3)

Consequently, the in-neighborhood is denoted NAT(i). For a set S ⊂ [n] we write

NA(S) :=
⋃
i∈S

NA(i) = {j ∈ [n] : NAT(j) ∩ S 6= ∅}. (2.4)

For δ ∈ (0, 1) we denote the associated densely-connected out-neighbors of a set S ⊂ [n]

by

N (δ)
A (S) = {j ∈ [n] : |NAT(j) ∩ S| ≥ δ|S|}. (2.5)

To obtain quantitative results we will generally work with the graph associated to the
matrix

A(σ0) = (σij1σij≥σ0
) (2.6)

which only keeps the entries exceeding a fixed cutoff parameter σ0 > 0, setting the
remaining entries to zero.

2.2 Model assumptions

We will establish results concerning sequences of matrices Yn as in Definition 1.2
under various additional assumptions on An and Xn, which we now summarize. We note
that many of our results only require a subset of these assumptions.

For our main result we need the following additional assumption on the distribution
of the entries of Xn.

A0 (Moments). We have E|X(n)
11 |4+ε ≤M0 for all n ≥ 1 and some fixed ε > 0,M0 <∞.

Remark 2.1. Assumption A0 is needed to apply the results from [23] to bound the
smallest singular value as in (2.10). It is also used in Section 3 to quantitatively bound
the difference between our random measures and their deterministic equivalents, which
is crucial for obtaining logarithmic integrability of singular value distributions. This
latter step can likely be accomplished with fewer moments, but we do not pursue this.
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A1 (Bounded variances). There exists σmax ∈ (0,∞) such that

sup
n

max
1≤i,j≤n

σ
(n)
ij ≤ σmax.

Remark 2.2 (Convention). While we will keep the value σmax generic in the statements,
we will always set it to 1 in the proofs, with no loss of generality.

In order to express the next key assumption, we need to introduce the following Reg-
ularized Master Equations which are a specialization of the Schwinger–Dyson equations
of Girko’s Hermitized model associated to Yn (see Section 2.5 for further discussion).
The following is proved in Section 4.1.

Proposition 2.1 (Regularized Master Equations). Let n ≥ 1 be fixed, let An be an n× n

nonnegative matrix and write Vn = 1
nAn � An. Let s, t > 0 be fixed, and consider the

following system of equations
ri =

(V T
n r)i + t

s2 + ((Vnr̃)i + t)((V T
n r)i + t)

r̃i =
(Vnr̃)i + t

s2 + ((Vnr̃)i + t)((V T
n r)i + t)

, (2.7)

where r = (ri) and r̃ = (r̃i) are n × 1 vectors. Denote by ~r =

(
r

r̃

)
. Then this system

admits a unique solution ~r = ~r(s, t) � 0. This solution satisfies the identity∑
i∈[n]

ri =
∑
i∈[n]

r̃i . (2.8)

A2 (Admissible variance profile). Let ~r(s, t) = ~rn(s, t) � 0 be the solution of the Reg-
ularized Master Equations for given n ≥ 1. For all s > 0, there exists a constant
C = C(s) > 0 such that

sup
n≥1

sup
t∈(0,1]

1

n

∑
i∈[n]

ri(s, t) ≤ C .

A variance profile Vn for which the previous estimate holds is called admissible.

Remark 2.3. Assumption A2 may seem obscure at first sight as it necessitates to solve
the regularized master equations to check if a variance profile is admissible. In particular,
it is not clear if this assumption is compatible with some sparsity. In Section 2.4, we
provide sufficient conditions on the variance profile Vn which imply A2, namely A3
(lower bound on Vn), A4 (symmetric Vn) and A5 (robust irreducibility for Vn).

2.3 Statement of the results

Recall the Master Equations (1.5), and notice that these equations are obtained
from the Regularized Master Equations (2.7) by letting the parameter t go to zero.
Notice however that condition

∑
qi =

∑
q̃i is now required for uniqueness and not a

consequence as in (2.7).
In order to prove existence of solutions q, q̃ to the Master Equations we need to

assume the standard deviation profile An is irreducible. This is equivalent to assuming
the associated digraph Γ(An) is strongly connected (recall the notations from Section
2.1.4). This will cause no loss of generality, as we can conjugate Yn by an appropriate
permutation matrix to put An in block-upper-triangular form with irreducible blocks on
the diagonal – the spectrum of Yn is then the union of the spectra of the block diagonal
submatrices.
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Theorem 2.2 (Master equations). Let n ≥ 1 be fixed, let An be an n × n nonnegative
matrix and write Vn = 1

nAn � An. Assume that An is irreducible. Then the following
hold:

1. For s ≥
√
ρ(Vn) the system (1.5) has the unique solution ~q(s) = 0.

2. For s ∈ (0,
√
ρ(V )n) the system (1.5) has a unique non-trivial solution ~q(s) <6= 0.

Moreover, this solution satisfies ~q(s) � 0.

3. The function s 7→ ~q(s) defined in parts (1) and (2) is continuous on (0,∞) and is
continuously differentiable on (0,

√
ρ(V )) ∪ (

√
ρ(V ),∞).

Remark 2.4 (Convention). Above and in the sequel we abuse notation and write ~q = ~q(s)

to mean a solution of the equation (1.5), understood to be the nontrivial solution for
s ∈ (0,

√
ρ(Vn)).

The main result of this paper is the following.

Theorem 2.3 (Main result). Let (Yn)n≥1 be a sequence of random matrices as in Defini-
tion 1.2, and assume A0, A1 and A2 hold. Assume moreover that An is irreducible for
all n ≥ 1.

1. There exists a sequence of deterministic measures (µn)n≥1 on C such that

µYn ∼ µn in probability.

2. Let ~q(s)T = (q(s)T q̃(s)T) be as in Theorem 2.2, and for s ∈ (0,∞) put

Fn(s) = 1− 1

n
〈q(s), Vnq̃(s)〉. (2.9)

Then Fn extends to an absolutely continuous function on [0,∞) which is the CDF of
a probability measure with support contained in [0,

√
ρ(Vn)] and continuous density

on (0,
√
ρ(Vn)).

3. For each n ≥ 1 the measure µn from part (1) is the unique radially symmetric
probability measure on C with µn({z : |z| ≤ s}) = Fn(s) for all s ∈ (0,∞).

Remark 2.5 (Almost sure convergence under different hypotheses). As with Theorem
1.1, a key component of the proof is a lower tail estimate for the smallest singular value
of scalar shifts Yn − zIn of the form

P(sn(Yn − zIn) ≤ n−β) = O(n−α) (2.10)

holding for a.e. fixed z ∈ C. (Crucially, we do not need such an estimate for every z ∈ C,
as A2 only requires s = |z| > 0 and allows variance profiles for which (2.10) is false when
z = 0.) Such a bound is available for arbitrary fixed z 6= 0 and α > 0 a small constant
by recent work of the first author [23]; see Proposition 6.1. Obtaining (2.10) with α > 1

would immediately improve conclusion (1) to almost sure convergence by an application
of the Borel–Cantelli lemma.

Such improvements are already available under stronger assumptions on An and Xn.
For instance, under A3 and replacing A0 with a bounded density assumption, an easy
argument gives (2.10) for any fixed α > 0 and some β = β(α) > 0; see [19, Section 4.4].

Remark 2.6 (Density of µn versus density of Fn). In the previous theorem, by the classical
polar change of coordinates, the density ϕn of µn for 0 < |z| < √

ρV is given by the
formula:

ϕn(|z|) =
1

2π|z|
d

ds
Fn(s)

∣∣∣
s=|z|

= − 1

2πn|z|
d

ds
〈q(s), V q̃(s)〉

∣∣∣
s=|z|

.
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Non-Hermitian random matrices with a variance profile

As an illustration we show how our results recover the circular law for matrices with
i.i.d. entries.

Example 2.1 (The circular law). Consider a standard deviation profile An with all ele-
ments equal to 1 and assume that A0 holds. It is well known in this case that µYn

w−→ µcirc

in probability (and even almost surely), where µcirc stands for the circular law with
density π−11{|z|≤1}. We can recover this result with Theorem 2.3. In this case, both
systems (2.7) and (1.5) simplify into a single equation:

ri ≡ r =
r + t

s2 + (r + t)2
, r > 0 and qi ≡ q =

q

s2 + q2
, q ≥ 0 . (2.11)

From the first equation, one can prove that r(s, t) ≤ 1 for t ∈ (0, 1]. In fact,

r =
r + t

s2 + (r + t)2
≤ 1

r + t
⇒ r2 + rt ≤ 1 ⇒ r2 ≤ 1 .

Hence A2 is fulfilled. The second equation has the unique nontrivial solution

q(s) =

{√
1− s2 0 ≤ s ≤ 1

0 s ≥ 1
. (2.12)

Consequently, Fn(s) = s2 for s ≤ 1. From Remark 2.6, we conclude the desired conver-
gence.

In the next example, we prove that a doubly stochastic normalized variance profile is
admissible and that the associated deterministic equivalent µn is the circular law.

Example 2.2 (Doubly stochastic variance profile). Assume that matrix Vn is doubly
stochastic, i.e. 1

n

∑
i σ

2
ij =

1
n

∑
j σ

2
ij = 1 for all 1 ≤ i, j ≤ n. Then, one quickly verifies that

the vectors ~r = r1 and ~q = q1 with r, q as in (2.11) respectively satisfy the Regularized
Master Equations and the Master Equations. As a consequence A2 can be established as
in Example 2.1. Let now A1 hold and assume that the variance profile Vn is irreducible
for all n ≥ 1 then one can apply Theorem 2.3 with µn equal to the circular law.

Remark 2.7. Note that under A1 the doubly stochastic condition implies that the number
of non-zero entries in each row and column is linear in n.

In the following theorem, we relax the irreducibility assumption, which requires some
additional argument.

Theorem 2.4 (The circular law for doubly stochastic variance profiles). Let (Yn)n≥1 be a
sequence of random matrices as in Definition 1.2, and assume A0 and A1 hold. Suppose
also that the normalized variance profiles Vn are doubly stochastic, i.e. 1

n

∑
i σ

2
ij =

1
n

∑
j σ

2
ij = 1 for all 1 ≤ i, j ≤ n. Then µYn

w−→ µcirc in probability.

This parallels results of Girko [32, §7.11, §8.2] and Anderson and Zeitouni [12] (see
also [56], [35] for the Gaussian case) for random Hermitian matrices with a doubly-
stochastic variance profile which obey the Marchenko–Pastur or Wigner semi-circle
laws.

2.4 Sufficient conditions for admissibility

Hereafter we introduce a series of assumptions directly checkable over matrices (Vn)
without solving a priori the regularized master equations. These assumptions enforce
A2.

The simplest such assumption is to enforce uniform positivity of the variances,
which allows one to bypass some of the most technical portions of our argument. This
assumption was also made in the recent work [11].
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Non-Hermitian random matrices with a variance profile

A3 (Lower bound on variances). There exists σmin > 0 such that

inf
n

min
1≤i,j≤n

σ
(n)
ij ≥ σmin.

We generalize A3 below with the expansion-type condition A5.

Proposition 2.5. Let A = (σij) be an n× n matrix with entries σij ≥ σmin > 0 for some
σ > 0. Let ~r � 0 be the unique solution of the Regularized Master Equations (2.7). Then

1

n

n∑
i=1

ri ≤
1

σmin
.

In particular, if An = (σ
(n)
ij ) is a sequence of standard deviation profiles as in Definition

1.2 for which A3 holds, then A2 is satisfied, i.e. Vn is admissible.

A4 (Symmetric variance profile). For all n ≥ 1, the normalized variance profile (or
equivalently the standard deviation profile) is symmetric:

Vn = V T
n .

Proposition 2.6. Let A = (σij) be a symmetric matrix with nonnegative entries, and let
~r � 0 be the unique solution of the Regularized Master Equations (2.7). Then

1

n

n∑
i=1

ri ≤
1

2s
.

In particular, if An = (σ
(n)
ij ) is a sequence of standard deviation profiles as in Definition

1.2 for which A4 holds, then A2 is satisfied.

We now introduce the following strengthening of the irreducibility assumption, which
can be understood as a kind of expansion condition on an associated directed graph.

Definition 2.7 (Robust irreducibility). For δ, κ ∈ (0, 1) we say that a nonnegative n× n

matrix A is (δ, κ)-robustly irreducible if the following hold:

1. For all i ∈ [n], ∣∣NA(i)
∣∣, ∣∣NAT(i)

∣∣ ≥ δn. (2.13)

2. For all S ⊂ [n] with 1 ≤ |S| ≤ n− 1,∣∣N (δ)

AT (S) ∩ Sc
∣∣ ≥ min(κ|S|, |Sc|). (2.14)

For comparison, a nonnegative n×nmatrix A is irreducible if and only ifNAT(S)∩Sc 6=
∅ for all S ⊂ [n] with 1 ≤ |S| ≤ n − 1. Thus, a matrix A satisfying the conditions of
Definition 2.7 is “robustly irreducible” in the sense that A remains irreducible even after
setting a small linear proportion of entries equal to zero.

Remark 2.8 (Relation to broad connectivity). In their work on permanent estimators,
Rudelson and Zeitouni assume a stronger expansion-type condition on A(σ0) which they
call broad connectivity [54]. The conditions for a nonnegative square matrix A to be
(δ, κ)-broadly connected are the same as in Definition 2.7, except (2.14) is replaced by
the stronger condition ∣∣N (δ)

AT (S)
∣∣ ≥ min(n, (1 + κ)|S|) (2.15)

for all nonempty S ⊂ [n].

Recall the definition (2.6) of A(σ0).
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Non-Hermitian random matrices with a variance profile

A5 (Robust irreducibility). There exist constants σ0, δ, κ ∈ (0, 1) such that for all n ≥ 1,
An(σ0) is (δ, κ)-robustly irreducible.

Note that A5 enables variance profiles with a large proportion of vanishing entries
and is implied by A3.

Theorem 2.8. Consider a sequence of standard deviation profiles An = (σ
(n)
ij ) as in

Definition 1.2, and assume that A1 and A5 hold. Then A2 holds, i.e. Vn is admissible.

It turns out that the mere irreducibility of Vn provides a weaker form of A2.

Proposition 2.9. Let Vn be an irreducible variance profile and let ~r = ~r(s, t) be the
solution of the associated Regularized Master Equations (2.7). Then there exists C =

C(s, n) such that

sup
t∈(0,1]

1

n

∑
i∈[n]

ri(s, t) ≤ C .

The main difference here is that constant C depends on n and may blow up with n.
Depending on the variance profile, this proposition is sometimes sufficient to verify A2.

Example 2.3 (Variance profile with a block structure). Let k ≥ 1 be a fixed integer, and
M = (mij)i,j∈[k] be a k×k irreducible matrix with nonnegative elements. Let Jm = 1m1T

m.
Assume that n = km (m ≥ 1) and consider the n× n matrix

Vn =
1

n

m11Jm · · · m1kJm
...

mk1Jm · · · mkkJm

 . (2.16)

Then Vn is admissible, i.e. A2 is fulfilled. In fact, Vn is irreducible and its block structure
implies that

rT = (ρ1, · · · , ρ1︸ ︷︷ ︸
m times

, · · · , ρk, · · · , ρk︸ ︷︷ ︸
m times

) , r̃T = (ρ̃1, · · · , ρ̃1︸ ︷︷ ︸
m times

, · · · , ρ̃k, · · · , ρ̃k︸ ︷︷ ︸
m times

)

where ρ = (ρi) and ρ̃ = (ρ̃i) satisfy the 2k equations

ρi =
(MT

k ρ)i + t

s2 + ((MT
k ρ)i + t)(Mkρ̃)i + t)

, ρ̃i =
(Mkρ̃)i + t

s2 + ((MT
k ρ)i + t)(Mkρ̃)i + t)

, i ∈ [k]

withMk = 1
kM . In particular,

sup
t∈(0,1]

1

n

∑
i∈[n]

ri(s, t) = sup
t∈(0,1]

1

k

∑
i∈[k]

ρi(s, t) ,

where the latter is finite by Proposition 2.9 and does not depend on n, hence A2.

We now state two general classes of standard deviation profiles satisfying A5 that
include many examples not covered by A3, A4 or Example 2.3. The classes are in a
similar spirit, essentially saying that A = (σij) is approximately controlled from below
by a block matrix whose nonzero blocks form an irreducible “pattern”, and which are
“regular” in the sense that the nonzero entries in the blocks are uniformly distributed in
a certain sense. In what follows we write

eA(S, T ) =
∑

i∈S,j∈T
1σij>0, ρA(S, T ) =

eA(S, T )

|S||T |
.

We recall a common assumption from the extremal combinatorics literature (see for
instance [45, Definition 1.6]). For ε, ρ0 ∈ (0, 1), we say that an m × n matrix A is
(ε, ρ0)-super-regular if for every S ⊂ [m], T ⊂ [n] with |S| ≥ εm, |T | ≥ ε n we have
ρA(S, T ) ≥ ρ0. Informally, this says that all sub-matrices of A of relative size ε have
density (proportion of non-zero entries) at least ρ0.
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Non-Hermitian random matrices with a variance profile

Definition 2.10 (Block-pseudorandom irreducibility). For δ, ε, ρ0 ∈ (0, 1) and K ∈ N, we
say that a non-negative n× n matrix A is (δ,K, ε, ρ0)-block-pseudorandomly irreducible,
or (δ,K, ε, ρ0)-BPI for short, if (2.13) holds, and if there is a partition of [n] into sets
T1, . . . , TK with Tq ≥ n/(2K) for each 1 ≤ q ≤ K, and a K ×K irreducible 0/1 matrix
M = (mpq), such that for each (p, q) ∈ [K]2 with mpq = 1, the sub-matrix ATp,Tq

is
(ε, ρ0)-super-regular.

Thus, the BPI condition is met if we can partition [n] into a bounded number of parts
of roughly equal size, such that the partitioned matrix contains an irreducible “pattern”
of super-regular blocks. We note the ways in which the assumption that A(σ0) is BPI
generalizes Example 2.3:

1. The blocks do not need to be the same size.

2. The matrix A does not have to be constant within blocks (and can in fact have a
large proportion of zero entries in every block, as well as an arbitrary proportion
of entries larger that σ0).

3. A is arbitrary outside the sub-matrices ATp,Tq
with mpq = 1 (whereas in Example

2.3 the entries of A were zero there).

We also note that this assumption generalizes the block fully indecomposable assumption
from [3] (see Definition 2.9 there), which makes a stronger assumption on the connec-
tivity pattern M than irreducibility (that it is fully indecomposable) and also requires
entries to be uniformly bounded below in blocks for which mpq = 1.

Lemma 2.4. Let A = (σij) be an n × n non-negative matrix that is (δ,K, ε, ρ)-BPI for
some δ, ρ ∈ (0, 1), ε ∈ (0, δ/8), and K ∈ N. Then A is (δ0, κ)-robustly irreducible with
δ0 = min(δ/2, ρ/(4K)) and κ = min(δ/4, 1/(8K)).

Proof. The condition (2.13) is immediate. For (2.14), we first consider the case that
|S| ≤ δn/4. From (2.13) we have

δn|S| ≤
n∑
i=1

∑
j∈S

1σij>0 =

n∑
i=1

|NA(i) ∩ S| ≤ |N (δ/2)

AT (S)||S|+ n(δ/2)|S|

which rearranges to give

|N (δ/2)

AT (S) ∩ Sc| ≥ |N (δ/2)

AT (S)| − |S| ≥ δn/2− |S| ≥ δn/4

whenever |S| ≤ δn/4. Since n ≥ |S| we conclude (2.14) holds in this case with κ = δ/4.
Assume now that |S| > δn/4. Let G = {q ∈ [K] : |S ∩ Tq| ≥ 1

2 |S||Tq|/n}. From
the pigeonhole principle we know that G is nonempty. Suppose first that G 6= [K].
Then since M is irreducible, there exists (p, q) ∈ Gc ×G such that mpq = 1. Now since
|S∩Tq| ≥ |S||Tq|/(2n) ≥ (δ/8)|Tq|, and since ε < δ/8, we deduce from the super-regularity
of ATp,Tq

that |NA(i)∩ (S ∩Tq)| ≥ ρ|S ∩Tq| for at least (1− ε)|Tp| values of i ∈ Tp. Indeed,
supposing otherwise, if T ′

p is the set of i ∈ Tp for which this lower bound fails then we
have eA(T ′

p, S ∩ Tq) =
∑
i∈Tq

|NA(i) ∩ (S ∩ Tq)| < ρ|T ′
p||S ∩ Tq|, which is only possible if

|T ′
p| < ε |Tp|. Thus, we have

|NA(i) ∩ S| ≥ |NA(i) ∩ (S ∩ Tq)| ≥ ρ|S ∩ Tq| ≥ ρ|S||Tq|/(2n) ≥
ρ

4K
|S|

for at least

(1− ε)|Tp| − |S ∩ Tp| ≥
(
1− ε−|S|

2n

)
|Tp| ≥

(
1

2
− ε

)
|Tp| ≥

1

2K

(
1

2
− ε

)
n ≥ 1

8K
n
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values of i ∈ Sc, where in the penultimate inequality of the former display we used that
q ∈ G, and in the first inequality of the latter display we used that p ∈ Gc. The claim
follows in this case.

It remains to handle the case that |S| > δn/4 and G = [K]. In this case, repeating
the lines above shows that |NA(i) ∩ S| ≥ ρ

4K |S| for at least (1 − ε)|Tp| values of i ∈ Tp
for every 1 ≤ p ≤ K (because for every p ∈ [K] we must have mpq = 1 for at least one

value of q). We hence have |N (ρ/(4K))

AT (S)| ≥ (1 − ε)n. But since ε < δ/8 and |S| > δn/4

we conclude that |N (ρ/(4K))

AT (S) ∩ Sc| ≥ δn/4 ≥ (δ/4)|S| as desired.

Our next sufficient condition for robust irreducibility involves notions from the theory
of graph limits, in particular the concept of a graphon. For further background we refer
to [46]. For our purposes, let us say that a graphon is a (Lebesgue) measurable function
W : [0, 1]2 → [0, 1]. We equip the set of graphons with the cut norm:

‖W‖2 = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ ,
where the integral is taken with respect to product Lebesgue measure, and the supremum
is taken over all measurable subsets of [0, 1]. To a non-negative n× n matrix A = (σij)

we associate the graphon WA which is equal to σij on the set [ i−1
n , in )× [ j−1

n , jn ) for each
1 ≤ i, j ≤ n (and set WA(x, 1) =WA(1, x) ≡ 0).

We say that a graphon U is a stepfunction if there is a measurable partition P =

{S1, . . . , SK} of [0, 1] and a K × K matrix M = (mpq) such that U(x, y) = mpq for all
p, q ∈ [K] and all (x, y) ∈ Sp × Sq. We call P,M the partition and pattern, respectively,
associated with U .

Definition 2.11. Let K ∈ N, and α, σ∗ ∈ (0, 1). Say that a graphon W is (K,α, σ∗)-
irreducible if there exists a stepfunction U with W ≥ U pointwise, and such that the
following hold for the partition P = {S1, . . . , SK} and patternM associated with U :

1. Leb(Sp) ≥ α/K for all p ∈ [K].

2. mpq ∈ {0} ∪ [σ∗, 1] for all p, q ∈ [K].

3. M is irreducible.

Lemma 2.5. Let A = (σij) be a non-negative n× n matrix and let K ∈ N and δ, α, σ∗ ∈
(0, 1). Assume (2.13) holds, and that there is a (K,α, σ∗)-irreducible graphon W such

that ‖WA −W‖2 ≤ δ2α2σ∗
32K2 =: δ0. Then A is (δ0/2, δ0δ/4)-robustly irreducible.

Proof. Arguing as in the proof of Lemma 2.4 it suffices to verify the condition (2.14) for
|S| ≥ δn/4. If |S| ≥ (1− δ/2)n then from (2.13) it follows from the triangle inequality that
|NA(i) ∩ S| ≥ δn/2 for all i ∈ [n], and (2.14) follows in this case. We henceforth assume
|Sc| ≥ δn/2. We have

1

n2
eA(S

c, S) =

∫
Ŝ×Ŝc

WA(x, y)dxdy ≥
∫
Ŝ×Ŝc

W (x, y)dxdy − δ0 ≥
∫
Ŝ×Ŝc

U(x, y)dxdy − δ0,

where for S ⊂ [n] we denote the dilation Ŝ := 1
n ·S. Let L ⊂ [K] such that 1 ≤ |L| ≤ K−1,

and such that Leb(Ŝ ∩ Sp) ≥ (δ/4) Leb(Sp) for all p ∈ L and Leb(Ŝc ∩ Sp) ≥ (δ/4) Leb(Sp)

for all p ∈ Lc. It is possible to choose L such that both L and Lc are nonempty since
|Ŝ|, |Ŝc| ≥ δ/4. SinceM is irreducible we must have mp′q′ ≥ σ∗ for some (p, q) ∈ L× Lc.
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Now we have∫
Ŝ×Ŝc

U(x, y)dxdy ≥
K∑

p,q=1

mp,q Leb(Ŝ ∩ Sp) Leb(Ŝc ∩ Sq)

≥ σ∗(δ/4)
2 Leb(Sp′) Leb(Sq′) ≥ δ2α2σ∗

16K2
= 2δ0 .

Combined with the previous display, we conclude eA(Sc, S) ≥ δ0n
2. On the other hand,

eA(S
c, S) =

∑
i∈Sc

|NA(i) ∩ S| ≤ |S||N (δ0/2)

AT (S)|+ δ0
2
|S||Sc|

which rearranges to |N (δ0/2)

AT (S)| ≥ (δ0/2)|Sc| ≥ (δδ0/4)|S|, as desired.

2.5 Outline of the proof

As is well known in the literature devoted to large non-Hermitian random matrices,
the spectral behavior of such matrices can be studied with the help of the so-called
Girko’s Hermitization procedure, which is intimately related with the logarithmic po-
tential of their spectral measure [31]. By definition, the logarithmic potential Uµ of a
probability measure µ on C which integrates log | · | near infinity is the function from C

to (−∞,∞] defined by

Uµ(z) = −
∫
C

log |λ− z|µ(dλ) .

Writing z = x+ iy the Laplace operator is ∆ = ∂2xx+ ∂2yy = 4 ∂z ∂z̄ where ∂z =
1
2 (∂x − i∂y)

and ∂z̄ = 1
2 (∂x + i∂y). The probability measure µ can be recovered by the formula

µ = − 1
2π∆Uµ, valid in the set D′(C) of the Schwartz distributions, which means that∫

ψ(z)µ(dz) = − 1

2π

∫
C

∆ψ(z)Uµ(z) `(dz) for all ψ ∈ C∞
c (C) .

Now, setting µ = µYn , the logarithmic potential can be written as

UµY
n
(z) = − 1

n

n∑
i=1

log |λi − z| = − 1

n
log |det(Yn − z)| = − 1

n
log
√
det(Yn − z)(Yn − z)∗

= −
∫ ∞

0

log(x)Ln,z(dx) ,

where Ln,z := 1
n

∑n
i=1 δsi,z is the empirical distribution of the singular values s1,z ≥

· · · ≥ sn,z ≥ 0 of Yn − z. For technical reasons, it is easier to consider the symmetrized
empirical distribution of the singular values

Ľn,z :=
1

2n

n∑
i=1

δ−si,z +
1

2n

n∑
i=1

δsi,z (2.17)

for which a similar identity holds:

UµY
n
(z) = −

∫
R

log |x| Ľn,z(dx) .

This identity is at the heart of Girko’s strategy. In a word, it shows that in order to
evaluate the asymptotic behavior of the spectral distribution µYn , we can focus on the
asymptotic behavior of Ľn,z for almost all z ∈ C. By considering Ľn,z, we are in the more
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familiar world of Hermitian matrices. Informally, for all z ∈ C, we will find a sequence
(ν̌n,z)n∈N of deterministic probability measures such that Ľn,z ∼ ν̌n,z, and∫

R

log |x| Ľn,z(dx) ≈
∫
R

log |x| ν̌n,z(dx) for large n .

Setting

hn(z) := −
∫
R

log |x| ν̌n,z(dx),

gives that for all ψ ∈ C∞
c (C),∫

ψ(z)µYn (dz) ≈ − 1

2π

∫
C

∆ψ(z)hn(z) `(dz) for large n ,

showing that hn(z) is the logarithmic potential of a probability measure µn, and in
particular that µYn ∼ µn. Further smoothness properties of hn(z) will finally yield the
properties of µn stated in Theorem 2.3.

We provide more details hereafter with precise pointers to the article’s results.

1. Study of the associated Hermitian model

This topic is covered in Section 3.
Given z ∈ C, we establish the existence of a sequence (ν̌n,z)n∈N of deterministic

probability measures such that Ľn,z ∼ ν̌n,z almost surely. To this end, we introduce the
2n× 2n Hermitian matrix

Y z
n :=

(
0 Y − z

Y ∗ − z∗ 0

)
, z ∈ C, (2.18)

with spectral measure Ľn,z [42, Theorem 7.3.7]. The asymptotic analysis of Ľn,z relies
on the resolvent :

Rn(z, η) :=

(
−η Y − z

Y ∗ − z∗ −η

)−1

, η ∈ C+, (2.19)

of Y z
n. The mere definition (2.1) of a Stieltjes transform yields

gĽn,z
(η) =

1

2n
trRn(z, η) .

The rigorous use of the Stieltjes transform for the study of ESDs of Hermitian
random matrices goes back to Pastur [52], and was further developed by Bai to obtain
quantitative results [13, 14]. Beginning with the seminal works [26, 27] of Erdő, Schlein
and Yau this approach has been used to show that the semicircle law governs the spectral
distribution for Wigner matrices down to near-optimal scales. In these works, the basic
strategy is to use resolvent identities to show that the Stieltjes transform approximately
satisfies a fixed-point equation, sometimes called the Schwinger–Dyson (or master-loop)
equation. This approach was extended to Hermitian matrices with doubly stochastic
variance profile [28]. However, for Hermitian matrices with more general variance
profiles and non-zero mean it becomes necessary to consider a system of equations that
are approximately satisfied by individual diagonal entries of the resolvent.

In Section 3 we derive the Schwinger–Dyson equations for our setting, cf. Proposition
3.1: 

pi =
(V T
n p)i + η

|z|2 − ((Vnp̃)i + η)((V T
n p)i + η)

p̃i =
(Vnp̃)i + η

|z|2 − ((Vnp̃)i + η)((V T
n p)i + η)

, p = (pi) , p̃ = (p̃i) , (2.20)
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Non-Hermitian random matrices with a variance profile

for η ∈ C+, with unique solution the 2n × 1 vector ~p = (p p̃) satisfying Im ~p � 0. We
prove that there exists a probability distribution ν̌n,z whose Stieltjes transform gν̌n,z

is
defined as gν̌n,z

= 1
n

∑
i∈[n] pi.

In Theorem 3.2, it is established that for all η ∈ C+, gĽn,z
(η) − gν̌n,z (η) → 0 almost

surely, which in particular implies that Ľn,z ∼ ν̌n,z a.s. In Proposition 3.6 we obtain a
quantitative estimate along the imaginary axis of the form

EgĽn,z
(it)− gν̌n,z

(it) = O
(

1

tc
√
n

)
, t > 0, (2.21)

for some integer c.

We note that recently there has been much work analyzing the Schwinger–Dyson
equations corresponding to Hermitian random matrices with mean and variance profiles
satisfying a range of assumptions. For the centered case one is led to the so-called
Quadratic Vector Equation, which has been thoroughly analyzed in works of Ajanki, Erdős
and Krüger and Alt, Erdős and Krüger [3, 10]; the application to universality for local
spectral statistics was carried out in [2]. Very recently they have made the extension to
matrices with correlated entries, which involves the study of the so-called Matrix Dyson
Equation [4]. In another recent work, He, Knowles and Rosenthal prove an approximate
(matrix-valued) self-consistent equation for resolvents of Hermitian random matrices
with arbitrary mean and variance profile, which covers the structure of the model (2.18)
[39]. However, they assume the entries have all moments finite, and their aim is to obtain
a local law at the optimal scale. In the present work, a sub-optimal quantitative analysis
of the system (2.20) under few moments will suffice for our purposes of understanding
the spectrum of the associated non-Hermitian model Yn at global scale.

2. From the spectral measures Ľn,z ∼ ν̌n,z to the spectral measures µYn ∼ µn via
the associated logarithmic potentials

This topic is covered in Sections 3 (partly) and 6.

The fact that Ľn,z ∼ ν̌n,z a.s. does not ensure that the random logarithmic potential
UµY

n
(z) becomes close to the deterministic logarithmic potential hn(z) (assuming the

latter is well defined). Essentially, this is due to the fact that x 7→ log |x| is unbounded
near zero and infinity. While the singularity at infinity is easily handled using the almost
sure tightness of the measures Ľn,z, the singularity at zero presents a major technical
challenge (indeed, this hurdle was the reason it took decades to establish the circular
law under the optimal hypotheses). We show that under the admissibility assumption
A2, x 7→ log |x| is ν̌n,z-integrable, and that for all τ, τ ′ > 0, there is ε > 0 small enough
such that

P

{∣∣∣∫ ε

−ε
log |x| Ľn,z(dx)

∣∣∣ > τ

}
< τ ′ for all large n. (2.22)

Together with the almost sure tightness and weak convergence Ľn,z ∼ ν̌n,z, we can show
that UµY

n
(z)−hn(z) →n 0 in probability. The almost sure convergence is an open problem

not covered in this article.

The proof of (2.22) is based on two ingredients. The first one is a result from [23]
by the first author giving a lower tail estimate for the smallest singular value of Yn − z

for arbitrary fixed z ∈ C \ {0} under the sole assumption A1 on the standard deviation
profile An. For the second result, established in Section 6, we show that there exist two
constants C, γ0 > 0 such that for all x > 0,

EĽn,z((−x, x)) ≤ C(x ∨ n−γ0) .
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Bounds of this form on the expected density of states for random Hermitian operators are
sometimes referred to as local Wegner estimates (after the work [62]). Their application
to the convergence of the empirical spectral distribution for non-Hermitian random
matrices goes back to Bai’s proof of the circular law [15]; our presentation of the
argument is closer to the one in [34].

Such an estimate follows from control on ImEgĽn,z
(it) for small t > 0, is obtained

in two steps. First, sufficient control of EgĽn,z
(it)− gν̌n,z (it) is already provided by the

estimate (2.21).

Second, we rely on A2 to state that gν̌n,z
(it) is bounded independent of n and t. For

this task, a variation of the Schwinger–Dyson equations, namely the Regularized Master
Equations, introduced in Proposition 2.1, is obtained simply by setting η = it in the
Schwinger–Dyson equations (2.20) – in this case, ~p ∈ iR2n and ~r = (rT r̃T)T is defined
as ~r(t) = Im~p(it). Hence by A2,

Im gν̌n,z (it) =
1

n

∑
i∈[n]

ri(t) ≤ C (2.23)

for some C < ∞ independent of n and t (depending only on |z| and the parameters in
our assumptions).

3. Description of the deterministic probability measure µn

This is covered in Sections 4 and 7.

We have proved so far that µYn ∼ µn in probability, where µn is the probability
measure whose logarithmic potential Uµn

(z) coincides with hn(z). It remains to establish
the properties of µn that are stated by Theorem 2.3.

In Section 4 we prove Theorem 2.2. Our approach to obtaining the solution ~q(s)
of (1.5) is through the Regularized Master Equations (2.7). Since these equations are
obtained by a simple transformation of the Schwinger–Dyson equations (2.20), by our
work in Section 3 we know that (2.7) has a unique solution ~r(s, t) satisfying ~r(s, t) � 0,
where we write s = |z|. We then show that the pointwise limit ~r∗(s) := limt↓0 ~r(s, t)

exists, and moreover that ~q = ~r∗ and is the unique solution to (1.5). Having properly
defined ~q(s), our main task is to show that the distribution −(2π)−1∆hn(z) in fact defines
a density on the set D := {z ∈ C : |z| 6= 0, |z| 6=

√
ρ(Vn)} and to provide an expression

for this density. The general approach towards solving this problem can be found in the
physics literature (see [29]). Define on C× (0,∞) the functions

UY
n (z, t) := − 1

2n
log det((Y −z)∗(Y −z)+t2) and Un(z, t) := −1

2

∫
R

log(x2+t2)ν̌n,z(dx) .

(2.24)
For fixed t > 0, these functions can be seen as regularized versions of the logarithmic
potentials UµY

n
(z) and Uµn(z) respectively, which converge back as t ↓ 0, in D′(C).

On the other hand, let us consider again the resolvent Rn(z, η) introduced in (2.19).
Using the well-known formula for the inverse of a partitioned matrix [42, §0.7.3] and
writing

Rn(z, η) =:

(
Gn(z, η) Fn(z, η)

F ′
n(z, η) G̃n(z, η)

)
, (2.25)

we get that by setting η = it, that ∂z̄UYn (z, t) coincides with n−1trFn(z, it). Relying on
the asymptotic analysis made in Section 3 on the resolvent Rn, we can easily obtain an
expression for ∂z̄Un(z, t) by considering the asymptotic behavior of n−1trFn(z, it). We
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then conclude by studying the equation

∆Uµn = 4 lim
t↓0

∂z∂z̄Un(z, t).

Section 7.1 is devoted to these questions.
In Section 7.2 we conclude the proof of Theorem 2.4. As we noted above, the key is

that (2.23) is easily obtained under the double stochasticity assumption by examining
the explicit solution ~r to the Regularized Master Equations.

4. Sufficient conditions for A2 to hold

This topic is covered in Section 5.
While (2.23) can be proved in a few lines under A3 (see Proposition 2.5) or A4 (see

Proposition 2.6), establishing such a bound under the more general robust irreducibility
assumption A5 is significantly more technical. Here it is helpful to view the standard
deviation profile in terms of the associated directed graph Γ(A(σ0)) (which was defined in
Section 2.1). The basic idea is that the equations (2.7) encode relationships between the
size of components ri(t), r̃i(t) at a vertex i to the sizes of the components at neighboring
vertices. Assuming toward a contradiction that ri0(t) is large at some vertex i0, we can
use the robust irreducibility assumption to propagate the property of having large ri(t)
to most of the other vertices i. We can also use the equations (2.7) to show that r̃i(t) will
consequently be small for most i. However, this contradicts the crucial trace identity∑n
i=1 ri(t) =

∑n
i=1 r̃i(t), which derives from the fact that the matrix R in (2.19) satisfies

n∑
i=1

Rii =

n∑
i=1

Rn+i,n+i.

See Section 5 for further details.
We remark that under the stronger broad connectivity assumption on the standard

deviation profile (see Remark 2.8), Wegner-type estimates that are sufficient for the
purposes of this paper were obtained by the first author by a completely different
argument, following a geometric approach introduced by Tao and Vu in [60] – see [24,
Theorem 4.5.1].

2.6 Open questions

Relaxing the robust irreducibility assumption While control on the smallest singu-
lar value is proved under very general conditions (see Proposition 6.1), we have made
the additional robust irreducibility assumption A5 in order to handle the other small
singular values via Wegner estimates. Would it be possible to lighten this assumption?

Almost sure convergence One may want to upgrade the convergence µYn ∼ µn in
probability in Theorem 2.3 to almost sure convergence, as discussed in Remark 2.5.

Extension to sparse models While our assumptions allow any fixed proportion of the
entries σij to be zero, Assumption A1 requires the number of non-zero entries to be
a constant proportion of the total number of entries. Indeed, otherwise by the Weyl
comparison inequality (cf. e.g. [41, Theorem 3.3.13]), the empirical spectral distributions
µYn converge weakly in probability to δ0, the point mass at the origin. To obtain a
nontrivial limit would require a rescaling of the matrices Yn, which amounts to rescaling
An to have entries of growing size.

A1 is required both to bound the smallest singular value of the shifted random
matrices and to prove effective bounds on the Stieltjes transform. We expect that
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our results should extend to certain matrices with density ∼ nε−1 for arbitrary fixed
ε ∈ (0, 1), suitably rescaled. An interesting first case to consider is random band matrices
with shrinking bandwidth. The limit of the empirical distribution of the singular values
was recently computed in [43], but bounds on the smallest singular value were not
considered.

Extension to allow heavy-tailed entries In a similar direction, it would be interesting
to prove an analogue of Theorem 2.3 for the case that the entries Xij lie in the basin of
attraction of an α-stable law for some α ∈ (0, 2). In this case we expect the deterministic
equivalents µn will not have compact support. The limiting empirical distribution of
singular values for such matrices (allowed to be rectangular with bounded eccentricity)
was studied by Belinschi, Dembo and Guionnet in [18]. For the case that the entries are
i.i.d. the limiting empirical spectral distribution was established by Bordenave, Caputo
and Chafaï in [20].

3 Asymptotics of singular values distributions

Recall that in Section 2.5 we introduced the Hermitian matrix Y z
n in (2.18) whose

spectral measure is Ľn,z in (2.17). We also introduced the resolvent of Y z
n, R(z, η) in

(2.19) and labeled its blocks in (2.25). By the well-known formula for the inverse of a
partitioned matrix [42, §0.7.3],

G(z, η) = η
(
(Y − z)(Y − z)∗ − η2

)−1
,

G̃(z, η) = η
(
(Y − z)∗(Y − z)− η2

)−1
,

F (z, η) = (Y − z)
(
(Y − z)∗(Y − z)− η2

)−1
,

F ′(z, η) =
(
(Y − z)∗(Y − z)− η2

)−1
(Y − z)∗ . (3.1)

The main objective of this section is to provide deterministic counterparts of the normal-
ized traces of these matrix functions. Given the matrices G and G̃, it will be convenient
to introduce the vectors

g = (G11 · · ·Gnn)T , g̃ = (G̃11 · · · G̃nn)T and ~gT = (gT g̃T) . (3.2)

We begin by deriving the Schwinger–Dyson equations, a system of equations approx-
imately satisfied by the diagonal entries of the matrices in (3.1). We then show the
Schwinger–Dyson equations have a unique solution corresponding to Stieltjes transforms
of probability measures and analyze the properties of the solution. Finally we estimate
the difference between (3.1) and the true solution of the Schwinger–Dyson equations,
which in turn is used to estimate the difference between the empirical spectral measure
of Y z

n and its deterministic counterpart.

Notation 3.1. Let αn = αn(z, η) and βn = βn(z, η) be complex sequences such that there
exist some constant C > 0 and some integers c0, c1 all independent from η and n but
which may depend on z such that

|αn| ≤
C|η|c1

Imc0(η) ∧ 1
|βn| .

We denote this by αn = Oη (βn). If αn = αin and βn = βin depend on some extra parameter
i ∈ I, then the notation Oη () in αin = Oη

(
βin
)
must be understood uniform in i. If αn

and βn are vectors or matrices, the notation αn = ~Oη (βn) corresponds to a uniform
entrywise relation.

EJP 23 (2018), paper 110.
Page 20/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

3.1 Derivation of the Schwinger–Dyson equations

In this subsection we specialize to the case that the entries of X are i.i.d. standard
complex Gaussian variables. Later we will compare a general matrix with a Gaussian
matrix, at which point we will label the Gaussian matrix and associated quantities with a
superscript N ; however, we omit the superscript in the present subsection.

For a resolvent R as defined in (2.19) with complex entries, the following differentia-
tion formulas hold true and will be needed in the sequel:

∂Rij

∂Yk`
= −RikRn+`,j ,

∂Rij

∂Y `k
= −Ri,n+kR`j , 1 ≤ k, ` ≤ n , 1 ≤ i, j ≤ 2n . (3.3)

We will heavily rely on the variance estimates provided in Proposition A.1 and

Corollary A.2. Denote by Y =

[
0 Y

Y ∗ 0

]
. The equation R−1R = I2n yields

− ηR+ Y R+

[
−zF ′ −zG̃
−z∗G −z∗F

]
= I2n . (3.4)

Taking i ∈ [n] yields
− ηEGii + E(Y R)ii − zEF ′

ii = 1 . (3.5)

Applying the integration by part formula for complex Gaussian random variables (see
for instance [51, (2.1.40)]) together with (3.3) yields

E(Y R)ii =

n∑
`=1

EYi`Rn+`,i =

n∑
`=1

σ2
i`

n
E

[
∂Rn+`,i

∂Yi`

]
= −

n∑
`=1

σ2
i`

n
E(Rn+`,n+`Rii) .

Plugging this into (3.5) yields

− E (η + [Vng̃]i)Gii − zEF ′
ii = 1 . (3.6)

Specializing again Equation (3.4) for i ∈ [n] yields, with similar arguments,

− ηEFii − E[Vng̃]iFii − zEG̃ii = 0 . (3.7)

Arguing similarly with the help of the following integration by parts formula, valid for
i > n,

E(Y R)ij =

n∑
`=1

E(Y `,i−nR`j) =

n∑
`=1

σ2
`,i−n

n
E

[
∂R`j

∂Y`,i−n

]
= −

n∑
`=1

σ2
`,i−n

n
E(R``Rij)

yields the following equations

−E(η + [V T
n g]i)G̃ii − z∗EFii = 1 , (3.8)

−E(η + [V T
n g]i)F

′
ii − z∗EGii = 0 . (3.9)

Notice that equations (3.6)–(3.9) can be compactly written

E

[
−diag(Vng̃)− η −z

−z∗ −diag(V T
n g)− η

]
R = I2n . (3.10)

Using Cauchy-Schwarz inequality and the estimates in Proposition A.1, we get

E[Vng̃]iFii−E[Vng̃]iEFii = Oη

(
1

n3/2

)
thus −(η + E[Vng̃]i)EFii = zEG̃ii+Oη

(
1

n3/2

)

EJP 23 (2018), paper 110.
Page 21/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

by (3.7). In particular,

−EFii = z
EG̃ii

η + E[Vng̃]i
+Oη

(
1

n3/2

)
since |η + E[Vng̃]i|−1 ≤ Im−1(η). On the other hand, using the same decorrelation
argument in equation (3.8), we obtain

−E(η + [V T
n g]i)EG̃ii − z∗EFii = 1 +Oη

(
1

n3/2

)
.

Combining these two equations, we finally get

EG̃ii

{
−(η + E[V T

n g]i) +
|z|2

η + E[Vng̃]i

}
= 1 +Oη

(
1

n3/2

)
.

Using the property (2.2) twice, one has∣∣∣∣−(η + E[V T
n g]i) +

|z|2

η + E[Vng̃]i

∣∣∣∣−1

≤ 1

Im(η)
.

Hence

EG̃ii =
1

−(η + E[V T
n g]i) +

|z|2
η+E[Vng̃]i

+Oη

(
1

n3/2

)
. (3.11)

Combining similarly equations (3.6) and (3.9) and decorrelating when needed with the
help of Proposition A.1, we obtain the companion equation:

EGii =
1

−(η + E[Vng̃]i) +
|z|2

η+E[V T
n g]i

+Oη

(
1

n3/2

)
. (3.12)

We now introduce an unperturbed version of equations (3.11) and (3.12).

3.2 Schwinger–Dyson equations

In this section we introduce the Schwinger–Dyson equations (2.20). Notice that these
equations already appear in [4], from which we will deduce properties for their solutions.

To write this more compactly, we introduce the notation ~b =

(
b

b̃

)
for any two n × 1

vectors b and b̃ with complex components and the following definitions:

Υ(~b, η) := diag

(
1

|z|2 − ([Vnb̃]i + η)([V T
n b]i + η)

; i ∈ [n]

)
:= diag(Υi(~b, η) ; i ∈ [n]) ,

(3.13)
and

J (~b, η) :=

(
Υ(~b, η)V T

n 0

0 Υ(~b, η)Vn

)
~b+ η

(
Υ(~b, η)1

Υ(~b, η)1

)
. (3.14)

Then (2.20) can be compactly written as

~p = J (~p, η). (3.15)

Both Υ and J depend on z as well (and to be even more precise, on |z|). We will not
indicate this dependence in the sequel.

We now collect properties of solutions to (2.20).
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Proposition 3.1 (Schwinger–Dyson equations). For all fixed η ∈ C+ and z ∈ C, let
p = (pi) and p̃ = (p̃i) be two n× 1 vectors which solve (2.20).

1. The system (2.20) admits a unique solution ~p satisfying Im~p � 0.

2. For any initial vector ~p0 with Im~p0 < 0, the iterations ~pk+1 = J (~pk) converge to
this solution ~p as k → ∞.

3. For all z ∈ C and i ∈ [n], the functions η 7→ pi(η) and η 7→ p̃i(η) are Stieltjes
transforms of symmetric probability measures on R respectively denoted by µi and
µ̃i. In particular, let ri(t) := Im pi(it) and r̃i(t) := Im p̃i(it) for t > 0 then

pi(it) = iri(t) and p̃i(it) = ir̃i(it) .

Otherwise stated, pi and p̃i are purely imaginary complex numbers along the
imaginary axis.

4. Moreover,
∑n
i=1 pi =

∑n
i=1 p̃i and the common value

η 7−→ 1

n

n∑
i=1

pi(η) =
1

n

n∑
i=1

p̃i(η)

is the Stieltjes transform if a symmetric probability measure ν̌n,z. We denote this
Stieltjes transform by η 7→ gν̌n,z (η).

5. The sequences of probability measures (µi; i ≤ n; n ≥ 1), (µ̃i; i ≤ n; n ≥ 1) and
(ν̌n,z; n ≥ 1) are tight. In particular,

sup
n≥1

∫
|x|2ν̌n,z( dx) < ∞ .

We henceforth refer to the solution ~p = ~p(η), Im ~p � 0 as the solution to the
Schwinger–Dyson equations.

Proof. Proofs of parts (1) and (2) are a direct application of Earle-Hamilton’s theorem
[38], which was first used (to the authors’ knowledge) in random matrix theory by [40].

We now address part (3) and (5).
The fact that the pi’s and p̃i’s are Stieltjes transforms of probability measures imme-

diately follows from [4, Proposition 2.1]. This result also yields the desired tightness
properties.

In order to complete the proof of part (3), we now prove that the probability measures
associated to the pi’s are symmetric. To this end, simply observe that, given η ∈ C+, if
~p = (p, p̃) is the solution with Im~p � 0 of the Schwinger–Dyson equations (2.20), then
−~p is the unique solution with Im(−~p) ≺ 0 of the analogous system obtained by replacing
η with −η. The result follows from the application of Lemma A.1.

It remains to prove that along the imaginary axis (it, t > 0), pi and p̃i are purely
imaginary complex numbers.

pi(it) =

∫
(−∞,0)

µi(dλ)

λ− it
+

∫
(0,∞)

µi(dλ)

λ− it
− µi({0})

it
,

=

∫
(0,∞)

( 1

λ− it
− 1

λ+ it

)
µi(dλ) +

iµi({0})
t

,

= 2i

∫
(0,∞)

t

λ2 + t2
µi(dλ) +

iµi({0})
t

=: iri(t) . (3.16)
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Similarly, p̃(it) = ir̃(t) with r̃(t) = (r̃i(t)) and r̃i(t) > 0. Notice for future use that

lim
t→∞

tri(t) = 1 and lim
t→∞

tr̃i(t) = 1 . (3.17)

Parts (3) and (5) of the theorem are established.
We now prove part (4), that is

∑
i pi =

∑
i p̃i. Getting back to the system (2.20), we

have

n∑
i=1

pi([V p̃]i + η) =

n∑
i=1

([V p̃]i + η)([V T
n p]i + η)

−([V p̃]i + η)([V T
n p]i + η) + |z|2

=

n∑
i=1

p̃i([V
T
n p]i + η).

But
n∑
i=1

pi[V p̃]i =

n∑
i,`=1

piσ
2
i,`p̃i =

n∑
i=1

p̃i[V
T
n p]i.

Since η 6= 0, we get the desired result.

3.3 Asymptotics of the spectral measure Ľn,z and the Hermitian resolvent

Theorem 3.2. Assume A0 and A1 hold, and let ν̌n,z be defined as in Proposition 3.1-(4).
Then for all z ∈ C, (ν̌n,z)n is tight, and

Ľn,z ∼ ν̌n,z

almost surely. Moreover, for any ε > 0, x 7→ log |x| is ν̌n,z-integrable on the set {|x| ≥ ε}
and ∫

{|x|≥ε}
log |x| Ľn,z(dx)−

∫
{|x|≥ε}

log |x| ν̌n,z(dx)
a.s.−−−−→
n→∞

0 .

We will sometimes refer to ν̌n,z as the deterministic equivalent of Ľn,z.
The proof of Theorem 3.2 is postponed to Section 3.5. Notice that the first part

(Ľn,z ∼ ν̌n,z) is a variation of classical results, see for example [36]. It will be a direct
consequence of the forthcoming theorem on the asymptotics of Hermitian resolvent.

In order to get some insight on the asymptotics of the spectral measure µYn , we need
more than the asymptotics of Ľn,z. We rewrite hereafter the Schwinger–Dyson equations
of Proposition 3.1 in a more suitable way for the forthcoming analysis. In what follows,
the dependence in |z| is implicit and will be recalled if necessary.

We now introduce the deterministic equivalents to F and G, defined in (3.1). Let
~p = (p, p̃) be the solution of the Schwinger–Dyson equations (2.20). Define the n × n

diagonal matrices P , P̃ , Θ and Θ̃ by

P := diag(p) ,

P̃ := diag(p̃) ,

Θ := diag ((Vn p̃)i , i ∈ [n]) ,

Θ̃ := diag
(
(V T
n p)i , i ∈ [n]

)
.

After easy massaging, the Schwinger–Dyson equations ~p = J (~p, η) are equivalent to:

P =
(
−(Θ + η) + |z|2(Θ̃ + η)−1

)−1

and P̃ =
(
−(Θ̃ + η) + |z|2(Θ + η)−1

)−1

.

Consider 2n× 2n matrix S defined as

S := −
(
Θ(|z|, η) + η z

z∗ Θ̃(|z|, η) + η

)−1

. (3.18)
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This definition is similar to equation (3.10) satisfied by the entries of the resolvent R. By
the formula for the inverse of a partitioned matrix [42, §0.7.3], it holds that

S =

(
P (|z|, η) B(z, η)

B′(z, η) P̃ (|z|, η)

)
,

where

B(z, η) = −z
(
Θ(|z|, η) + η

)−1

P̃ (|z|, η) = −zP (|z|, η)
(
Θ̃(|z|, η) + η

)−1

, (3.19)

and B′(z, η) can be made explicit in a similar fashion, but will not be used.

Theorem 3.3. Assume A0 and A1 hold. Then almost surely, for every z ∈ C and η ∈ C+,

1

n

(
trG(z, η) trF (z, η)

trF ′(z, η) tr G̃(z, η)

)
− 1

n

(
trP (|z|, η) trB(z, η)

trB′(z, η) tr P̃ (|z|, η)

)
−−−−→
n→∞

0 .

Moreover, there exist α, β > 0 such that for t ∈ (n−α, nβ) and n large enough, with η = it

we have

1

n

(
trEG(z, η) trEF (z, η)

trEF ′(z, η) trEG̃(z, η)

)
− 1

n

(
trP (|z|, η) trB(z, η)

trB′(z, η) tr P̃ (|z|, η)

)
= ~Oη

(
n−1/2

)
.

The rate provided along the imaginary axis is not optimal, but sufficient for our
purposes.

The proof of Theorem 3.3 immediately follows from Propositions 3.4, 3.5 and 3.6
stated hereafter.

Proposition 3.4. Assume A0 holds and let z ∈ C and η ∈ C+. Then almost surely,

1

n

(
trG(z, η) trF (z, η)

trF ′(z, η) tr G̃(z, η)

)
− 1

n

(
trEG(z, η) trEF (z, η)

trEF ′(z, η) trEG̃(z, η)

)
−−−−→
n→∞

0 .

Proof. This is a direct application of [19, Lemma 4.21].

To manage the expectation terms n−1trE(·), we introduce the Gaussian counterparts
of the quantities of interest. Consider a family of i.i.d. standard complex random
variables (XN

ij ; 1 ≤ i, j ≤ n), where XN
ij = (U + iU ′)/

√
2, with U,U ′ being independent

real N (0, 1) random variables. Notice in particular that

EXN
ij = 0 , E

(
XN
ij

)2
= 0 and E|XN

ij |2 = 1 .

Similarly, let Y N
ij =

σij√
n
XN
ij , and let RN , GN , G̃N , FN , and F

′N the matrix functions

associated with the matrix Y N = (Y N
ij ) as in (2.19),(3.1). Then we have the following

proposition.

Proposition 3.5. Assume A0 and A1 hold. Let z ∈ C and η ∈ C+. Then

1

n

(
trEG(z, η) trEF (z, η)

trEF ′(z, η) trEG̃(z, η)

)
− 1

n

(
trEGN (z, η) trEFN (z, η)

trEF
′N (z, η) trEG̃N (z, η)

)
= ~Oη

(
n−1/2

)
.

The proof of Proposition 3.5 relies on fairly standard arguments and is thus postponed
to Appendix A.3.

Proposition 3.6. Assume A1 holds, and let z ∈ C and η ∈ C+. Then

1

n

(
trEGN (z, η) trEFN (z, η)

trEF
′N (z, η) trEG̃N (z, η)

)
− 1

n

(
trP (|z|, η) trB(z, η)

trB′(z, η) tr P̃ (|z|, η)

)
−−−−→
n→∞

0 .
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Moreover, there exist α, β > 0 such that for t ∈ (n−α, nβ) and n large enough, with η = it

we have

1

n

(
trEGN (z, η) trEFN (z, η)

trEF
′N (z, η) trEG̃N (z, η)

)
− 1

n

(
trP (|z|, η) trB(z, η)

trB′(z, η) tr P̃ (|z|, η)

)
= ~Oη

(
n−3/2

)
.

The proof of Proposition 3.6 follows hereafter in Section 3.4.
From Theorem 3.3, we will deduce the asymptotic behavior of the empirical distribu-

tion Ln,z of the singular values of Yn − z by analyzing the convergence of n−1trG(z, η).
Moreover, for any ε > 0, the asymptotic behavior of

∫
{|x|≥ε} log |x| Ľn,z(dx) will be identi-

fied.

3.4 Proof of Proposition 3.6

We first prove the convergence to zero. Recall that V = A√
n
� A√

n
, that ~g is introduced

in (3.2), that ~p is the solution of the Schwinger–Dyson equations and define

~ε = E~g − ~p .

Recall the definition of Υ in (3.13). For given n× 1 vectors b and b̃, define{
∆(b) = diag(η + (V T

n b)i) := diag(∆i(b) )

∆̃(b̃) = diag(η + (Vnb̃)i) := diag(∆̃i(b̃) )
. (3.20)

Then

EGii − pi =
1

−(η + [V Eg̃]i) +
|z|2

η+[V TEg]i

− 1

−(η + [V p̃]i) +
|z|2

η+[V Tp]i

+Oη

(
n−3/2

)
= Υi(E~g)Υi(~p)

{
|z|2[V T(Eg − p)]i +∆i(Eg)∆i(p)[V (Eg̃ − p̃)]i

}
+Oη

(
n−3/2

)
,

(3.21)

and a similar expression holds for EG̃ii − p̃i. Taking into account the straightforward
estimates

|∆i(Eg)|, |∆i(p)| ≤ |η|+ σ2
max

Im(η)
and |Υi(E~g)|, |Υi(~p)| ≤

1

Im2(η)
,

we end up with

‖~ε ‖∞ ≤ K

(
|η|2 + |z|2

Im4(η)
+

1

Im6(η)

)
‖~ε ‖∞ + ~Oη

(
n−3/2

)
,

where K is an absolute constant (depending on σmax). Letting η ∈ C+ be chosen in

such a way that K
(

|η|2+|z|2
Im4(η)

+ 1
Im6(η)

)
< 1, one has ‖~ε ‖∞(η) −−−−→

n→∞
0. On the other hand,

EGii − pi is analytic and uniformly bounded over the compact subsets of C+. Therefore,
every converging subsequence converges toward an analytic function which coincides
with the zero function on a sufficiently large open subset of C+, and hence is equal to
the zero function over C+. The same applies to EG̃ii− p̃i. This proves that ‖~ε ‖∞ −−−−→

n→∞
0

for every η ∈ C+.

We now focus on η = it. . For a given 2n× 1 vector ~b =

(
b

b̃

)
, introduce the 2n× 2n

matrix

A(~b) =
1√
n

 |z|Υ
(
~b
)
AT Υ

(
~b
)
∆(b)A

Υ
(
~b
)
∆̃(b̃)AT |z|Υ

(
~b
)
A

 . (3.22)
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We can compactly express this equation as ~ε = A(E~g )�A(~p) ~ε + ~Oη

(
n−3/2

)
and easily

prove that

~ε = A(~p)�A(~p) ~ε + ~Oη

(
‖~ε ‖2∞ + n−3/2

)
. (3.23)

In Appendix A.4 we prove that I −A(~p)�A(~p) is invertible and that∣∣∣∣∣∣(I −A(~p)�A(~p))−1
∣∣∣∣∣∣
∞ = Oη (1) , η = it . (3.24)

Combining (3.23) and (3.24), we finally end up with ‖~ε ‖∞ = Oη

(
‖~ε ‖2∞ + n−3/2

)
, for

η = it. Following Notation 3.1, we rewrite this estimate as

‖~ε ‖∞ ≤ κ(it)
(
‖~ε ‖2∞ + n−3/2

)
for κ(it) =

Ctc1

tc0 ∧ 1
. (3.25)

The quadratic polynomial P (X) = κ(it)X2 −X +κ(it)n−3/2 admits two distinct real roots
as long as 1− 4κ2(it)n−3/2 > 0. Denote by Γn(α, β) the set

Γn(α, β) =
{
η = it, t > 0, t ∈ (n−α, nβ)

}
If η = it ∈ Γn(α, β), then 4κ2(it)n−3/2 ≤ C2n2c0α+2c1β−2/3. The r.h.s. goes to zero as long
as c0α+ c1β < 1/3. This can be fulfilled for α, β > 0 small enough, which is supposed to
hold henceforth.

Then for n ≥ n0(α, β) large enough, 1 − 4κ2(it)n−3/2 > 0, thus P (X) admits two
distinct real roots and (3.25) yields

‖~ε ‖∞ ≤ X1(it) :=
1−

√
1− 4κ2(it)n−3/2

2κ(it)

or ‖~ε ‖∞ ≥ X2(it) :=
1 +

√
1− 4κ2(it)n−3/2

2κ(it)
. (3.26)

Since for n ≥ n0(α, β) and η ∈ Γn(α, β) the functions η 7→ ‖~ε‖∞(η), X1(η), X2(η) are
continuous, only one of the two conditions (3.26) can hold uniformly in Γn(α, β). For

η = i we have that κ(i) = C and X2(i) =
1+

√
1−4C2n2/3

2C = O(1), but ‖~ε ‖∞ −−−−→
n→∞

0 by the

first part of the proposition. Hence the condition ‖~ε ‖∞(i) ≥ X2(i) cannot hold and
necessarily

‖~ε ‖∞ ≤ X1(η) =
2κ(η)n−3/2

1 +
√
1− 4κ2(η)n−3/2

≤ 2κ(η)n−3/2 ∀η ∈ Γn(α, β) .

We have proved so far that for n ≥ n0(α, β) large enough and η ∈ Γn(α, β), ‖~ε ‖∞ =

Oη

(
n−3/2

)
.

We are now in position to conclude:∣∣∣∣∣∣ 1n
∑
i∈[n]

EGii −
1

n

∑
i∈[n]

pi

∣∣∣∣∣∣ ≤ ‖~ε‖∞ ≤ Oη

(
n−3/2

)
.

The same arguments apply verbatim for the term 1
n

∑
i(E G̃ii − p̃i). Consider now the

term

1

n
trEF − 1

n
trB

(a)
=

1

n

n∑
i=1

{
z

−([V Eg̃]i + η)
EG̃ii −

z

−([V p̃]i + η)
p̃i

}
+Oη

(
n−3/2

)
,

where (a) follows from (3.7) and (3.19). One can now apply the same arguments as
previously and handle similarly the term 1

n trEF
′(z, η)− 1

n trB
′(z, η). This completes the

proof of Proposition 3.6.
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3.5 Proof of Theorem 3.2

The convergence Ľn,z ∼ ν̌n,z is a direct consequence of Theorem 3.3. Now, it is easy
to prove with the help of the law of large numbers that a.s.

lim sup
n

∫
|x|2Ľn,z( dx) < ∞ .

This, together with Proposition 3.1-(5), yields∫
{|x|≥ε}

log |x| Ľn,z(dx)−
∫
{|x|≥ε}

log |x| ν̌n,z(dx)
a.s.−−−−→
n→∞

0 .

The proof is complete.

4 Proof of Theorem 2.2: analysis of the Master Equations

4.1 Regularized Master Equations

Our first step is to introduce the so-called Regularized Master Equations, which are
obtained from the Schwinger–Dyson equations (2.20) by taking η = it and substituting
p(it) = ir(t).

Given two n × 1 vectors a and ã with nonnegative components and fixed numbers

s > 0 and t ≥ 0, let ~a =

(
a

ã

)
and define the following quantities

Ψ(~a, t) := diag

(
1

s2 + ((Vnã)i + t)((V T
n a)i + t)

; i ∈ [n]

)
:= diag(ψi(~a, t) ; i ∈ [n]) ,

(4.1)
and

I(~a, t) :=
(
Ψ(~a, t)V T

n 0

0 Ψ(~a, t)Vn

)
~a+ t

(
Ψ(~a, t)1n
Ψ(~a, t)1n

)
.

We also define Ψ(~a) := Ψ(~a, 0).

The proof of Proposition 2.1 amounts to showing that the vector equation ~r = I(~r, t)
admits a unique solution ~r = ~r(s, t) � 0.

Remark 4.1. We shall also prove that for any initial vector ~r0 < 0, the iterations
~rk+1 = I(~rk, t) converge to ~r as k → ∞.

Proof of Proposition 2.1. This follows immediately from Proposition 3.1 by setting p(it) =

ir(t) and p̃(it) = ir̃(t).

4.2 Proof of Theorem 2.2

In the following propositions, we recall some known properties of nonnegative and
irreducible matrices.

Proposition 4.1 ([55, Theorems 1.1 and 5.5]). Let A and B be two square matrices such
that 0 4 A 4 B. Then ρ(A) ≤ ρ(B). Moreover, if B is irreducible, then ρ(A) = ρ(B)

implies that A = B.

Proposition 4.2 ([55, Theorem 1.6]). Let A < 0 be a square and irreducible matrix, and
let x < 6= 0 be a vector satisfying Ax 4 x. Then x � 0 and ρ(A) ≤ 1. Moreover, ρ(A) = 1

if and only if Ax = x.

The proof of the following lemma is deferred to Section 5 – see Proposition 5.2.
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Lemma 4.1. Let V be a nonnegative and irreducible n× n matrix, and let ~r(s, t) be the
solution of the regularized master equations (2.7). Let [a, b] ⊂ (0,∞) and ε > 0, then

sup
(s,t)∈[a,b]×[0,ε]

‖~r(s, t)‖ <∞ .

In particular, ~r(s, t) admits an accumulation point for fixed s > 0 as t ↓ 0.

Next we show that any accumulation point provided by the above lemma constitutes
a solution to the Master Equations (1.5):

Lemma 4.2 (Existence of solutions to the Master Equations). Let V and ~r(s, t) be as in
Lemma 4.1.

1. Let s > 0. If ~r∗ = (r∗, r̃∗) < 0 is an accumulation point for ~r(s, t) as t ↓ 0, then

(
~r∗
0

)
=

Ψ(~r∗ )V
T 0

0 Ψ(~r∗ )V

1T −1T

~r∗ ,
where we recall that Ψ(~r∗) = diag(ψi(~r∗))

n
i=1 with ψi(~r∗) = (s2 + (V r̃∗)i(V

Tr∗)i)
−1.

2. If moreover s2 ∈ (0, ρ(V )), then ~r∗ < 6= 0.

Proof. The proof of part (1) is straightforward.
We now prove part (2) of the lemma. Let (tk) be a positive sequence converging to

zero in such a way that limk→∞ ~r(s, tk) = ~r∗. Since ~r(s, tk) satisfies (2.7), we have in
particular that Ψ(~r)(s, tk)V r̃ ≺ r̃ and Ψ(~r)(s, tk)V

Tr ≺ r. From Proposition 4.2 it follows
that that ρ(Ψ(~r)(s, tk)V ) = ρ(Ψ(~r)(s, tk)V

T) < 1, and by the continuity of the spectral
radius that ρ(Ψ(~r∗)V ) ≤ 1. If ~r∗ = 0, then Ψ(~r∗) = s−2I and ρ(Ψ(~r∗)V ) = s−2ρ(V ) > 1

since s2 ∈ (0, ρ(V )), which yields a contradiction. Necessarily, ~r∗ < 6= 0.

Theorem 2.2–(1) and (2) are now consequences of the following lemma.

Lemma 4.3 (Uniqueness of solutions to the Master Equations). Let V be a nonnegative
and irreducible n× n matrix, and let ~q < 0 be a solution of the system (1.5), which exists
by the previous lemma.

1. If s2 ≥ ρ(V ), then ~q = 0.

2. If s2 ∈ (0, ρ(V )), then ~q is unique as a solution of (1.5) satisfying ~q < 6= 0. This
solution satisfies ~q � 0.

Proof. We first prove Item (1). Observe that Ψ(~q)V T is a nonnegative irreducible matrix
for all ~q < 0. Assume that q <6= 0. Then ρ(Ψ(~q)V T) = 1 and q � 0 by Proposition 4.2.
From the equation 1Tq = 1Tq̃ obtained from (1.5), we have q̃ < 6= 0. Therefore, q̃ � 0 by
an argument similar to the one used for q. Consequently, (V Tq)i(V q̃)i > 0 for all i ∈ [n],
leading to the contradiction

1 = ρ(Ψ(~q)V T) < ρ(s−2V T) = s−2ρ(V ) ≤ 1

where the strict inequality is due to Proposition 4.1. Hence ~q = 0.
We now turn to Item (2). The argument ~q < 6= 0 ⇒ ~q � 0 is identical to Item (1).
The first step towards establishing uniqueness of the solution is showing that if

~q = (qT, q̃T)T and ~q′ = ((q′)T, (q̃′)T)T are two positive solutions such that ~q 6= ~q′, then
Ψ(~q) 6= Ψ(~q′). Assume the contrary. The equation q = Ψ(~q)V Tq shows that 1 is the
Perron–Frobenius eigenvalue of the irreducible matrix Ψ(~q)V T (Proposition 4.2). Since
its eigenspace has the dimension one, we get that q = αq′ for some α > 0. A similar
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argument shows that q̃ = α̃q̃′ for some α̃ > 0. Using the assumption Ψ(~q) = Ψ(~q′) again
and inspecting the expressions of these terms, we get that α = α̃−1. Moreover, the
equations 1Tq = 1Tq̃ and 1Tq′ = 1Tq̃′ show that α = α̃. This implies that ~q = ~q′, a
contradiction.

To establish the uniqueness, let us still consider the two positive solutions ~q 6= ~q′.
Write Ψ = diag(ψi) = Ψ(~q) and Ψ′ = diag(ψ′

i) = Ψ(~q′), and define the vectors

ϕ =

ϕ1

...
ϕn

 = V q̃, ϕ̃ =

ϕ̃1

...
ϕ̃n

 = V Tq, ~ϕ =

(
ϕ

ϕ̃

)
,

and their similarly defined analogues ϕ′, ϕ̃′, and ~ϕ′. It holds by the irreducibility of V
that ~ϕ, ~ϕ′ � 0. We now write

ϕi =
1

n

n∑
`=1

σ2
i,`ψ`ϕ` =

1

n

n∑
`=1

σ2
i,`ψ

2
` (s

2ϕ` + ϕ2
` ϕ̃`)

and a similar equation for ϕ̃i, giving rise to the identity

~ϕ =

(
s2VΨ2 VΨ2Φ2

V TΨ2Φ̃
2

s2V TΨ2

)
~ϕ

where Φ = diag(ϕi) and Φ̃ = diag(ϕ̃i). Equivalently, the nonnegative matrix

K~q :=

(
s2Φ−1VΨ2Φ Φ−1VΨ2Φ2Φ̃

Φ̃
−1
V TΨ2Φ̃

2
Φ s2Φ̃

−1
V TΨ2Φ̃

)

satisfies K~q1 = 1. Considering now the two solutions ~ϕ and ~ϕ′, we can write

εi :=
∣∣∣ϕi − ϕ′

i√
ϕiϕ′

i

∣∣∣
=

1√
ϕiϕ′

i

1

n

∣∣∣ n∑
`=1

σ2
i,`(ψ`ϕ` − ψ′

`ϕ
′
`)
∣∣∣ = 1√

ϕiϕ′
i

1

n

∣∣∣ n∑
`=1

σ2
i,`ψ`ψ

′
`((ψ

′
`)

−1ϕ` − ψ−1
` ϕ′

`)
∣∣∣

=
1

n

∣∣∣ n∑
`=1

(σ2
i,`s

2ψ`ψ
′
`

√
ϕ`ϕ′

`√
ϕiϕ′

i

ϕ` − ϕ′
`√

ϕ`ϕ′
`

+
σ2
i,`ψ`ψ

′
`ϕ`ϕ

′
`

√
ϕ̃`ϕ̃′

`√
ϕiϕ′

i

ϕ̃′
` − ϕ̃`√
ϕ̃`ϕ̃′

`

)∣∣∣
≤ 1

n

n∑
`=1

(σ2
i,`s

2ψ`ψ
′
`

√
ϕ`ϕ′

`√
ϕiϕ′

i

∣∣∣ϕ` − ϕ′
`√

ϕ`ϕ′
`

∣∣∣+ σ2
i,`ψ`ψ

′
`ϕ`ϕ

′
`

√
ϕ̃`ϕ̃′

`√
ϕiϕ′

i

∣∣∣ ϕ̃` − ϕ̃′
`√

ϕ̃`ϕ̃′
`

∣∣∣)
for every i ∈ [n], and we also have a similar inequality for ε̃i := |(ϕ̃i − ϕ̃′

i)/
√
ϕ̃iϕ̃′

i|. It
results that the vector ε = (ε1, . . . , εn, ε̃1, . . . , ε̃n)

T satisfies the inequality ε 4 K~q,~q′ε,
where

K~q,~q′ :=

(
s2(ΦΦ′)−1/2VΨΨ′(ΦΦ′)1/2 (ΦΦ′)−1/2VΨΨ′ΦΦ′(Φ̃Φ̃

′
)1/2

(Φ̃Φ̃
′
)−1/2V TΨΨ′Φ̃Φ̃

′
(ΦΦ′)1/2 s2(Φ̃Φ̃

′
)−1/2V TΨΨ′(Φ̃Φ̃

′
)1/2

)
,

and Φ′ = diag(ϕ′
i), Φ̃

′
= diag(ϕ̃′

i). By applying the Cauchy-Schwarz inequality to the
scalar products xm1,m = 1, . . . , n, where xm is the row m of K~q,~q′ , we get that K~q,~q′1 4
(K~q1)� (K~q′1) = 1.

Now, for any k ∈ N, we have(
V V

V T V T

)k
<

(
V k V k

(V T)k (V T)k

)
.
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Since ~ϕ, ~ϕ′ � 0 and V is irreducible, it holds that for any (i, j) ∈ [2n]2, there exists k ∈ [n]

such that [Kk
~q,~q′ ]ij > 0, implying thatK~q,~q′ is irreducible. Relying on these results, we will

show that there exists i ∈ [n] such that xi1 < 1, i.e. Cauchy-Schwarz inequality is strict
for this row vector. Proposition 4.2 will then show that ρ(K~q,~q′) < 1. By consequence,
the only solution to the inequality ε 4 K~q,~q′ε will be ε = 0, contradicting the assertion

~q 6= ~q′, and the uniqueness of the solution of (1.5) for ~q <6= 0 will follow.
Recalling that Ψ(~q) 6= Ψ(~q′), there exists ` ∈ [n] such that ϕ`ϕ̃` 6= ϕ′

`ϕ̃
′
`. Since V is

irreducible, no column of this matrix is zero. Therefore, we can choose i ∈ [n] such that
σ2
i,` > 0. Consider the vector

vi :=
((sσi,mψm(~q)

√
ϕm√

n
√
ϕi

)n
m=1

,
(σi,mψm(~q)ϕm

√
ϕ̃m√

n
√
ϕi

)n
m=1

)
=
(
(v1,m)nm=1, (v2,m)nm=1

)
and his analogue v′

i (with the obvious notations). Consider also the 2× 2 matrix

M =

(
v1,` v2,`
v′1,` v′2,`

)
=

σi,`ψ`(~q)√
n
√
ϕi

σi,`ψ`(~q
′)√

n
√
ϕ′

i

(√ϕ` √
ϕ̃`ϕ`√

ϕ′
`

√
ϕ̃′
`ϕ

′
`

)(
s

1

)
:=M1M2M3.

Since det(M2) =
√
ϕ`ϕ′

`(
√
ϕ′
`ϕ̃

′
` −

√
ϕ`ϕ̃`) 6= 0, the vectors vi and v′

i are not collinear.
Therefore,

xi1 = 〈vi,v′
i〉 < ‖vi‖2‖v′

i‖2 = (K~q1)i (K~q′1)i = 1.

Lemma 4.3 is proved.

It remains to establish Theorem 2.2–(3). This is a consequence of following lemma,
which also provides an expression for ∇~q(s) on (0, ρ(V )1/2).

Lemma 4.4. Assume that the nonnegative n× n matrix V is irreducible. Then the func-
tion s 7→ ~q(s) is continuous on (0,∞), and is continuously differentiable on (0, ρ(V )1/2) ∪
(ρ(V )1/2,∞). Setting

M(s) =

(
s2Ψ(~q(s))2V T −Ψ(~q(s))2Φ̃(s)2V

−Ψ(~q(s))2Φ(s)2V T s2Ψ(~q(s))2V

)
,

Φ(s) = diag(ϕi(s))
n
i=1, Φ̃(s) = diag(ϕ̃i(s))

n
i=1, ϕi(s) = (V q̃(s))i, ϕ̃i(s) = (V Tq(s))i,

A(s) =

(
I2n −M(s)(
1T
n −1T

n

)) ∈ R(2n+1)×2n, and b(s) = −

Ψ(~q(s))2V Tq(s)

Ψ(~q(s))2V q̃(s)

0

 ∈ R2n+1,

the matrix A(s) has a full column rank, and

∇~q(s) = 2sA(s)−Lb(s),

where A(s)−L is the left inverse of A(s). On (ρ(V )1/2,∞), it holds that ~q(s) = ∇~q(s) = 0.

Proof. We already know that ~q(s) = 0 on [ρ(V )1/2,∞), and we can easily check that
∇~q(s) = 2sA(s)−Lb(s) on (ρ(V )1/2,∞).

Let us show that q(s) is continuous on (0, ρ(V )1/2). Fix s ∈ (0, ρ(V )1/2). When u

belongs to a small neighborhood of s in (0, ρ(V )1/2), the function ~q(u) is bounded by
Lemma 4.1, since ~q(u) is the limit as t ↓ 0 of the bounded function ~q(u, t). Let uk →k s

be such that ~q(uk) →k ~q∗. The vector ~q∗ is clearly a solution to (1.5). Observing that
ρ(Ψ(~q(uk))V ) = 1, we get by the continuity of the spectral radius that ρ(Ψ(~q∗)V ) = 1. If
~q∗ were equal to zero, then we would have ρ(Ψ(~q∗)V ) = ρ(s−2V ) > 1, a contradiction.
Therefore ~q < 6= 0, and by Lemma 4.3–(2), ~q∗ = ~q(s) since ~q(s) is the only nonnegative
and non zero solution to (1.5).
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To obtain the continuity of ~q(s) on (0,∞), all what remains to prove is that ~q(u) → 0 as
u ↑ ρ(V )1/2. Relying on Lemma 4.1, take a sequence uk ↑k ρ(V )1/2 such that ~q(uk) →k ~q∗.
Then, the same argument as in the proof of Lemma 4.3–(1) shows that ~q∗ = 0.

To establish the differentiability of ~q(s) on (0, ρ(V )1/2), we start by writing

qi(s) = ψiϕ̃i = ψ2
i (s

2ϕ̃i + ϕ̃2
iϕi) = ψ2

i (s
2(V Tq)i + ϕ̃2

i (V q̃)i).

Doing a similar derivation for q̃i(s), we get the equation ~q(s) = N(s)~q(s), where

N(s) =

(
s2Ψ(~q(s))2V T Ψ(~q(s))2Φ̃(s)2V

Ψ(~q(s))2Φ(s)2V T s2Ψ(~q(s))2V

)
.

As in the proof of Lemma 4.3–(2), we can show that N(s) is irreducible. Thus, the
Perron–Frobenius eigenvalue of N(s) is equal to one, it is algebraically simple, and its
associated eigenspace is generated by ~q(s).

Now, given two real numbers s, s′ ∈ (0, ρ(V )1/2) with s 6= s′, we have

qi − q′i = ψiϕ̃i − ψ′
iϕ̃

′
i = ψiψ

′
i

(
(ψ′
i)

−1ϕ̃i − ψ−1
i ϕ̃′

i

)
= ψiψ

′
i

(
−(s2 − s′2)ϕ̃i + s2(ϕ̃i − ϕ̃′

i)− ϕ̃iϕ̃
′
i(ϕi − ϕ′

i)
)

where we set qi = qi(s) and q′i = q(s′), and we used the same notational shortcut for all
the other quantities. We thus have

qi − q′i
s2 − s′2

= −
(
ΨΨ′V Tq

)
i
+
(
s2ΨΨ′V T q − q′

s2 − s′2

)
i
−
(
ΨΨ′Φ̃Φ̃

′
V

q̃ − q̃′

s2 − s′2

)
i
.

Doing a similar derivation for q̃i − q̃′i, we obtain the system

(I −M(s, s′))
~q − ~q′

s2 − s′2
= a(s, s′)

where

M(s, s′) =

(
s2ΨΨ′V T −ΨΨ′Φ̃Φ̃

′
V

−ΨΨ′ΦΦ′V T s2ΨΨ′V

)
and a(s, s′) = −

(
ΨΨ′V Tq

ΨΨ′V q̃

)
.

Using in addition the identity
∑
qi =

∑
q̃i, we get the system A(s, s′)(~q−~q′)/(s2 − s′2) =

b(s, s′), where

A(s, s′) =

(
I −M(s, s′)(
1T
n −1T

n

) ) ∈ R(2n+1)×2n and b(s, s′) =

(
a(s, s′)

0

)
.

By the continuity of ~q(s), A(s, s′) → A(s) and b(s, s′) → b(s) as s′ → s. It is easy to see
that (xT, x̃T)T is an eigenvector of M(s) if and only if (xT,−x̃T)T is an eigenvector of
N(s). Thus, the right null space I −M(s) is spanned by v(s) := (q(s)T,−q̃(s)T)T. But
we clearly have A(s)v(s) 6= 0, hence the matrix A(s) has a full column rank. Thus, for s′

close enough to s,

~q − ~q′

s2 − s′2
= A(s, s′)−L

(
a(s, s′)

0

)
−−−→
s′→s

A(s)−Lb(s)

which shows that ~q(s) is differentiable for any s ∈ (0, ρ(V )1/2), with the gradient
2sA(s)−Lb(s). The continuity of this gradient follows from the continuity of A(s) and b(s)
and the fact that A(s) has a full column rank for any s ∈ (0, ρ(V )1/2).
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5 Bounding solutions to the Regularized Master Equations via
graphical bootstrapping

In this section we are concerned with establishing bounds on the solution ~r(s, t) � 0 to
the Regularized Master Equations (2.7) that are uniform in the regularization parameter
t > 0. Here we will view the standard deviation profile A and all parameters as fixed.
Hence, we fix n ≥ 1 and consider an arbitrary nonnegative n × n matrix A = (σij).
Putting V = 1

nA�A and fixing s, t > 0, we let ~r = ~r(s, t) denote the unique solution to
the Regularized Master Equations satisfying ~r � 0, as is provided by Proposition 2.1.

5.1 Some preparation and proofs of Propositions 2.5 and 2.6

We begin by recording some key estimates and identities that will be used repeatedly
in the sequel. We may write the Regularized Master Equations (2.7) in component form
as

1

ri
= ϕi +

s2

ϕ̃i
,

1

r̃i
= ϕ̃i +

s2

ϕi
(5.1)

where

ϕ̃i := t+ (V Tr)i, ϕi := t+ (V r̃)i (5.2)

(from Proposition 2.1 we have ri, r̃i > 0 for all i ∈ [n], so we are free to take reciprocals).
Additionally from Proposition 2.1 we have trace identity:

1

n

n∑
j=1

rj =
1

n

n∑
j=1

r̃j . (5.3)

From (5.1) it is immediate that

1

2
≤ ri

min
(
ϕ̃i/s2, 1/ϕi

) , r̃i

min
(
ϕi/s2, 1/ϕ̃i

) ≤ 1 (5.4)

for all i ∈ [n]. We can similarly bound the product

rir̃i =
ϕiϕ̃i

(s2 + ϕiϕ̃i)2
≤ 1

s2
min

(ϕiϕ̃i
s2

,
s2

ϕiϕ̃i

)
≤ 1/s2. (5.5)

Hence, if for some i ∈ [n] one of ri, r̃i is large, the other is small. Finally, we note the
trivial upper bounds

ri, r̃i ≤ 1/t ∀i ∈ [n]. (5.6)

We now prove Propositions 2.5 and 2.6.

Proof of Proposition 2.5. Assume towards a contradiction that 1
n

∑n
j=1 rj > 1/σmin. Then

there exists i ∈ [n] such that ri > 1/σmin. From (5.4) it follows that

1/σmin < 1/ϕi = 1/(t+ (V r̃)i)

and so

σmin > (V r̃)i =
1

n

n∑
j=1

σ2
ij r̃j ≥

σ2
min

n

n∑
j=1

r̃j .

Rearranging, we find 1
n

∑n
j=1 r̃j < 1/σmin. From (5.3) it follows that 1

n

∑n
j=1 rj < 1/σmin,

a contradiction.
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Proof of Proposition 2.6. If V = 1
nA � A is symmetric, then the 2n regularized master

equations merge into n equations since r = r̃. In fact since V T = V then if ~r =
(
rT r̃T

)T
is a solution of the Regularized Master Equations, so is ř =

(
r̃T rT

)T
. By uniqueness,

r = r̃. Hence the Regularized Master Equations write

ri =
(V r)i + t

s2 + (V r)2i
, i ∈ [n] .

An elementary analysis of the function f(x) = x
s2+x2 yields supx∈[0,∞) f(x) ≤ (2s)−1.

Hence
1

n

∑
i∈[n]

ri =
1

n

∑
i∈[n]

f( (V r)i + t) ≤ 1

2s
for all t > 0.

Our main objective now is to establish the following, which immediately yields
Theorem 2.8.

Proposition 5.1. Assume σij ≤ σmax for all i, j ∈ [n] and some σmax <∞, and that A(σ0)
is (δ, κ)-robustly irreducible for some σ0, δ, κ ∈ (0, 1) (see Definition 2.7). For every fixed
z ∈ C \ {0} there exists a constant K = K(z, σ0, σmax, δ, κ) <∞ such that

1

n

n∑
i=1

ri ≤ K.

In the proof of Proposition 2.5 we were able to pass from a lower bound on a single
component ri to an upper bound on the average 1

n

∑n
j=1 r̃j in one line. This will not

be possible when we allow some of the variances σ2
ij to be zero. We will employ a

bootstrap-type argument which we roughly outline as follows:

1. Assume towards a contradiction that 1
n

∑n
i=1 ri is large. By the pigeonhole principle

there exists i0 ∈ [n] such that ri0 is large.

2. Use the estimates (5.4)–(5.6) together with assumptions on the connectivity prop-
erties of the associated directed graph to iteratively “grow” the set of indices i for
which we know ri is large.

3. Once we have shown ri is large for (almost) all i ∈ [n], by (5.5) it follows that r̃i is
small for (almost) all i ∈ [n]. We then apply the trace constraint (5.3) to derive a
contradiction.

We emphasize that the key idea for our proofs to bound 1
n

∑
i ri will be to play (5.5)

against the trace constraint (5.3).

Recall the graph-theoretic notation from Section 2.1. In this section we abbreviate

N+(i) := NA(σ0)(i), N−(i) := NA(σ0)T(i) (5.7)

for the in- and out-neighborhoods of a vertex i in the graph Γ = Γ(A(σ0)), and similarly

define N (δ)
− (i). For parameters α, β > 0 we define the sets

Sα = {i ∈ [n] : ri ≥ α‖ϕ̃‖∞}, Tβ = {i ∈ [n] : r̃i < β/‖ϕ̃‖∞} (5.8)

where here and in the sequel we write ‖ϕ̃‖∞ = maxi∈[n] ϕ̃i and similarly ‖ϕ‖∞ =

maxi∈[n] ϕi. (Note that by (5.2) we have ‖ϕ̃‖∞ ≥ t > 0.)
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5.2 Qualitative boundedness

In this subsection we establish Proposition 2.9 and Lemma 4.1, which give an
n-dependent bound on the components of r, r̃ assuming only that the standard de-
viation profile is irreducible. This was used in Section 4 with a compactness argument
to establish existence of solutions to the Master Equations. While Lemma 4.1 follows
from Proposition 5.1 under the robust irreducibility assumption A5 (which we assume
for our main result), we prove this lemma separately for two reasons:

• to show that A5 is not needed for the conclusion of Theorem 2.2, and

• to provide a cartoon for the more technical proof of Proposition 5.1.

We will also establish some auxiliary lemmas that will be reused in the proof of Proposi-
tion 5.1 (in particular Lemmas 5.3 and 5.4).

Proposition 2.9 and Lemma 4.1 are an immediate consequence of the following:

Proposition 5.2. For any fixed 0 < σ0 ≤ σmax and s0 > 0 there is a constant
K0(n, s0, σ0, σmax) such that the following holds. Let s ≥ s0, and suppose A is irre-
ducible with σij ∈ {0} ∪ [σ0, σmax] for all 1 ≤ i, j ≤ n. Then 1

n

∑n
i=1 ri ≤ K0.

We now begin the proof of Proposition 5.2. First we dispose of the case that s > 2σmax:

Claim 5.1. Suppose s > 2σmax. Then

ri, r̃i ≤ min

(
t

s2 − σ2
max

,
1

t

)
≤ (s2 − σ2

max)
−1/2. (5.9)

Proof. Suppose ri∗ = maxi∈[n] ri. From (5.4) we have

ri∗ ≤ 1

s2
ϕ̃i =

1

s2
(t+ (V Tr)i) ≤

1

s2
(t+ σ2

maxri∗).

Rearranging we obtain ri∗ ≤ t/(s2 −σ2
max), which combines with (5.6) to give the desired

uniform bound for ri, i ∈ [n]. The same bound is obtained for r̃i by similar lines.

Without loss of generality we take σmax = 1. By Claim 5.1 we may assume 0 <

s0 ≤ s ≤ 2. We may also assume t ≤ 1. Indeed, otherwise it follows from (5.6) that
1
n

∑n
i=1 ri < 1 and we are done. Let K > 0 to be chosen later depending on n, σ0 and s0,

but independent of t, and assume

1

n

n∑
i=1

ri ≥ K. (5.10)

We will derive a contradiction for K sufficiently large.
In the following lemma we use the irreducibility of An to show that if Tβ is non-empty

for some β sufficiently small, then Tβ′ = [n] for a somewhat larger value of β′. This will
allow us to assume a uniform lower bound on the components r̃i.

Lemma 5.2. There are positive constants C0(σ0, n), β0(σ0, n) such that for all β ≤ β0, if
Tβ is non-empty then TC0β = [n].

Proof. Let β > 0 to be taken sufficiently small depending on σ0, n, and suppose Tβ is
non-empty. Then there exists i ∈ [n] such that r̃i < β/‖ϕ̃‖∞. From (5.4) it follows that

1

2
min(ϕi/s

2, 1/ϕ̃i) < β/‖ϕ̃‖∞.

Assuming β ≤ 1/2 it follows that

2s2β/‖ϕ̃‖∞ > ϕi ≥ (V r̃)i ≥ σ2
0

1

n

∑
j∈N+(i)

r̃j

EJP 23 (2018), paper 110.
Page 35/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

and hence

r̃j <
2s2n

σ2
0

β

‖ϕ̃‖∞
∀j ∈ N+(i). (5.11)

Again from (5.4), if we further assume β ≤ σ2
0/4s

2n then it follows that

4s4n

σ2
0

β

‖ϕ̃‖∞
> ϕj ∀j ∈ N+(i). (5.12)

Now let k ∈ [n] be arbitrary. By the irreducibility of An there exists a directed path
in the associated digraph Γn from vertex k to vertex i of length at most n. Applying the
above lines iteratively along each edge of the path we find

r̃k ≤
(
2s2n

σ2
0

)n
β

‖ϕ̃‖∞

if we take β ≤ 1
2 (

σ2
0

2s2n )
n−1. Since k was arbitrary, the result follows by setting C0 =

(8n/σ2
0)
n and β0 = 1

2 (σ
2
0/(8n))

n−1 (here we have used our assumption s ≤ 2).

If TC0β = [n] for some β ≤ β0 then by the trace identity (5.3),

1

n

n∑
i=1

ri =
1

n

n∑
i=1

r̃i ≤ C0β/‖ϕ̃‖∞. (5.13)

On the other hand, from (5.4) we have

rj ≤ ϕ̃j/s
2 ≤ ‖ϕ̃‖∞/s2 (5.14)

for all j ∈ [n]. In particular,

1

n

n∑
j=1

rj ≤ ‖ϕ̃‖∞/s2 (5.15)

Hence,
1

n

n∑
i=1

ri ≤ min

(
C0β

‖ϕ̃‖∞
,
‖ϕ̃‖∞
s2

)
≤ (C0β/s

2)1/2 ≤ (C0β0/s
2
0)

1/2, (5.16)

which contradicts (5.10) if K is sufficiently large. Hence we may assume Tβ0 is empty
for β0(σ0, n) as in Lemma 5.2. Thus,

r̃i ≥ β0/‖ϕ̃‖∞ ∀i ∈ [n]. (5.17)

Now we find a value of α for which Sα is already of linear size:

Lemma 5.3. Assume K ≥ 2/s2. Then |S1/4| ≥ (s2/4)n.

Proof. From our assumption and (5.15),

2/s2 ≤ K ≤ 1

n

n∑
j=1

rj ≤ ‖ϕ̃‖∞/s2, (5.18)

so ‖ϕ̃‖∞ ≥ 2. Let i ∈ [n] such that ϕ̃i = ‖ϕ̃‖∞. We have

‖ϕ̃‖∞ = ϕ̃i = t+
1

n

n∑
j=1

σ2
jirj ≤ t+

1

n

n∑
j=1

rj .

Since ‖ϕ̃‖∞ ≥ 2 and t ≤ 1, 1
n

∑n
j=1 rj ≥

1
2‖ϕ̃‖∞. Now again by (5.14),

‖ϕ̃‖∞n/2 ≤
∑
j∈S1/4

rj +
∑
j∈Sc

1/4

rj ≤ (‖ϕ̃‖∞/s2)|S1/4|+ ‖ϕ̃‖∞n/4,

and the result follows by rearranging.
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Next we seek to show that we can enlarge Sα by lowering α. By irreducibility we can
find a vertex i∗ ∈ Sα that is connected to Scα. We can use this to show that the average
of the components rk over Scα is bounded below by cri∗ for some small c > 0 depending
on α, n, s, σ0. From the pigeonhole principle we obtain k ∈ Scα with rk ≥ cri∗ ≥ cα‖ϕ̃‖∞.
Taking α′ = cα, we will then have shown |Sα′ | ≥ |Sα|+ 1.

We begin by relating the values of r, r̃ on a fixed set of vertices S ⊂ [n] to the values
taken on Sc. For an n × n matrix M and S, T ⊂ [n] nonempty we write MS×T for the
|S| × |T | submatrix ofM with entries indexed by S × T . The following lemma will also be
used in the proof of Proposition 5.1.

Lemma 5.4. Fix a nonempty set S ⊂ [n], and recall the diagonal matrix Ψ from (4.1).
The |S| × |S| matrix Ψ−1

S×S − V T
S×S is invertible, and we denote its inverse

WS = (Ψ−1
S×S − V T

S×S)
−1. (5.19)

In terms of WS the restrictions of r, r̃ to S and Sc satisfy

rS =WS(t+ V T
Sc×SrSc), r̃S = (WS)T(t+ VS×Sc r̃Sc). (5.20)

Furthermore, the entries of WS satisfy the following bounds. For all i, j ∈ S,

WS
ij ≥ 0. (5.21)

For all j ∈ S, ∑
i∈S

WS
ij ≤ r̃j/t (5.22)

and if (5.17) holds for some β0 > 0.∑
i∈S

WS
ij |N+(i) ∩ Sc| ≤

(n‖ϕ̃‖∞
β0σ2

0

)
r̃j . (5.23)

Proof. Arguing as in the proof of Lemma 4.2(2) (using Proposition 4.2) we find the
spectral radius of ΨS×SV T

S×S is strictly less than 1. Hence, (I − ΨS×SV
T
S×S)

−1 has a
convergent Neumann series, and it follows that

WS = ΨS×S(I −ΨS×SV
T
S×S)

−1 = ΨS×S

∞∑
k=0

(ΨS×SV
T
S×S)

k.

is well defined. Furthermore, since all of the matrices in the above series have non-
negative entries, (5.21) follows.

(5.20) is quickly obtained by rearranging the equations (2.7).
Now for (5.22) and (5.23), let j ∈ S be arbitrary. From the second equation in (5.20),

r̃j =
∑
i∈S

WS
ij

(
t+

1

n

∑
k∈Sc

σ2
ikr̃k

)
.

In particular, r̃j ≥ t
∑
i∈SW

S
ij , giving (5.22), and

r̃j ≥
1

n

∑
i∈S

WS
ij

∑
k∈Sc

σ2
ikr̃k ≥ β0σ

2
0

n‖ϕ̃‖∞

∑
i∈S

WS
ij |N+(i) ∩ Sc|

which rearranges to give (5.23).

We can use Lemma 5.4 and the irreducibility of A to establish the following:
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Lemma 5.5 (Incrementing α). Let α > 0 such that 1 ≤ |Sα| ≤ n − 1. If K >
√
2n/(s30α)

then there exists α′ = α′(α, s0, σ0, n) ∈ (0, α) such that |Sα′ | ≥ |Sα|+ 1.

Let us conclude the proof of Proposition 5.2 on the above lemma. Putting α0 = 1/4,
by Lemma 5.3 we have Sα0

6= ∅. Taking K sufficiently large depending on s0, σ0 and n
we can iterate Lemma 5.5 at most n times to find α = α(s0, σ0, n) > 0 such that Sα = [n].
Then by (5.3) and (5.4),

α‖ϕ̃‖∞ ≤ 1

n

n∑
j=1

rj =
1

n

n∑
j=1

r̃j ≤
1

s2α‖ϕ̃‖∞
, (5.24)

so we have ‖ϕ̃‖∞ ≤ 1/(sα). Then again by (5.4) we have

1

n

n∑
j=1

rj ≤
‖ϕ̃‖∞
s2

≤ 1

s3α
≤ 1

s30α
(5.25)

and we are done.

Proof of Lemma 5.5. We write W = WSα . From the first equation in (5.20), for any
i ∈ Sα we have

α‖ϕ̃‖∞ ≤ ri =
∑
j∈Sα

Wij

t+ ∑
k∈Sc

α

σ2
kjrk

 . (5.26)

Suppose first that ∑
j∈Sα

Wij >
α‖ϕ̃‖∞

2t
(5.27)

for some i ∈ Sα. Then from (5.22),

α‖ϕ̃‖∞
2t

<
∑
j∈Sα

Wij ≤
1

t

∑
j∈Sα

r̃j ≤
1

s2t

∑
j∈Sα

1

rj
≤ |Sα|
ts2α‖ϕ̃‖∞

,

where in the third inequality we applied (5.4). Rearranging we have ‖ϕ̃‖∞ ≤
√
2|S|/

(sα) ≤
√
2n/(s0α) in this case. On the other hand, from (5.15) we have K ≤ ‖ϕ̃‖∞/s20,

and we obtain a contradiction if K >
√
2n/(s30α).

Suppose now that (5.27) does not hold for any i ∈ Sα. Then rearranging (5.26) we
have

α‖ϕ̃‖∞
2

≤
∑
j∈Sα

∑
k∈Sc

α

σ2
kjrkWij (5.28)

for any i ∈ Sα. From the assumption that An is irreducible there exists (i∗, j∗) ∈ Sα × Scα
such that σi∗j∗ ≥ σ0, i.e. |N+(i

∗) ∩ Scα| ≥ 1. From (5.23) it follows that

Wi∗j ≤
(
n‖ϕ̃‖∞
β0σ2

0

)
r̃j (5.29)

for all j ∈ Sα. Inserting this bound in (5.28) we have

α‖ϕ̃‖∞
2

≤ n‖ϕ̃‖∞
β0σ2

0

∑
j∈Sα

∑
k∈Sc

α

σ2
kjrkr̃j ≤

n|Sα|
β0σ2

0s
2α

∑
k∈Sc

α

rk,

where in the second inequality we applied the bounds σij ≤ 1 for all i, j ∈ [n] and
r̃j ≤ (s2α‖ϕ̃‖∞)−1 for all j ∈ Sα (by (5.5)). Rearranging we have∑

k∈Sc
α

rk ≥ α2s2β0σ
2
0

2n|Sα|
‖ϕ̃‖∞. (5.30)
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By the pigeonhole principle there exists k ∈ Scα such that

rk ≥ α2s2β0σ
2
0

2n|Sα||Scα|
‖ϕ̃‖∞ ≥ α2s20β0σ

2
0

2n3
‖ϕ̃‖∞. (5.31)

Setting α′ = α2s20β0σ
2
0/(2n

3) we have k ∈ Sα′ . Also, since α′ < α we have Sα ⊂ Sα′ .
Hence, |Sα′ | ≥ |Sα|+ 1 as desired.

5.3 Quantitative boundedness

Now we prove Proposition 5.1. By rescaling the variance profile V we may take
σmax = 1. By Claim 5.1 we may assume s ∈ (0, 2]. As in the proof of Proposition 5.2 we
may assume t ≤ 1. We may also assume n is sufficiently large depending on s, σ0, δ and κ.
In the remainder of the section we make use of asymptotic notation O( ), ., &, allowing
implied constants to depend on the parameters s, σ0, δ and κ, but not on n and t.

As in the proof of Proposition 5.2 we assume (5.10) holds for some K > 0 and aim to
derive a contradiction for K sufficiently large depending on s, σ0, δ and κ. The argument
follows the same general outline as the proof in the previous subsection. We will reuse
Lemmas 5.3 and 5.4 as stated, but we will need versions of Lemmas 5.2 and 5.5 with
constants independent of n.

5.3.1 Lower bounding r̃i

The following is an analogue of Lemma 5.2.

Lemma 5.6. There are positive constants C0(s, σ0, δ, κ), β0(s, σ0, δ, κ) such that for all
β ≤ β0, if Tβ is non-empty then TC0β = [n].

Proof. Let β > 0 to be taken sufficiently small and assume Tβ is non-empty. Fix an
element i0 ∈ Tβ. We will grow the set Tβ in stages by enlarging β by appropriate
constant factors. We do this by iterative application of the following:

Claim 5.7. Let β, ε0 ∈ (0, 1/2], and assume 0 < |Tβ | ≤ (1 − ε0)n. There exists C =

C(σ0, δ, ε0) > 0 such that if n is sufficiently large depending on κ and ε0 then |TCβ \Tβ | ≥
(δ ε0 /2)n.

Proof. By the assumption that A(σ0) is (δ, κ)-robustly irreducible we have

|N (δ)
− (T cβ) ∩ Tβ | ≥ min(κ|T cβ |, |Tβ |) ≥ min(κ ε0 n, 1) ≥ 1

if n is sufficiently large. Fix an element i ∈ N (δ)
− (T cβ) ∩ Tβ . By definition we have

|N+(i) ∩ T cβ | ≥ δ|T cβ | ≥ δ ε0 n.

Next, we claim that for any C > 0 we have

|N+(i) ∩ T cCβ | ≤
2s2

Cσ2
0

n. (5.32)

Indeed, since i ∈ Tβ , by (5.8) and (5.4) we have

β

‖ϕ̃‖∞
> r̃i ≥

1

2
min

(
ϕi
s2
,
1

ϕ̃i

)
.

Since β ≤ 1/2 it follows that the minimum is attained by the first argument. Thus

β

‖ϕ̃‖∞
>

ϕi
2s2

>
1

2s2
1

n

n∑
j=1

σ2
ij r̃j ≥

σ2
0

2s2
1

n

∑
j∈N+(i)

r̃j .

EJP 23 (2018), paper 110.
Page 39/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

From Markov’s inequality it follows that for any C > 0, r̃j < Cβ/‖ϕ̃‖∞ for all but at
most (2s2/Cσ2

0)n values of j ∈ N+(i), which gives (5.32). Combining these estimates and
taking C = 8s2/(σ2

0δ ε0) we have

|TCβ \ Tβ | ≥ |N+(i) ∩ T cβ | − |N+(i) ∩ T cCβ | ≥
(
δ ε0 −

2s2

Cσ2
0

)
n ≥ (δ ε0 /2)n

as desired.

Applying the above claim iteratively with ε0 = s2/8 we obtain C ′(σ0, δ, s) < ∞ such
that if β is sufficiently small depending on σ0, δ, s and n is sufficiently large depending
on κ, s, then

|TC′β | ≥ (1− s2/8)n. (5.33)

Now let C0 > 0 to be chosen later, and towards a contradiction suppose TC0β 6= [n].
Then there exists i ∈ [n] such that r̃i ≥ C0β/‖ϕ̃‖∞. From (5.4) we have the upper
bound r̃i ≤ ‖ϕ‖∞/s2, so we conclude ‖ϕ‖∞ ≥ C0s

2β/‖ϕ̃‖∞. Now from our assumption
K ≤ 1

n

∑n
j=1 rj =

∑n
j=1 r̃j , if K is sufficiently large depending on s then the same

argument as in the proof of Lemma 5.3 shows that r̃j ≥ ‖ϕ‖∞/4 for at least (s2/4)n
values of j ∈ [n]. Thus, r̃j ≥ C0s

2β/(4‖ϕ̃‖∞) for at least (s2/4)n values of j ∈ [n],

i.e. |TC0s2β/4| < (1 − s2

4 )n. Taking C0 = 4C ′/s2 we contradict (5.33), and we conclude
TC0β = [n].

Now by the same lines as in (5.13)–(5.17) we conclude

r̃i ≥ β0/‖ϕ̃‖∞ ∀i ∈ [n] (5.34)

for some β0(s, σ0, δ, κ) > 0. Note we are now free to use the estimates in Lemma 5.4 with
this value of β0.

5.3.2 Upper bounding ri

Here our task is essentially to modify the proof of Lemma 5.5 to show we can take
α′ sufficiently small and independent of n such that |Sα′ \ Sα|&n, rather than merely
nonempty. We can then conclude the proof by iterating this fact a bounded number of
times.

Let us summarize the key new ideas. In the proof of Lemma 5.5 we used the
irreducibility assumption to find an element i∗ ∈ Sα such that the average of the
components rk over Scα was of order &α,n ri∗ ≥ α‖ϕ̃‖∞ (see (5.30)). In a similar spirit,
Lemma 5.8 below controls the average of rk over k ∈ Scα from below by the average of ri
over i ∈ U0, for a set U0 ⊂ Sα that is densely connected to Scα. By averaging over a large
set U0 we are able to use the full strength of the bounds in Lemma 5.4 and avoid any
dependence of the constants on n.

Proceeding naïvely, one can then use Lemma 5.8 to deduce |Sc0α2 \ Sα| ≥ c0α|Scα| for
a sufficiently small constant c0 = c0(s, σ0, δ, κ) > 0. However, when iterating this bound
over a sequence of values αk+1 = c0α

2
k, the sets Sαk

grow by an exponentially decreasing
proportion of n, so this is not enough to find a value of α for which |Sα| is close to n.

Instead, in Lemma 5.9 we are able to grow Sα by a constant factor using a nested
iteration argument, which we now describe. We would like to find some value of
α′ ∈ (0, α) for which

|Sα′ \ Sα| ≥ c|Sα′ | (5.35)

where c > 0 is small constant. Suppose that (5.35) fails. By the expansion assump-
tion, we know that Sα′ contains a fairly large set U = N (δ)

− (Scα′) ∩ Sα′ (of size at least

EJP 23 (2018), paper 110.
Page 40/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

min(|Sα′ |, κ|Scα′ |)) that is densely connected to Scα′ . In particular, if c is sufficiently small
depending on κ, then U must have large overlap with Sα. Denoting the overlap by U0,
Lemma 5.8 can now be applied to deduce

|Sc0αα′ \ Sα′ | ≥ c0α|Scα′ |

for some c0 = c0(s, σ0, δ, κ) > 0 sufficiently small. The key is that the constant of
proportionality on the right hand side is independent of α′. Hence, for fixed α, as long as
(5.35) fails we can iteratively lower α′ to increase |Sα′ \ Sα| by an amount &α|Scα′ |, until
eventually (5.35) holds. This whole procedure can then be iterated a bounded number of
times to obtain α′′ such |Sα′′ | is close to n.

Having motivated the key ideas, we turn now to the proofs.

Lemma 5.8. Let α ∈ (0, 1) and suppose that 0 < |Sα| ≤ (1 − δ/2)n. If K is sufficiently

large depending on α, s, σ0, δ, κ, then for any U0 ⊂ N (δ)
− (Scα)∩Sα with |U0| ≥ 1

10 |N
(δ)
− (Scα)∩

Sα| we have
1

|Scα|
∑
k∈Sc

α

rk &
α

|Sα|
∑
i∈U0

ri. (5.36)

Proof. First we prove the comparison∑
i∈U0

ri ≥ 2
∑
j∈Sα

r̃j (5.37)

assuming K is sufficiently large depending on α, s, σ0, δ, κ. Indeed, if (5.37) does not
hold, then by the fact that U0 ⊂ Sα and (5.5),

α‖ϕ̃‖∞|U0| ≤
∑
i∈U0

ri < 2
∑
j∈Sα

r̃j ≤
2|Sα|

s2α‖ϕ̃‖∞
.

Rearranging we have

‖ϕ̃‖∞ ≤ 1

α

(
2|Sα|
s2|U0|

)1/2

.
1

α

(
|Sα|

min(|Sα|, |Scα|)

)1/2

. 1/α

where in the second bound we applied the robust irreducibility assumption and our
assumed bounds on U0 and Sα, and in the bound we used that both Sα and its complement
are of linear size in n. From our assumption (5.10), (5.4) and the above it follows that

K ≤ 1

n

n∑
i=1

ri ≤ ‖ϕ̃‖∞/s2 . 1/α. (5.38)

Taking K sufficiently large depending on α, s, σ0, δ and κ, we may assume (5.37) holds.
From (5.20) and Lemma 5.4 we have

∑
i∈U0

ri = t

∑
j∈Sα

∑
i∈U0

WSα
ij

+
1

n

∑
j∈Sα

∑
k∈Sα

c

(∑
i∈U0

WSα
ij

)
σ2
kjrk

≤
∑
j∈Sα

r̃j +
1

n

∑
j∈Sα

∑
k∈Sα

c

(∑
i∈U0

WSα
ij

)
σ2
kjrk,

where in the bound we have applied (5.21) and (5.22). Applying (5.37) and rearranging
yields ∑

i∈U0

ri ≤
2

n

∑
j∈Sα

∑
k∈Sc

α

(∑
i∈U0

WSα
ij

)
σ2
kjrk. (5.39)
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Now since U0 ⊂ N (δ)
− (Scα), for any i ∈ U0 we have |N+(i) ∩ Scα| ≥ δ|Scα|. Together with

(5.21) and (5.23) this implies

δ|Scα|
∑
i∈U0

WSα
ij ≤

∑
i∈Sα

WSα
ij |N+(i) ∩ Scα| ≤

(
n‖ϕ̃‖∞
β0σ2

0

)
r̃j .

Rearranging we obtain a bound on
∑
i∈U0

WSα
ij , which we substitute in (5.39) to obtain

∑
i∈U0

ri ≤ 2‖ϕ̃‖∞
β0σ2

0δ|Scα|
∑
j∈Sα

∑
k∈Sc

α

σ2
kj r̃jrk ≤ 2|Sα|

s2αβ0σ2
0δ|Scα|

∑
k∈Sc

α

rk,

where in the second inequality we applied (5.5) to bound r̃j ≤ 1/s2α‖ϕ̃‖∞ for all j ∈ Sα.
The result now follows by rearranging.

Lemma 5.9. For any α ∈ (0, 1) there exists α′ = α′(α, s, σ0, δ, κ) > 0 such that either

|Sα′ | ≥ (1− δ/2)n (5.40)

or

|Sα′ \ Sα| ≥
1

2
min(|Sα′ |, κ|Scα′ |) (5.41)

(or both).

Proof. For α′ ∈ (0, α) denote by P (α′) the statement that at least one of (5.40) and (5.41)
holds. We will show that while P (α′) fails, we can lower α′ by a controlled amount to
increase the size of Sα′ \ Sα by a little bit. We can then iterate this until P (α′) holds.

Let α′∈(0, α) be arbitrary and assume P (α′) fails. We claim there exists c0(s, σ0, δ, κ) >
0 such that

1

|Scα′ |
∑
k∈Sc

α′

rk ≥ c0αα
′‖ϕ̃‖∞. (5.42)

Put U0 = N (δ)
− (Scα′) ∩ Sα. By the robust irreducibility assumption and the fact that (5.41)

fails,

|U0| ≥ |N (δ)
− (Scα′) ∩ Sα′ | − |Sα′ \ Sα| ≥

1

2
|N (δ)

− (Scα′) ∩ Sα′ | (5.43)

≥ 1

2
min(|Sα′ |, κ|Scα′ |). (5.44)

By (5.43) and Lemma 5.8,

1

|Scα′ |
∑
k∈Sc

α′

rk &
α′

|Sα′ |
∑
i∈U0

ri ≥ αα′‖ϕ̃‖∞
|U0|
|Sα′ |

& αα′‖ϕ̃‖∞,

where in the last inequality we applied (5.44) and the fact that (5.40) fails. This gives
(5.42) as desired.

Now denoting

U ′ =
{
k ∈ Scα′ : rk ≥ 1

2
c0αα

′‖ϕ̃‖∞
}

we have ∑
k∈Sc

α′

rk ≤
∑
k∈U ′

rk +
∑

k∈Sc
α′\U ′

rk ≤ α′‖ϕ̃‖∞|U ′|+ 1

2
c0αα

′‖ϕ̃‖∞|Scα′ |,
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where we used that by definition, rk ≤ α′‖ϕ‖∞ for all k ∈ Scα′ . Combining with (5.42)
and rearranging gives

|Sc0αα′/2 \ Sα′ | ≥ |U ′| ≥ 1

2
c0α|Scα′ |. (5.45)

Since (5.45) holds as long as P (α′) fails, we can repeatedly lower α′ by a factor c0α/2
to obtain α′ = α′(α, s, σ0, δ, ε) such that P (α′) holds. More explicitly, for each k ≥ 0 put
αk = (c0α/2)

kα and abbreviate Sk := Sαk
. Then for all k ≥ 1 such that P (αk) fails we

have |Sk+1 \ Sk| ≥ 1
2c0α|S

c
k|, so

|Sk+1 \ U0| = |Sk+1 \ Sk|+ · · ·+ |S1 \ U0| ≥
1

2
c0α(|Sck|+ · · ·+ |Sc0|) ≥ (k + 1)

1

2
c0α|Sck+1|.

Thus, we must have that P (αk) holds for some k ≤ 2κ/c0α. (This gives α′ of size
O(1/α)−O(1/α).)

Now we conclude the proof of Proposition 5.1. From Lemma 5.3 we have |S1/4| ≥
(s2/4)n. Applying Lemma 5.9 O(1) times we obtain α′′ & 1 such that

|Sα′′ | ≥ (1− δ/2)n. (5.46)

Now from (5.5) we have

r̃j ≤
1

s2α′′‖ϕ̃‖∞
(5.47)

for all j ∈ Sα′′ . On the other hand, for any j ∈ Scα′′ ,

1/r̃j ≥ ϕ̃j ≥ (V Tr)j ≥
1

n

∑
i∈Sα′′

σ2
ijri ≥

1

n
σ2
0α

′′‖ϕ̃‖∞|N−(j) ∩ Sα′′ |.

From (5.46) and the robust irreducibility assumption (specifically the condition (2.13)),

|N−(j) ∩ Sα′′ | ≥ δn− |Scα′′ | ≥ δn/2.

Combining the previous two displays we obtain

r̃j ≤
2

δσ2
0α

′′‖ϕ̃‖∞

for all j ∈ Scα′′ . Together with (5.47) we have

r̃j .
1

α′′‖ϕ̃‖∞

for all j ∈ [n]. Applying (5.3),

α′′‖ϕ̃‖∞n/2 ≤ α′′‖ϕ̃‖∞|Sα′′ | ≤
n∑
j=1

rj =

n∑
j=1

r̃j .
n

α′′‖ϕ̃‖∞

and rearranging gives ‖ϕ̃‖∞ . 1/α′′ . 1. Finally, since

K ≤ 1

n

n∑
j=1

rj ≤ ‖ϕ̃‖∞/s2

by (5.4), we obtain a contradiction if K is sufficiently large depending on s, σ0, δ and κ. It
follows that (5.10) fails for sufficiently large K, which concludes the proof of Proposition
5.1.

Remark 5.1. We note that in the above proof we only applied the expansion bound (2.14)
to sets of size at least δn/10.
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6 Proof of Theorem 2.3-(1): tail estimates and asymptotics of the
logarithmic potential

The main purpose of this section is to show that the logarithmic potential UµY
n
is

close to hn(z) = −
∫
R
log |x| ν̌n,z(dx) for large n, and moreover that hn is the logarithmic

potential of a probability measure µn. Recall that in Theorem 3.2 we have already
established the almost sure convergence of the truncated potentials:∫

{|x|≥ε}
log |x| Ľn,z(dx)−

∫
{|x|≥ε}

log |x| ν̌n,z(dx)
a.s.−−−−→
n→∞

0 .

Thus, we need to show that these measures uniformly integrate the singularity of
x 7→ log |x| at 0. The proof has two main ingredients. The first is a result from [23] by
the first author (stated in Proposition 6.1 below) that provides control on the smallest
singular value of Yn − z.

The second is the control of the remaining small singular values of Yn − z via the
quantity E Im gĽn,z

(it) when t is close to zero. We refer to step 2 in Section 2.5 for an
outline of this argument.

Finally, to obtain the deterministic equivalents µn for the ESDs µYn we rely on a
meta-model argument, which has been used before in [25, 49]. The idea is that for fixed
n we can define a sequence {Y (m)

n }m≥1 of nm × nm random matrices as in Definition
1.2, where the standard deviation profiles A(m)

n are obtained by replacing each entry
σij of An by an m ×m block with entries all equal to σij . We can then show that the
logarithmic potentials of the associated ESDs converge to hn asm→ ∞, which will allow
us to deduce that hn is itself the logarithmic potential of a probability measure. This
argument is described in more detail in Section 6.2 below.

6.1 Control on small singular values

The following result, obtained by one of the authors in [23], gives an estimate on the
lower tail of the smallest singular value sn,z of Yn − z.

Proposition 6.1 ([23], Theorem 1.19 and Corollary 1.22). Assume A0 and A1 hold, and
fix z ∈ C \ {0}. There exist constants C(|z|,M0, σmax), α(ε), β(|z|, ε,M0σmax) > 0 such
that for all n ≥ 1,

P
(
sn,z ≤ n−β

)
≤ Cn−α. (6.1)

Remark 6.1. Similar bounds have been obtained under stronger assumptions on the
standard deviation profile. For instance, (6.1) follows from [19, Lemma A.1] if we
additionally assume A3 (and in fact this result does not require A0). Further assuming
that An is composed of a bounded number of blocks of equal size with constant entries,
[5, Corollary 5.2] gives (6.1) with α > 0 as large as we please (and β = β(α)). An easy
argument also gives (6.1) for arbitrary fixed α > 0 and β(α) under A3 and replacing A0
with a bounded density assumption – see [19, Section 4.4]. For the case that the entries
Xij are real Gaussian variables and An(σ0) is (δ, κ)-broadly connected for some fixed
σ0, δ, κ ∈ (0, 1) (see Definition 2.15), (6.1) holds with arbitrary α > 0 and β = α + 1 by
[54, Theorem 2.3].

We now consider the other small singular values of Yn − z. The key is the uniform
control on solutions to the Regularized Master Equations (2.7) provided by Assumption
A2 combined with Theorem 3.3.

Corollary 6.2 (Wegner estimates). Let A0, A1 and A2 hold. Then, for all z ∈ C \ {0}
there exist constants C, γ0 > 0 such that for all x > 0,

ν̌n,z((−x, x)) ≤ Cx (6.2)
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and
EĽn,z((−x, x)) ≤ C(x ∨ n−γ0). (6.3)

Proof. We rely on the following elementary estimate for the Stieltjes transform of a
probability measure µ (see for instance [34, Lemma 15]):

Im gµ(it) = t

∫
µ(dλ)

λ2 + t2
≥ t

∫ t

−t

µ(dλ)

λ2 + t2
≥ 1

2t
µ((−t, t)) . (6.4)

Recall that Im gν̌n,z (it) = n−1
∑
i∈[n] ri(|z|, t). The first Wegner estimate (6.2) is a straight-

forward consequence of Assumption A2 and the estimate (6.4).
We now establish the second Wegner estimate (6.3) and first prove that there exists

γ0 > 0 such that
sup

t≥n−γ0

E Im gĽn,z
(it) ≤ C (6.5)

for all n ≥ 1. For t ≥ 1, E Im gĽn,z
(it) ≤ 1 by the mere definition of a Stieltjes transform.

Assume t < 1 and recall that E Im gĽn,z
(it) = n−1tr ImEG(z, it). By Theorem 3.3, there

exist constants c0, C > 0 such that∣∣∣ 1
n
tr ImEG(z, it)− 1

n

n∑
i=1

ri(|z|, t)
∣∣∣ ≤ C√

ntc0
.

By A2, we therefore get that

E Im gĽn,z
(it) ≤ C(t−c0n−1/2 + 1).

By letting now t ≥ n−γ0 with γ0 = 1/(2c0), we obtain (6.5). Combining this result with
(6.4), we get

EĽn,z((−x, x)) ≤ EĽn,z((−(x ∨ n−γ0), x ∨ n−γ0)) ≤ 2C(x ∨ n−γ0)

which is the desired result.

6.2 Comparison of logarithmic potentials via a meta-model

We now turn to the task of finding the measures µn from Theorem 2.3 which serve as
a sequence of deterministic equivalents for the ESDs µYn . A first idea is to try to show
that for every ψ ∈ C∞

c (C),∫
ψ(z)µYn (dz) = − 1

2π

∫
∆ψ(z)UµY

n
(z) `(dz) =

1

2π

∫
∆ψ(z)

(∫
R

log |x| Ľn,z(dx)
)
`(dz)

is “close” to −(2π)−1
∫
∆ψ(z)hn(z)dz. However, there is a difficulty in directly applying

this approach, related to the fact that Ľn,z does not converge in general with no further
assumption on the variance profile matrices Vn.

To circumvent this difficulty, we rely on a meta-model argument, which has been used
in [25, 49], and which we now describe. Let n be fixed, consider the standard deviation
profile An = (σij) and the normalized variance profile Vn =

(
1
nσ

2
ij

)
. Recall the associated

Schwinger–Dyson equations as provided in Proposition 3.1 and the solution ~p =

(
p

p̃

)
,

of dimension 2n× 1. Define the meta-model in the following way: for an integer m ≥ 1,
consider the nm× nm standard deviation profile matrix defined as

A(m)
n =

 An · · · An
...

...
An · · · An

 = (1m1T
m)⊗An ,
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associated to the normalized variance profile V (m)
n = (1m1T

m)⊗m−1Vn, and the random
matrix

Y (m)
n =

(
[A(m)

n ]ij√
mn

X
(nm)
ij

)
i,j∈[nm]

. (6.6)

Denote by Ľ
(m)

n,z the symmetrized empirical distribution of the singular values of Y (m)
n −

zImn. Due to the specific form of V (m)
n , it is straightforward to check that the solutions

of the Schwinger–Dyson equations associated to this model are provided by

~pm =

(
pm
p̃m

)
where pT

m =
(
pT, · · · ,pT

)
and p̃T

m =
(
p̃T, · · · , p̃T

)
,

where pm and p̃m are nm× 1 vectors. As an important consequence, we have:

g
ν̌
(m)
n,z

(η) =
1

mn

mn∑
i=1

[ ~pm ]i =
1

n

n∑
i=1

[ ~p ]i = gν̌n,z
(η).

Hence the Stieltjes transform g
ν̌
(m)
n,z

of ν̌(m)
n,z does not depend on m and is equal to ν̌n,z.

Finally, if A0 and A1 are satisfied for Yn, they are also satisfied for Y (m)
n . In particular,

Ľ
(m)

n,z ∼ ν̌
(m)
n,z admits a genuine limit as m→ ∞:

Ľ
(m)

n,z
w−−−−→

m→∞
ν̌n,z a.s. (6.7)

since ν̌(m)
n,z = ν̌n,z.

We now state our proposition giving the existence of the measures µn, the proof of
which will occupy the main part of the remainder of this section.

Proposition 6.3. Let A0, A1 and A2 hold. Then the following hold:

1. For all n ≥ 1 and z ∈ C \ {0}, the function

hn(z) = −
∫
R

log |x| ν̌n,z(dx)

is well defined and for every compact set K ⊂ C,

sup
n

∫
K
|hn(z)|2 `(dz) <∞ .

Moreover, hn(z) coincides with the logarithmic potential Uµn
(z) of a probability

measure µn on C.

2. For µn as defined in part (1), there exists a constant C > 0, independent of n, such
that for allM > 0,

µn({z ∈ C; |z| > M}) ≤ C

M2
.

We will rely on the following lemmas, whose proofs are respectively deferred to
Appendices A.5 and A.6.

Lemma 6.1. Let (Ω,F ,P) be a given probability space, ζ a finite positive measure on C
and fn : Ω× C→ R measurable functions satisfying

sup
n

∫
C

|fn(ω, z)|1+αP⊗ ζ(dω × dz) ≤ C (6.8)

for some constants α,C > 0.
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Let g : C→ R be a measurable function such that for ζ-almost all z ∈ C,

fn(ω, z)
P−−−−→

n→∞
g(z) .

Then
∫
C
|g(z)|1+αζ(dz) ≤ C, and∫

C

fn(ω, z) ζ(dz)
P−−−−→

n→∞

∫
g(z) ζ(dz). (6.9)

Lemma 6.2. Let (ζn) be a sequence of random probability measures on C. Assume that
a.s. (ζn) is tight and that there exists a locally integrable function h : C→ R such that
for all ψ ∈ C∞

c (C), ∫
ψ(z) ζn(dz)

P−−−−→
n→∞

− 1

2π

∫
∆ψ(z)h(z) `(dz) . (6.10)

Then there exists a non-random probability measure ζ on C with logarithmic potential h,
i.e.

h(z) = −
∫
C

log |z − u| ζ( du)

for almost all z ∈ C such that ζn
w−−−−→

n→∞
ζ in probability.

Proof of Proposition 6.3. We prove the first point of the proposition.
With Y (m)

n as in (6.6), denote by µY
n,m the spectral measure of Y (m)

n , and recall that

UµY
n,m

(z) = −
∫
R

log |x| Ľ(m)

n,z (dx).

The proof consists of the following three steps:

1. To show that for every z ∈ C \ {0}, x 7→ log |x| is ν̌n,z-integrable and

UµY
n,m

(z)
P−−−−→

m→∞
hn(z) . (6.11)

2. To show that the function hn(z) is measurable.

3. To show that for any compact set K ⊂ C,

sup
m
E

∫
K
|UµY

n,m
(z)|2 `(dz) ≤ C (6.12)

for some constant C > 0 independent of n.

The three previous steps being proved, the assumptions of Lemma 6.1 are fulfilled and
the lemma yields ∫

K
|hn(z)|2 `(dz) ≤ C

where C does not depend upon n. Moreover,∫
ψ(z)µY

n,m(dz) = − 1

2π

∫
∆ψ(z)UµY

n,m
(z) `(dz)

P−−−−→
m→∞

− 1

2π

∫
∆ψ(z)hn(z) `(dz)

for every ψ ∈ C∞
c (C).

It remains to apply Lemma 6.2 to conclude that hn is the logarithmic potential of a
probability distribution µn on C and point (1) of Proposition 6.3 will be proved.
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Let us address Step 1, to prove the convergence in (6.11), we separately consider
the integrals defining the logarithmic potentials in the regions |x| greater than and less
than ε.

Taking into account the convergence (6.7) and applying Theorem 3.2 to the sequence

(Ľ
(m)

n,z )m, we deduce that x 7→ log |x| is ν̌n,z-integrable near infinity, and that∫
{|x|≥ε}

log |x| Ľ(m)

n,z (dx)
a.s.−−−−→

m→∞

∫
{|x|≥ε}

log |x| ν̌n,z(dx) . (6.13)

We now handle the remaining regions.∣∣∣∣∣
∫
{|x|<ε}

log |x| ν̌n,z(dx)

∣∣∣∣∣ ≤
∫
{|x|<ε}

| log |x| | ν̌n,z(dx)

=

∫
R

ν̌n,z {|x| < ε , log |x| ≤ −y} dy
(a)

≤ C

∫ ∞

0

(exp(−y) ∧ ε) dy = Cε(1− log ε) ,

(6.14)

where (a) follows from Wegner’s estimate (6.2) in Corollary 6.2.
Let (si,z)i∈[mn] be the singular values of Y (m)

n − z ordered as s1,z ≥ · · · ≥ smn,z. For
z ∈ C \ {0} and β > 0 the exponent as in Proposition 6.1, we introduce the event

Gm :=
{
si,z ≥ (mn)−β , i ∈ [mn]

}
.

For all τ > 0,

P

{∣∣∣∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)
∣∣∣ > τ

}

≤ P

{∣∣∣1Gm

∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)
∣∣∣ > τ

2

}
+ P

{∣∣∣1Gc
m

∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)
∣∣∣ > τ

2

}
.

Noticing that {∣∣∣1Gc
m

∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)
∣∣∣ > τ

2

}
⊂
{
smn,z ≤ (mn)−β

}
for m large enough, Proposition 6.1 yields that

P

{∣∣∣1Gc
m

∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)
∣∣∣ > τ

2

}
≤ C

(mn)α
.

Recall the constant γ0 in Corollary 6.2. Choose m large enough and γ ≤ γ0 small enough
so that (nm)−β ≤ (mn)−γ ≤ ε ≤ 1. We now estimate

E1Gm

∫
{|x|<ε}

| log |x| | Ľ(m)

n,z (dx)

=

∫
{(mn)−β≤|x|≤(mn)−γ}

| log |x| |EĽ(m)

n,z (dx) +

∫
{(mn)−γ<|x|<ε}

| log |x| |EĽ(m)

n,z (dx)

:= I1 + I2 .

By the Wegner estimate (6.3), we obtain

I1 ≤ β log(mn)EĽ
(m)

n,z ([−(mn)−γ , (mn)−γ ]) ≤ Cβ(mn)−γ log(mn).
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On the other hand, another application of the same Wegner estimate yields

I2 =

∫ ∞

0

EĽ
(m)

n,z

({
x : | log |x| |1[(mn)−γ ,ε](|x|) ≥ y

})
dy

=

∫ ∞

0

EĽ
(m)

n,z

(
[−e−y ∧ ε,−(mn)−γ ] ∪ [(mn)−γ , e−y ∧ ε]

)
dy

≤ C

∫ ∞

0

(exp(−y) ∧ ε) dy = Cε(1− log ε) .

Therefore, by Markov’s inequality, we finally obtain

P

{∣∣∣∣∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)

∣∣∣∣ > τ

}
≤ 1

τ
2C
[
β(mn)−γ log(mn) + ε(1− log ε)

]
+ C(mn)−α.

Thus, for all τ, τ ′ > 0, we can choose ε > 0 small enough so that

P

{∣∣∣∣ ∫
{|x|<ε}

log |x| Ľ(m)

n,z (dx)

∣∣∣∣ > τ

}
< τ ′

for m large enough. Gathering this result with (6.13) and (6.14) yields (6.11), and Step 1
is proved.

We now address Step 2 and study the measurability of hn(z). Recall the regularized
logarithmic potentials defined in (2.24) and consider also the following function:

UY
n,m(z, t) := − 1

2nm
log det((Y (m)

n − z)∗(Y (m)
n − z) + t2) = −1

2

∫
R

log(x2 + t2) Ľ
(m)

n,z (dx) .

Given z and z′ ∈ C, Hoffman-Wielandt’s theorem applied to Y (m)
n − z and Y (m)

n − z′ yields

max
i∈[mn]

|si,z − si,z′ | ≤ |z − z′| .

Thus∣∣UY
n,m(z, t)− UY

n,m(z′, t)
∣∣

=
1

2nm

∣∣∣∣∣∣
∑
i∈[mn]

log

(
1 +

s2i,z
t2

)
− log

(
1 +

s2i,z′

t2

)∣∣∣∣∣∣ ≤ 1

2t2
max
i∈[mn]

|si,z − si,z′ | ≤ |z − z′|
2t2

and it follows that for any fixed t > 0 the family {z 7→ UY
n,m(z, t)}m≥1 is uniformly

equicontinuous. Since from Theorem 3.2 we have UY
n,m(z, t) −−−−→

m→∞
Un(z, t) almost surely,

it follows that z 7→ Un(z, t) is continuous for any fixed t > 0. Finally, since x 7→ log |x| is
ν̌n,z-integrable near zero for any z 6= 0 by (6.14),

Un(z, t) −−−→
t→0

hn(z).

The measurability of hn follows and Step 2 is proved.
We now address Step 3 and prove (6.12). Observe that on any compact set K ∈ C,

there exists a constant CK such that∫
K
(log |λ− z|)2 `(dz) ≤ CK(1 + |λ|2)

for all λ ∈ C. Denote by (λi; i ∈ [mn]) the eigenvalues of Y (m)
n . We have

E

∫
K
|UµY

n,m
(z)|2 `(dz)

≤ E

 1

mn

∑
i∈[mn]

∫
K
(log |λ(m)

i − z|)2 `(dz)

 ≤ CK

(
1 + E

∫
|λ|2µY

m,n(dλ)
)
.

EJP 23 (2018), paper 110.
Page 49/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

By the Weyl comparison inequality for eigenvalues and singular values (cf. e.g. [41,
Theorem 3.3.13]),∫

|λ|2µY
n,m(dλ) =

1

nm

nm∑
i=1

|λi|2

≤ 1

nm

nm∑
i=1

s2i,0 =
1

nm
tr
(
Y (m)
n (Y (m)

n )∗
)
≤ σ2

max

(nm)2

nm∑
i,j=1

|X(nm)
ij |2.

Taking the expectation of the previous inequality finally yields

E

∫
K
|UµY

n,m
(z)|2 `(dz) ≤ C.

Step 3 is proved.
We now prove point (2) of Proposition 6.3. GivenM > 0, we get from Lemma 6.1 that

lim sup
m

µY
n,m({z ∈ C; |z| > M}) ≤ lim sup

m

1

M2

∫
C

|λ|2 µY
n,m(dλ) ≤ C

M2
a.s.

where C > 0 is independent of n. Let ψ be a nonnegative C∞
c (C) function equal to one

for |z| < M and to zero if |z| > M + 1. As a byproduct of Lemma 6.2,

µY
n,m

w−−−−→
m→∞

µn

almost surely. Consequently, on a set of probability one,

µn({z ∈ C; |z| ≤M + 1}) ≥
∫
ψ(z)µn(dz) = lim

m

∫
ψ(z)µY

n,m(dz) ≥ 1− C

M2
.

Proposition 6.3 is proved.

6.3 Conclusion of the proof of Theorem 2.3–(i)

We can now complete the proof of Theorem 2.3–(i) and prove that µYn ∼ µn in
probability, with µn defined in Proposition 6.3.

By Proposition 6.3, the sequence (µn) is tight. It remains to prove that for all
ϕ ∈ Cc(C),

∫
ϕdµYn −

∫
ϕdµn → 0 in probability. By the density of C∞

c (C) in Cc(C), it is
enough to show that∫

ψ(z)µYn (dz)−
∫
ψ(z)µn(dz) = − 1

2π

∫
∆ψ(z)(UµY

n
(z)− Uµn(z)) `(dz)

P−−−−→
n→∞

0

for all ψ ∈ C∞
c (C). By mimicking the proof of Proposition 6.3, where Y (m)

n and m are re-
placed with Yn and n respectively, we straightforwardly obtain that UµY

n
(z)−Uµn

(z) → 0 in
probability for every z ∈ C\{0}. This proof also shows that supnE

∫
K |UµY

n
(z)|2 `(dz) <∞

for all compact sets K ⊂ C. We also know by Proposition 6.3 that supn
∫
K |Uµn

(z)|2 `(dz) <
∞. The result now follows from Lemma 6.1.

7 Conclusion of proofs of Theorems 2.3 and 2.4

7.1 Proof of Theorem 2.3: Identification of µn

We established in the previous section that µYn ∼ µn in probability. To conclude the
proof of Theorem 2.3, it remains to show that µn is rotationally invariant, and that its
radial cumulative distribution function

µn{z ∈ C ; |z| ≤ r}
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coincides with the function Fn specified in the statement of the theorem. These facts,
along with the properties of Fn, are established in Lemma 7.2 below.

For the remainder of this section, we set

bn(z, t) := − z

2n
trΨ(~r(|z|, t) , t) and bn(z) = − z

2n
trΨ(~q(|z|)) , (7.1)

where Ψ(·, t) and Ψ(·) are defined in (4.1), ~r(·, t) is defined in Proposition 2.1, and ~q(·) is
defined in 2.2.

Lemma 7.1. Under the same assumptions as in Theorem 2.3, the function z 7→ bn(z) is
locally integrable on C, and

∂z̄Uµn
(z) = bn(z)

in D′(C).

Proof. Recall the definition of Un(z, t) in (2.24). Recall also that by Proposition 6.3-(i),
the probability measure µn is such that:

Uµn(z) = −
∫
R

log |x|ν̌n,z( dx) .

We first prove that

Un(z, t)
D′(C)−−−−→
t↓0

Uµn(z) . (7.2)

Recall from the proof of Proposition 6.3 that z 7→ Un(z, t) is continuous for any
fixed t > 0. It is moreover clear from the expressions of Un(z, t) and Uµn

(z) that
Un(z, t) ↑ Uµn

(z) as t ↓ 0. Recall that Uµn
(z), being a logarithmic potential, is locally

integrable (as can be seen by Fubini’s theorem). Thus, given a fixed t0 > 0,

0 ≤ Un(t, z)− Un(t0, z) ≤ Uµn
(z)− Un(t0, z),

for 0 < t ≤ t0, and (7.2) immediately follows from the monotone convergence theorem. By
a property of the convergence in D′(C), this implies the convergence of the distributional
derivative

∂z̄ Un(z, t)
D′(C)−−−−→
t↓0

∂z̄ Uµn(z). (7.3)

We now prove that for all t > 0,

∂z̄Un(z, t) = bn(z, t) (7.4)

in D′(C). We shall rely on a meta-model argument. Recall the meta-model Y (m)
n intro-

duced in (6.6), its limiting property (6.7), and the definition of UY
n,m(z, t) in (2.24).

Fix t > 0. By Theorem 3.2, UY
n,m(z, t) → Un(z, t) almost surely as m→ ∞ for all z ∈ C.

Furthermore, recalling the notation (si,z)i∈[mn] for the singular values of Y (m)
n − z, we

have

∣∣UY
n,m(z, t)

∣∣2 =

∣∣∣∣log(t) + 1

2mn

∑
log
(
1 + s2i,z/t

2
)∣∣∣∣2 (a)

≤ 2 |log(t)|2 + 1

t2mn

∑
i∈[mn]

s2i,z

where (a) follows from the elementary inequality 2−1 log2(1 + x) ≤ x, valid for x ≥ 0. In
particular, this implies that

E

∫
K
|UY
n,m(z, t)|2 `(dz) ≤ (log t)2 +

1

t2
E

∫
K

tr (Y (m)
n − z)∗(Y (m)

n − z)

mn
`(dz) ≤ C

EJP 23 (2018), paper 110.
Page 51/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

on every compact set K ⊂ C. By Lemma 6.1, we get that Un(·, t) is locally integrable on
C, and that ∫

∂z̄ψ(z)UY
n,m(z, t) `(dz)

P−−−−→
m→∞

∫
∂z̄ψ(z)Un(z, t) `(dz) (7.5)

for all ψ ∈ C∞
c (C). An integration by parts along with Jacobi’s formula shows that for all

ω ∈ Ω, the distributional derivative ∂z̄ UY
n,m(t, z) coincides with the pointwise derivative,

which is given by

∂z̄UY
n,m(z, t) =

1

2nm
tr (Y (m)

n − z)((Y (m)
n − z)∗(Y (m)

n − z) + t2)−1 .

On the other hand, we know from Theorem 3.3 that ∂z̄ UY
n,m(z, t) → bn(z, t) almost surely

as m→ ∞, for all z ∈ C. Moreover, from a singular value decomposition of Y (m)
n − z we

easily see that |∂z∗UY
n,m(z, t)| ≤ (4t)−1. Consequently, we get by Lemma 6.1 again that∫

∂z̄ψ(z) UY
n,m(t, z) `(dz) = −

∫
ψ(z) ∂z̄UY

n,m(t, z) `(dz)
P−−−−→

m→∞
−
∫
ψ(z) bn(z, t) `(dz).

Comparing with (7.5), we obtain that ∂z̄Un(z, t) = bn(z, t) in D′(C).
We now consider the limit in t ↓ 0 in (7.4). Since |bn(z, t)| ≤ |2z|−1, the dominated

convergence theorem yields

bn(z, t)
D′(C)−−−−→
t↓0

bn(z).

Combining this convergence together with (7.3) and (7.4), we obtain the desired result.

In order to characterize the probability measure µn, we use the equation µn =

−(2π)−1∆Uµn
and rely on the smoothness properties of ∆Uµn

that can be deduced from
Lemma 4.4. We recall that ~q(s) is defined in the statement of Theorem 2.2.

Lemma 7.2. The probability measure µn is rotationally invariant. On (0,∞), the distri-
bution function Fn(s) := µn({z : |z| ≤ s}) satisfies

Fn(s) = 1− 1

n
〈q(s), V q̃(s)〉.

The support of µn is contained in {z : |z| ≤
√
ρ(V )}. Finally, Fn is absolutely continuous

on (0,∞), and has a continuous density on (0,
√
ρ(V )).

Before entering the proof, we note that the rotational invariance of µn can be
“guessed” from the form of the Schwinger–Dyson equations of Proposition 3.1. In-
deed, from this one sees that the Stieltjes transform gν̌n,z (η) = n−1trP (|z|, η) of ν̌n,z
depends on z only through its absolute value, and this is therefore also the case for
Uµn(z). It is easy to check that this yields the rotational invariance of µn.

Proof. First, we show that µn(C) = 0, where C is the circle with center zero and radius√
ρ(V ).
Consider a smooth function φ : R→ [0, 1] with support in [−1, 1] and value φ(0) = 1,

and the function

gε(z) = φ
(
ε−1

(
|z| −

√
ρ(V )

))
, z ∈ C

with support in the annulus {z :
√
ρ(V )− ε ≤ |z| ≤

√
ρ(V ) + ε}. We have∫

gε(z)µn(dz) = − 1

2π

∫
gε(z)∆Uµn(z) `(dz) =

2

π

∫
∂zgε(z) bn(z) `(dz)
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where bn is defined in (7.1). Notice that

lim
ε↓0

∫
gε(z)µn(dz) = µn(C). (7.6)

By replacing |z| =
√
x2 + y2 and computing ∂z =

1
2 (∂x − i∂y), we get

∂zgε(z) =
z̄

2ε|z|
φ′
(
ε−1

(
|z| −

√
ρ(V )

))
.

Hence, replacing bn by its expression in (7.1), we obtain

2

π

∫
∂zgε(z) bn(z) `(dz) = − 1

2εnπ

∫
|z|φ′

(
ε−1

(
|z| −

√
ρ(V )

))
trΨ(~q(|z|) `(dz)

(a)
= − 1

2εnπ

∫ 2π

θ=0

∫ √
ρ(V )+ε

ρ=
√
ρ(V )−ε

φ′
(
ε−1

(
|z| −

√
ρ(V )

))
trΨ(~q(ρ)) ρ2 dρ dθ

(b)
= − 1

εn

∫ 1

−1

(√
ρ(V ) + εu

)2
φ′(u)trΨ(~q(

√
ρ(V ) + εu)) ε du

where (a) follows from a change of variables in polar coordinates and (b), from the change

of variable u =
ρ−

√
ρ(V )
ε . Since n−1trΨ(~q(|z|)) ≤ |z|−2, the dominated convergence

theorem yields

− 1

n

∫ 1

−1

(√
ρ(V ) + εu

)2
φ′(u)trΨ(~q(

√
ρ(V ) + εu)) du

−−→
ε↓0

−ρ(V )

n
trΨ(~q(

√
ρ(V )))

∫ 1

−1

φ′(u) du

= −ρ(V )

n
trΨ(~q(

√
ρ(V ))) [φ(1)− φ(−1)] = 0 .

Equating with (7.6), we finally conclude µn(C) = 0.
By Theorem 2.2–(3), the mapping z 7→ ~q(|z|) is continuously differentiable on the open

set D := {z ∈ C : |z| 6= 0, |z| 6= ρ(V )1/2}. Therefore, bn(z) is continuously differentiable
on this set, and for any g ∈ C∞

c (D), we get∫
C

g(z)µn(dz) = − 1

2π

∫
C

g(z)∆Uµn(z) `(dz) = − 2

π

∫
C

g(z) ∂zbn(z) `(dz)

=

∫
C

g(z) fn(z) `(dz)

where the density fn(z) is given by

fn(z) := − 2

π
∂zbn(z) =

1

nπ
∂z (ztrΨ(~q(|z|))) = 1

nπ

{
trΨ(~q(|z|)) + |z|2∂|z|2trΨ(~q(|z|))

}
=

1

nπ
∂|z|2

{
|z|2trΨ(~q(|z|))

}
=

−1

πn

n∑
i=1

∂|z|2
( ϕiϕ̃i
|z|2 + ϕiϕ̃i

)
=

−1

πn
∂|z|2〈q(|z|), V q̃(|z|)〉.

Since fn(z) depends only on |z|, this density is rotationally invariant. From Theo-
rem 2.2–(1), fn(z) = 0 for |z| >

√
ρ(V ). Thus, the support of µn is contained in

B(0,
√
ρ(V )). Moreover, Fn(

√
ρ(V )) = 1 = limv↑

√
ρ(V ) Fn(v), since µn(C) = 0. Given
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0 < s ≤ v <
√
ρ(V ), we have

Fn(v)− Fn(s) =

∫
B(0,v)\B(0,s)

fn(z) `(dz) =

∫ 2π

0

dθ

∫ v

s

−1

2πrn
∂r〈q(r), V q̃(r)〉 r dr

=
1

n
〈q(s), V q̃(s)〉 − 1

n
〈q(v), V q̃(v)〉.

By taking v ↑
√
ρ(V ), 〈q(v), V q̃(v)〉 → 0, and we get the expression (2.9). Finally, the

continuity of the density of Fn on (0,
√
ρ(V )) follows from Theorem 2.2–(3).

7.2 Proof of Theorem 2.4

In Example 2.2, it has been proved that Theorem 2.4 holds under the additional as-
sumption that the matrices An are irreducible. Now for the general case, by conjugating
Yn by a permutation matrix we may assume An takes the form

An =


A

(1)
n · · · 0
...

. . .
...

0 · · · A
(m)
n

 (7.7)

where A(1)
n , . . . , A

(m)
n are square irreducible matrices of respective dimension n1 ≥ · · · ≥

nm. Indeed, for An a general nonnegative matrix we can achieve this with the upper
triangular blocks not necessarily zero, but these are forced to be zero by the stochasticity
condition. Also, by A1 and the row-sum constraint applied to the last row of An = (σij),
1 = 1

n

∑n
j=1 σ

2
ij ≤ nm

n σ
2
max so in fact we have

n1, . . . , nm ≥ n/σ2
max. (7.8)

Denote the corresponding submatrices of Xn by X(k)
n and set

Y (k)
n =

1√
n
A(k)
n �X(k)

n =
1

√
nk
B(k)
n �X(k)

n (7.9)

where we set B(k)
n = (nk/n)

1/2A
(k)
n . For each k we have:

1. A(k)
n is irreducible,

2. 1
nk
B

(k)
n �B

(k)
n is doubly stochastic, and

3. nk → ∞ as n→ ∞ (by (7.8)).

Thus, for each k the ESD µ
(k)
n of Y (k)

n converges weakly in probability to µcirc. Since the
µYn is the weighted sum:

µYn = (n1/n)µ
(1)
n + · · ·+ (nm/n)µ

(m)
n

we get that µYn converges weakly in probability to µcirc. This concludes the proof of
Theorem 2.4.

A Remaining proofs

A.1 Stieltjes transform of a symmetric probability measure

We note that a symmetric probability distribution ν̌ on R satisfies ν̌(A) = ν̌(−A) for
each Borel set A ⊂ R.
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Lemma A.1. A probability measure ν̌ is symmetric if and only if its Stieltjes transform
gν̌ , seen as an analytic function on C \R, satisfies gν̌(−η) = −gν̌(η).

Proof. The necessity is obvious from the definition of the Stieltjes transform and from
the fact that ν̌(dλ) = ν̌(−dλ). To prove the sufficiency, we use the Perron inversion
formula, that says that for any function ϕ ∈ Cc(R),∫

R

ϕ(x) ν̌(dx) = lim
ε↓0

1

π

∫
R

ϕ(x) Im gν̌(x+ iε) dx.

By a simple variable change at the right hand side, and by using the equalities gν̌(−η) =
−gν̌(η) and gν̌(η̄) = ḡν̌(η), we obtain that

∫
ϕ(x) ν̌(dx) =

∫
ϕ(−x) ν̌(dx), as desired.

A.2 Variance estimates

In this section we collect without proofs a number of standard variance estimates. Let
(Yn) be a sequence of matrices as in Definition 1.2. In the sequel we drop the subscript
n. Denote by (~ei) the standard vector basis. We introduce the following notations:

Y = (~y1, · · · , ~yn) and Q(η2) =

[
n∑
i=2

(~yi − z~ei)(~yi − z~ei)
∗ − η2

]−1

.

Recall the definition of matrices R and G in (2.19).

Proposition A.1. Let A0 and A1 hold. Let ∆ be a n× n deterministic diagonal matrix,
then the following estimates hold:

var(Rij) = Oη

(
n−1

)
for 1 ≤ i, j ≤ 2n , (A.1)

var

(
1

n
tr∆G

)
= Oη

(
‖∆‖2 n−2

)
, (A.2)

var [(~y1 − z~e1)
∗[ηQ]α(~y1 − z~e1)] = Oη

(
n−1

)
for α = 1, 2 . (A.3)

Similar estimates hold true if G is replaced by G̃, if one considers the columns of Y ∗

instead of those of Y , etc.

These estimates can be obtained as in the proof of [49, Proposition 6.3], see also the
references therein.

As a direct corollary of the previous proposition, we have:

Corollary A.2. Let A0 and A1 hold.

var
[(
η +

1

n
tr∆G

)−1]
= Oη

(
‖∆‖2 n−2

)
, (A.4)

var
[
(η + (~y1 − z~e1)

∗[ηQ](~y1 − z~e1))
−1
]

= Oη

(
n−1

)
. (A.5)

Proof. Let us establish (A.4). Notice first that
∣∣η + 1

n tr∆G
∣∣−1 ≤ Im−1(η) by (2.2).

var

(
1

η + 1
n tr∆G

)
(a)

≤ E

∣∣∣∣∣ 1

η + 1
n tr∆G

− 1

E
(
η + 1

n tr∆G
) ∣∣∣∣∣

2

,

≤ 1

Im4(η)
var

(
1

n
tr∆G

)
= Oη

(
‖∆‖2

n2

)
,

where (a) follows from the fact that var(X) = infaE|X − a|2. Estimate (A.5) can be
established similarly.
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A.3 Proof of Proposition 3.5

Notice first that it is sufficient to prove

1

n
trEC

(
R(z, η)−RN (z, η)

)
= ~Oη

(
1√
n

)
,

where C is any of the following 2n× 2n matrices:(
In 0

0 0

)
,

(
0 0

In 0

)
,

(
0 In
0 0

)
,

(
0 0

0 In

)
.

We follow the approach used in [59] and perform an entry-by-entry interpolation between
Y and Y N . Let α : [n2] → [n]2 be the bijection defined as α(m) = (i, j), where m − 1 =

(i− 1)n+ j − 1 is the Euclidean division of m− 1 by n. Given m ∈ [n2], define the n× n

matrices Zm = (Zmi,j) and W
m = (Wm

i,j) by

Zmi,j :=

{
Y N
i,j if α−1(i, j) < m,

Yi,j if α−1(i, j) ≥ m,
and Wm

i,j :=


Y N
i,j if α−1(i, j) < m,

0 if α−1(i, j) = m,

Yi,j if α−1(i, j) > m.

Notice that Z1 = Y . By convention, we denote Zn
2+1 = Y N . Redenoting the resolvent

R(z, η) defined in (2.19) as RY to express the dependence on Y (thus, RN = RY N ), we
have

1

n
trEC (RY −RY N ) =

1

n

n2∑
m=1

trEC (RZm −RZm+1)

=
1

n

n2∑
m=1

trEC (RZm −RWm)− trEC (RZm+1 −RWm) . (A.6)

For (i, j) = α(m), the matrices ∆m := Zm −Wm and ∆N
m := Zm+1 −Wm are given by

the equations

∆m =

[
0 Yijeie

∗
j

Ȳijeje
∗
i 0

]
and ∆N

m =

[
0 Y N

ij eie
∗
j

Ȳ N
ij eje

∗
i 0

]
,

where ei is the ith canonical vector of Cn. These matrices are (at most) rank-two matrices
that are both independent ofWm. We now use the identity RZm = RWm −RZm∆mRWm

three times to obtain

EC(RZm −RWm) = −ECRWm∆mRWm + ERWm(∆mRWm)2 − ERZm(∆mRWm)3.

Similarly,

EC(RZm+1 −RWm) = −ECRWm∆N
mRWm + ERWm(∆N

mRWm)2 − ERZm(∆N
mRWm)3.

The first two terms at the right hand sides of these equations are identical since the first
two moments of Yij and Y N

ij are equal, thus, they cancel out in (A.6). Moreover, it is easy
to see from the general properties of the resolvents and from the expressions of ∆m and
∆N
m that the traces of the terms with the cubes are bounded by Cn−3/2/η4. The result

follows.
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A.4 Proof of estimate (3.24)

This estimate relies on the following standard proposition, whose proof can be found
in [37, Lemma 5.2].

Proposition A.3. Let C < 0 be a n × n matrix and u = (u`) � 0 and v = (v`) � 0 two
n× 1 vector. Assume that the following equality holds true: u = Cu+ v . Then ρ(C) < 1,
matrix I − C is invertible, (I − C)−1 < 0 and

∣∣∣∣∣∣(I − C)−1
∣∣∣∣∣∣
∞ ≤ max(u` ; ` ∈ [n])

min(v` ; ` ∈ [n])
.

Recall the definitions (3.13) and (3.20) of Υ(~b) and ∆(b), ∆̃(b̃). In order to study the
properties of matrix A(p)�A(p), we introduce an auxiliary system. Since the pi’s satisfy
(2.20), we immediately obtain

Im(pi) =

[
V T Im(p)

]
i
|z|2

| |z|2 − (η + [V p̃]i)(η + [V Tp]i)|2
+

[V Im(p̃)]i∣∣− (η + [V p̃]i) +
|z|2

η+[V Tp]i

∣∣2
+

Im(η)∣∣− (η + [V p̃]i) +
|z|2

η+[V Tp]i

∣∣2
(

|z|2

|η + [V Tp]i)|2
+ 1

)

and its counterpart for Im(p̃i). Denote by v(~p) the 2n× 1 vector defined by

[v(~p)]i =
Im(η)∣∣− (η + [V p̃]i) +

|z|2
η+[V Tp]i

∣∣2
(

|z|2

|η + [V Tp]i)|2
+ 1

)

for i ∈ [n] and

[v(~p)]i =
Im(η)∣∣− (η + [V Tp]i) +

|z|2
η+[V p̃]i

∣∣2
(

|z|2

|η + [V p̃]i)|2
+ 1

)

for i ∈ {n+ 1, · · · , 2n}. Then the system satisfied by Im(~p) writes

Im(~p) = A(~p)�A(~p) Im(~p) + v(~p) , (A.7)

where matrix A(~p) has been defined in (3.22). Since matrix A(~p)�A(~p) has nonnegative

entries, we will rely on Proposition A.3 to evaluate

∣∣∣∣∣∣∣∣∣∣∣∣(I −A(~p)�A(~p)
)−1

∣∣∣∣∣∣∣∣∣∣∣∣
∞
. We need

to check that Im(~p),v(~p) � 0, to upper bound Im(p`), Im(p̃`) and to lower bound
[
v(~θ)

]
i
.

Since p` and p̃` are Stieltjes transform, we have |Im(p`)| ∨ |Im(p̃`)| ≤ Im(η)−1 which we
write in short Im(~p) ≺ Im(η)−1. Now, if i ≤ n

[v(~p)]i ≥
Im(η)∣∣− (η + [V p̃]i) +

|z|2
η+[V Tp]i

∣∣2
with

1

Im(η)

∣∣∣∣−(η + [V p̃]i) +
|z|2

η + [V Tp]i

∣∣∣∣2 ≤ 2

(
|η|2

Im(η)
+

σ4
max

Im3(η)
+

|z|4

Im3(η)

)
= Oη (1) .

The case where n+ 1 ≤ i ≤ 2n being handled similarly, we finally get

min
i

[
v(~θ)

]
i
≥ 1

Oη (1)
. (A.8)

EJP 23 (2018), paper 110.
Page 57/61

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP230
http://www.imstat.org/ejp/


Non-Hermitian random matrices with a variance profile

Hence, v(~θ) � 0 and
[
v(~θ)

]
i
is lower bounded away from zero.

In order to prove ~p � 0, we argue as follows: the pi’s are Stieltjes transforms
of probability measures µi. These probability measures are tight, see for instance
Proposition 3.1-(v). In particular, there exists a real numberK such that µi([−K,K]) ≥ 1

2 .

Hence,

Im(pi) = Im(η)

∫
R

µi(dλ)

|λ− η|2
≥ Im(η)

∫ K

−K

µi(dλ)

|λ− η|2
≥ µi([−K,K])

2(K2 + |η|2)
≥ 1

4(K2 + |η|2)
.

We are now in position to apply Proposition A.3. This proposition yields in particular that
ρ(A(~p)�A(~p)) < 1 and gathering the estimates Im(~p) ≺ Im(η)−1 and (A.8), we obtain∣∣∣∣∣∣∣∣∣∣∣∣(I −A(~p)�A(~p)

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

= Oη (1) . (A.9)

We can now conclude. Notice that along the imaginary axis, p(it) = ir(t) and p̃(it) = ir̃(t)

by Proposition 3.1–(3). Hence, straightforward computations yield that

I −A(~p)�A(~p) =

(
A B

C D

)
and I −A(~p)�A(~p) =

(
A −B
−C D

)
.

By standard block inversion formulas, the same structure occurs for the inverses

(I −A(~p)�A(~p))
−1

=

(
Ã B̃

C̃ D̃

)
and

(
I −A(~p)�A(~p)

)−1

=

(
Ã −B̃
−C̃ D̃

)
,

from which we immediately deduce that∣∣∣∣∣∣∣∣∣∣∣∣(I −A(~p)�A(~p)
)−1

∣∣∣∣∣∣∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣∣∣∣(I −A(~p)�A(~p))

−1
∣∣∣∣∣∣∣∣∣
∞

by either optimizing over ~u = (u, ũ) with ‖~u‖∞ = 1 or (u,−ũ). Estimate (3.24) is
established.

A.5 Proof of Lemma 6.1

Assume without loss of generality that ζ is a probability measure. Let ϕ ∈ Cc(C). Then
Eϕ(fn(·, z)− g(z)) −−−−→

n→∞
ϕ(0) for ζ-almost all z ∈ C since the convergence in probability

induces the convergence in distribution. Thus, by the dominated convergence and
Fubini’s theorems,∫

Ω×C
ϕ(fn(ω, z)− g(z)) (P⊗ ζ)(dω × dz) −−−−→

n→∞
ϕ(0) .

In other words, fn − g converges to 0 in distribution, hence in probability, for the
probability measure P⊗ ζ. As a consequence (see for instance [44, Lemma 3.11]),∫

C

|g(z)|1+αζ(dz) =

∫
Ω×C

|g(z)|1+α(P⊗ ζ)(dω × dz) ≤ C .

By (6.8), the sequence (fn) is P⊗ζ-uniformly integrable, hence
∫
Ω×C |fn(ω, z)−g(z)|(P⊗

ζ)(dω × dz) −−−−→
n→∞

0, see for instance [44, Proposition 3.12]. Convergence (6.9) follows

from Markov’s inequality.
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A.6 Proof of Lemma 6.2

Let (ψk)k≥1 be a sequence of smooth compactly supported functions, dense in Cc(C)
for the supremum norm ‖ψ‖∞ = supz∈C |ψ(z)|. By the diagonal extraction procedure,
one can find a subsequence (ζn′) such that with probability one (ζn′) is tight and∫
ψkd ζn′ −−−−→

n′→∞
− 1

2π

∫
∆ψk(z)h(z) `(dz) for all k ≥ 1. Thus, on this set of probabil-

ity one, the tight sequence (ζn′) has a unique non-random limit point ζ, and this limit
point satisfies ζ = −(2π)−1∆h in D′(C), the set of Schwartz distributions. With this at
hand, we get from the assumption that∫

ψk(z) ζn(dz)
P−−−−→

n→∞

∫
ψk(z) ζ(dz)

for all k ≥ 1. By a density argument, we thus get that∫
ϕ(z) ζn(dz)

P−−−−→
n→∞

∫
ϕ(z) ζ(dz)

for every ϕ ∈ Cc(C).
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