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Abstract—A cloud radio access network (C-RAN) is considered
where the first hop from the user equipments (UEs) to the
basestations (BSs) is modeled by the fading Wyner soft-handoff
model. The focus is on mixed-delay constraints where a set of
messages (so called “slow” messages) are jointly decoded in the
cloud unit (CU), whereas the remaining messages (called “fast”
messages) have to be decoded immediately at the BSs. This paper
presents inner and outer bounds on the capacity region for such
a setup. Moreover, the multiplexing gain region is characterized
exactly. The presented results show that for small fronthaul
capacity it is beneficial to send both “fast” and “slow” messages.
However, when the rate of “fast” messages is already large, then
increasing it further, deteriorates the sum-rate of the system. In
this regime, the stringent decoding delay on the “fast” messages
penalizes the overall performance. Our results indicate that this
penalty is larger at moderate SNR than at high SNR and it is
also larger for random time-varying fading coefficients than for
static ones.

I. INTRODUCTION

The fifth generation (5G) of wireless cellular network has
to accommodate different types of data traffics with different
latency constraints. Delay-tolerant traffics allow for higher
transmission rate by exploiting cooperation possibilities as in
cloud radio access networks (C-RAN) [1]–[5]. In C-RAN, base
stations (BSs) are connected to a cloud unit (CU) via finite-
rate fronthaul links and data are typically decoded jointly at the
CU to alleviate the effect of interference [1]. Delay-sensitive
traffics are however not compatible with this new technology
because they have to be decoded immediately at the BSs, and
consequently cannot profit from joint processing.

In this paper, we consider transmission over a C-RAN
with mixed delay constraints, i.e., where each mobile user
can simultaneously send a delay-sensitive and a delay-tolerant
stream. Throughout this paper, we call delay-sensitive traffic
“fast” messages and delay-tolerant traffic “slow” messages.
Mixed delay constraints in C-RANs have previously been
studied in [6] where different decoding techniques are com-
pared. In [6] UEs close to the BSs send only “fast” messages
and it is assumed that these communications do not interfer.
UEs located further away send “slow” messages and their
interference pattern is modeled by Wyner’s symmetric network
[11], [12] with static channel coefficients.

In this work, each UE sends a pair of independent “fast”
and “slow” messages. Communications between UEs and BSs
are modeled by a Wyner’s soft-handoff network with random

time-varying channel coefficients. We present coding schemes
for this setup and derive inner and outer bounds on the capacity
region. Furthermore, we characterize its exact first-order high-
SNR asymptotics, i.e., the multiplexing gain region. This result
allows us to conclude that for moderate fronthaul capacities,
the maximum “slow” multiplexing gain remains unchanged
over a large regime of small and moderate “fast” multiplexing
gains. The sum-multiplexing gain is thus improved if some of
the messages can directly be decoded at the BSs. In contrast,
for large fronthaul capacities or large “fast” multiplexing gains,
this sum-multiplexing gain deteriorates by ∆ if one further
increases the “fast” multiplexing gain by ∆.

At moderate SNR the conclusion based on our inner bound
are slightly different: If the “fast” rate is small or moderate,
then the achievable sum-rate decreases by ∆ when the rate of
“fast” messages increases by ∆, and if the “fast” rate is large
it decreases with a factor γ times ∆. The penalty factor γ is
approximately 1 for static channel coefficients and typically
higher for random coefficients. The stringent delay constraint
on “fast” messages thus seems to be more harmful at moderate
SNR and for time-varying channel conditions than at high
SNR or for static channels.

Previous studies on mixed-delay constraints for cellular net-
works with cooperation [7]–[10] presented similar conclusions
as our high-SNR results: For small or moderate “fast” rates
the overall performance is not degraded by the stringent delay
constraints. For large “fast” rates 1 bit of “fast” rate comes at
the expense of 2 bits of “slow” rate.

Note that in this work, we use simple point-to-point com-
pression techniques. Employing more sophisticated compres-
sion techniques [4] is left for our future work.

II. PROBLEM SETUP

Consider the uplink communication of a multi-cell C-
RAN with K UEs and K BSs. UEs and BSs are indexed
by 1, . . . ,K. Each BS is connected to a CU via a separate
fronthaul link of capacity C (see Fig. 1). At a given time
t ∈ {1, . . . , n}, the signal received at BS k is described as

Yk,t = Gk,tXk,t + Fk,tXk−1,t + Zk,t, (1)

where Xk,t and Xk−1,t are the symbols sent by UE k and UE
k − 1 at time t; {Zk,t} are i.i.d circular Gaussian noises of
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Fig. 1. System model

variance 1; and
Gk,t, Fk,t ∈ C (2)

represent the time-t fading coefficients. We assume that the
sequence of channel coefficients{

(G1,t, G2,t, . . . , GK,t, F1,t, F2,t, . . . , FK,t)
}n
t=1

(3)

is i.i.d. over time and distributed according to the K-tuple
distribution

PG1···GKF1···FK
(4)

of a given stationary and ergodic process {(Gi, Fi)}∞i=−∞
satisfying E

[
|G0|2

]
< ∞ and E

[
|F0|2

]
< ∞. Each BS k

has perfect channel state information (CSI) about its own
channel, i.e., it observes the realizations of {(Gk,t, Fk,t)} for
all t ∈ {1, . . . , n}. The UEs know only the statistics of the
random channel coefficients and are said to have no CSI.
Figure 1 shows an extract of our system model.

Each UE k wishes to convey the pair of independent mes-
sages (M

(F )
k ,M

(S)
k ) to BS k. The “fast” message M (F )

k is uni-
formly distributed over the set M(F )

k :=
{

1, . . . ,
⌊
2nR

(F )
k

⌋}
and has to be decoded by BS k as we explain shortly. The
“slow” source message M

(S)
k is uniformly distributed over

M(S)
k :=

{
1, . . . ,

⌊
2nR

(S)
k

⌋}
and is decoded at the CU. Here,

n denotes the blocklength of transmission and R(F )
k and R(S)

k

are the rates of transmissions of the “fast” and the “slow”
messages.

UE k computes its channel inputs Xn
k := (Xk,1, . . . , Xk,n)

as a function of the pair (M
(F )
k ,M

(S)
k ):

Xn
k = φ

(n)
k

(
M

(F )
k ,M

(S)
k

)
, (5)

for some function φ
(n)
k on appropriate domains so that the

average block-power constraint

1

n

n∑
t=1

|Xk,t|2 ≤ P, a.s., ∀ k ∈ {1, . . . ,K}, (6)

is satisfied.
Each BS k decodes the “fast” source message M (F )

k based
on its own channel outputs Y nk := (Yk,1, . . . , Yk,n). So, it
produces:

M̂
(F )
k = ψ

(n)
k

(
Y nk
)

(7)

using some decoding function ψ(n)
k on appropriate domains.

It further produces the fronthaul message

Lk = q
(n)
k (Y nk ), (8)

using some encoding function

q
(n)
k : Rnk →

{
1, . . . ,

⌊
2nC
⌋}
. (9)

The CU then decodes the set of “slow” messages as(
M̂

(S)
1 , . . . , M̂

(S)
K

)
:= b(n)

(
L1, . . . , LK

)
(10)

by means of a decoding function b(n).
The main focus of this paper is the achievable sum-

rates of “fast” and “slow” messages. Given a maxi-
mum fronthaul link capacity C and a maximum allowed
power P, the pair of (average) rates (R(F ), R(S)) is
called achievable if for each positive integer K there ex-
ists a sequence (in n) of encoding and decoding func-
tions {φ(n)1 , . . . , φ

(n)
K , ψ

(n)
1 , . . . , ψ

(n)
K , q

(n)
1 , . . . , q

(n)
K , b(n)} so

that the probability of decoding error

P (n)
e := Pr

[ ⋃
k∈{1,...,K}

{
M̂

(F )
k 6= M

(F )
k or M̂ (S)

k 6= M
(S)
k

}]
tends to 0 as n→∞ and the rates satisfy

lim
K→∞

1

K

K∑
k=1

R
(F )
k = R(F ), (11)

lim
K→∞

1

K

K∑
k=1

R
(S)
k = R(S). (12)

Note that the notation lim refers to the limit superior.
Definition 1 (Capacity Region): The capacity region C(P,C)

is the closure of the set of all rate pairs (R(F ), R(S)) that are
achievable with power P and fronthaul link capacity C.
We are particularly interested in the capacity in the asymptotic
high-SNR regime. The pair of multiplexing gains (S(F ),S(S))
is called achievable with frontaul multiplexing gain µ, if there
exists a sequence of rates {R(F )(P), R(S)(P)}P>0 so that

S(F ) := lim
P→∞

R(F )

log(1 + P)
, (13)

S(S) := lim
P→∞

R(S)

log(1 + P)
, (14)

and for each P > 0 the pair (R(F )(P), R(S)(P)) is achievable
with fronthaul capacity

C = µ · 1

2
log(1 + P). (15)

Definition 2 (Multiplexing Gains): The closure of the set
of all achievable multiplexing gains (S(F ),S(S)) is called
multiplexing gain region and denoted S?(µ).
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III. MAIN RESULTS

For each β ∈ [0, 1] define σ2
β ≥ 0 as the unique positive

real number satisfying

E

[
log

(
1 +

1 + (1− β)P|G0|2 + |F0|2P)

σ2
β

)]
= C (16)

and the random process {W β
i }∞i=−∞ as the unique stationary

process satisfying:

W β
i =

(
1+(1−β)P|Gi|2

(
1+

(1− β)P|Fi|2W β
i−1

1 + σ2
β + βP|Fi|2

)−1)−1
.

(17)
Notice that the joint process {(Fi, Gi,W β

i )}∞i=−∞ is also
stationary and ergodic.

For a given β ∈ [0, 1], let R(β) ⊆ R2 be the set of all
non-negative pairs (R(F ), R(S)) that satisfy

R(F ) ≤ E
[
log

(
1 +

βP|G0|2

(1− β)P|G0|2 + P|F0|2 + 1

)]
(18a)

and

R(S) ≤ E
[

log
(

1 +
(1− β)P|F0|2W β

−1
1 + σ2

β + βP|F0|2
)
− logW β

0

]
.

(18b)

Theorem 1 (Capacity Inner Bound): The convex closure of
the sets {R(β) : β ∈ [0, 1]} is achievable:

conv cl

 ⋃
β∈[0,1]

R(β)

 ⊆ C(P,C). (19)

Proof: See Section IV.
Theorem 2 (Capacity Outer Bound): Assuming log |G0| and

log |F0| are integrable near 0, any rate pair (R(F ), R(S)) in the
capacity region C(P,C) satisfies the following four constraints:

2R(F ) +R(S) ≤ E
[

log(1 + (|G0|2 + |F0|2)P)
]

+E
[

log

(
1 +
|F0|2

|G0|2

)]
+ max

{
E
[

log

(
|G0|2

|F0|2

)]
, 0

}
, (20a)

R(F ) +R(S) ≤ 1

2
E
[

log(1 + (|G0|2 + |F0|2)P)
]

+
1

2
max

{
E
[

log

(
|G0|2

|F0|2

)]
, 0

}
+

1

2
E
[

log(1 + (|F0|2)−1)
]

+
C

2
, (20b)

R(F ) ≤ 1

2
E
[

log(1 + |G0|2P)
]
, (20c)

R(S) ≤ C. (20d)

Proof: Omitted due to space limitations.
Corollary 1 (Multiplexing Gain Region): The multiplex-

ing gain region S?(µ) is the set of all nonnegative pairs
(S(F ),S(S)) satisfying

2S(F ) + S(S) ≤ 1, (21a)

S(S) ≤ µ. (21b)

Proof: The converse holds by Theorem 2 and the achiev-
ability by Theorem 1. Specifically, for the achievability part,
it suffices to prove that the two pairs(

S(S) = 0, S(F ) = 1/2
)
, (22)(

S(S) = min{µ, 1}, S(F ) = max{0, 1/2− µ/2}
)

(23)

are achievable. The multiplexing gain pair in (22) can be
achieved by silencing every second UE, which decomposes
the network into K/2 non-interfering point-to-point links. If
µ ≥ 1, the multiplexing gain pair (S(S) = 1,S(F ) = 0) is
achieved by a scheme where each BS quantizes its observed
outputs to noise level and the CU decodes all the transmitted
“slow” messages based on these quantized outputs. If µ < 1,
then the multiplexing gain pair (S(S) = µ,S(F ) = 1/2−µ/2)
in (23) is achieved by a scheme that time-shares the schemes
above over fractions of 1− µ and µ of the time.

Figure 2 illustrates the proposed inner and outer bounds on
the capacity region for independent random processes {Gi}
and {Fi}, where each Fi is circularly Gaussian of variance σ2

F

and each Gi is circularly Gaussian of variance σ2
G. Numerical

simulations are performed for different values of σ2
F . The

figure also presents inner and outer bounds on the capacity
region assuming static channel coefficients (regions in red).
As can be seen from the figure, for small values of R(F ), the
slope δR(F )

δR(S) of the inner bound is approximately −1 both for
static and random channel coefficients. This means increasing
the rate of “fast” messages by ∆, decreases the rate of
“slow” messages by ∆ and thus the sum-rate remains constant.
For large values of R(F ) and random time-varying channel
coefficients, the slope of the inner bound is around −3.5 for
σ2
F = 0.2 and around −4 for σ2

F = 0.3. In contrast, this slope
is around −2.7 for static channel coefficients. Increasing an



already large “fast” rate R(F ) thus penalizes the sum-rate of
the system and is more pronounced under random fading.
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Figure 3 shows the multiplexing gain region for different
values of µ. We notice that when µ < 1, for S(F ) ≤ 1

2−
µ
2 , the

multiplexing gain of “slow” messages is constant and solely
limited by the fronthaul capacity. In this regime, the sum-
multiplexing gain of the system is increased by decoding parts
of the messages directly at the BSs. When µ < 1 and S(F ) >
1
2−

µ
2 , or when µ ≥ 1, the slope of the boundary of the region

is −2. In these regimes the maximum sum-multiplexing gain
is decreased by ∆ when the “fast” multiplexing gain increases
by ∆.

IV. PROOF OF THEOREM 1
Fix β ∈ [0, 1].
Recall that σ2

β was defined so as to verify (see (16))

E

[
log

(
1 +

1 + (1− β)P|G0|2 + |F0|2P)

σ2
β

)]
= C. (24)

For each k ∈ {1, . . . ,K}, define

Xk = Uk + Vk, (25a)
Yk = GkXk + FkXk−1 + Zk, (25b)
Ck = GkVk + FkXk−1 + Zk, (25c)

Ĉk = Ck +Qk, (25d)

for {Qk}, {Uk}, {Vk}, and {Zk} independent zero-mean
Gaussian random variables with variances σ2

β , βP, (1− β)P,
and 1.

Random Code Construction: For each k ∈ {1, . . . ,K},
generate codebooks Cu,k, Cv,k, and Cw,k randomly. Codebook

Cu,k :=
{
unk (i) : i = 1, . . . ,

⌊
2nR

(F )
k

⌋}
(26)

is generated by picking all entries i.i.d. circularly Gaussian of
variance βP . Independently thereof, codebook

Cv,k :=
{
vnk (j) : j = 1, . . . ,

⌊
2nR

(S)
k

⌋}
(27)

is generated by picking all entries i.i.d. circularly Gaussian of
variance (1− β)P . Quantization codebook

Cc,k :=
{
ĉnk (`) : ` = 1, . . . ,

⌊
2nC
⌋}

(28)

is generated by picking all entries i.i.d. according to PĈ .
Reveal all codebooks to all terminals. We explain the

encoding and decoding operations assuming that

Gnk = gnk and Fnk = fnk . (29)

(Recall that BS k and the CU know these realizations.)
UE k: Sends

xn = unk
(
M

(F )
k

)
+ vnk

(
M

(S)
k

)
. (30)

BS k: Decodes its “fast” message M (F )
k based on its own

channel outputs Y nk = ynk . It then looks for a unique îk such
that

(unk (̂ik), ynk , g
n
k , f

n
k ) ∈ A(n)

ε (PUY G0F0
), (31)

where A(n)
ε (·) refers to the jointly typical set as defined in

[14] and where given G0 = g and F0 = f the pair (U, Y ) is
a centered bivariate Gaussian vector of covariance matrix

KUY |g,f =

(
βP gβP
gβP (g2 + f2)P + 1

)
. (32)

If none or more than one such indices îk exist, BS k declares
an error. Otherwise it declares

M̂
(F )
k = îk. (33)

Subsequently it forms the difference

cnk := ynk − unk (̂ik), (34)

and looks for an index `k such that

(ĉnk (`k), cnk , f
n
k , g

n
k ) ∈ A(n)

ε (PĈCFG). (35)

If none or more than one such indices `k exist, BS k declares
an error. Otherwise it sends Lk = `k.

CU: Assume it receives L1 = l1, . . . , LK = lK . Then, it
looks for a unique set of indices ĵ1, . . . , ĵK that satisfy(
ĉn1 (`1), . . . , ĉnK(`K), vn1 (ĵ1), . . . , vnK(ĵK), gn1 ,

. . . , gnK , f
n
1 , . . . , f

n
K

)
∈ A(n)

ε (PĈ1,...,ĈK ,V1,...,VK ,G,F), (36)

where

G = {G1,t, . . . , GK,t}nt=1, F = {F1,t, . . . , FK,t}nt=1. (37)

If none or multiple such indices ĵ1, . . . , ĵK exist, the CU
declares an error. Otherwise, it declares

M̂
(S)
k = ĵk, k ∈ {1, . . . ,K}. (38)

Analysis: For any k ∈ {1, . . .K}, decoding in (31) is success-
ful with probability tending to 1 as n→∞, if

R
(F )
k < I(Uk;Yk|Gk, Fk)

= E
[
log

(
1 +

βP|Gk|2

(1− β)P|Gk|2 + P|Fk|2 + 1

)]
. (39)



Assuming that this decoding was successful, quantization in
(35) also succeeds with probability tending to 1 as n → ∞,
because by the choice of the quantization noise σ2

β :

C ≥ I(Ĉk;Ck|Gk, Fk)

= E

[
log

(
1 +

1 + (1− β)P|Gk|2 + |Fk|2P)

σ2
β

)]
. (40)

Now assuming that both the decoding in (31) and the quantiza-
tion in (35) were successful, the decoding in (36) also succeeds
with probability tending to 1 as n→∞, if

1

K

K∑
k=1

R
(S)
k

<
1

K
I(V1, . . . , VK ; Ĉ1, . . . , ĈK |G,F)

=
1

K
I
(
{Sk}Kk=1 ; {G̃kSk + F̃kSk−1 + Ξk}Kk=1

∣∣∣G,F), (41)

where {Z̃k} and {Ξk} are sequences of i.i.d. circularly sym-
metric Gaussian noises of variances 1 + σ2

β + f2kβP and 1
and

Sk :=
√

(1− β)−1/2P · Vk, (42a)

G̃k :=

√
(1− β)P√

1 + σ2
β + βP |Fk|2

·Gk, (42b)

F̃k :=

√
(1− β)P√

1 + σ2
β + βP |Fk|2

· Fk, k ∈ {1, . . . ,K}. (42c)

By these definitions and assumptions on the channel, the
sequences {Sk}, {(G̃k, F̃k)}, {Ξk} satisfy the conditions in
[13, Assumption 1] (where we associate Gk, Fk, and Vk in
[13] with G̃k, F̃k, and Ξk in this manuscript). Therefore in
the limit when K → ∞, the mutual information in (41) can
be evaluated using [13, Theorem1] to obtain:

R(S) ≤ E
[

log
(

1 +
(1− β)P|F0|2W β

−1
1 + σ2

β + βP|F0|2
)
− logW β

0

]
(43)

where {Wi}∞i=−∞ is the unique stationary process satisfying

W β
i =

(
1+(1−β)P|Gi|2

(
1+

(1− β)P|Fi|2W β
i−1

1 + σ2
β + βP|Fi|2

)−1)−1
.

(44)
Achievability of the pairs (18) follows then from (39) and (43).

V. CONCLUSION

We presented inner and outer bounds on the capacity region
of a C-RAN under mixed delay constraints and characterized
the multiplexing gain region of this network. We obtained
the following conclusions. When the fronthaul capacities are
small, then the overall performance of the system can be
improved if some of the data streams (the delay sensitive
streams) are directly decoded at the BSs. The stringent delay
constraint on these streams however becomes harmful when
their rate is too large. In this regime the total sum-rate has to

be decreased by a penalty factor γ times ∆ when the delay-
sensitive rate is increased by ∆. The penalty factor γ ≈ 1 for
static channel coefficients or in the high-SNR regime, and it
can be significantly larger for random channel coefficients and
at moderate SNRs.

To reduce the gap between the proposed inner and outer
bounds on capacity, in future works we plan to include more
sophisticated multi-user compression techniques [4], [5] at the
BSs and the cloud processor.
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