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Abstract: In this paper, we discuss the impact of uncertainties of lead times and expiration
dates on the stability of the inventory regulation problem in productions systems using feedback
control law structure, in the conception phase. The inventory control system is considered as an
input-delay system with uncertainties on customer demands, and positive constraints due to the
specifications of the agricultural supply chain. Also, the system is characterized by the presence
of delay due to the process time and the distribution time, and the perishable products are
modeled by a fixed preemption rate. We have first found the necessary and sufficient conditions
that prove the existence and the admissibility of the control law. Secondly, a comparative analysis
of impact of production delay and expiration date uncertainties on a robust design is given.
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1. INTRODUCTION

Delays are present everywhere in the supply chain and
they are essentially linked to the flow movements. Since
the delay is encountered in various production systems,
the dynamic behavior of many physical processes inher-
ently contains time delays and uncertainties, that are of-
ten the main cause of the instability of control systems.
So for this reason we have a big interest in research
into robust stabilization for uncertain time-delay systems.
Several approaches in production and inventory control
studied delayed systems through the years. The first was
[Simon H. A. (1952)] who used Laplace Transform to
analyze a supply line dynamics. Then, lots of authors
modeled in their works [Forrester J. (1973)], [Kharitonov
V. (1998)], [Moon Y.S. et al. (2001)], [Riddalls C.
and Bennett S. (2002)], [Chiasson J. and Loiseau J.J.
(2007)], [Tarbouriech S. et al. (2011)], [Wang X. et al.
(2012)] the production system by using block diagrams
and controlled feedback structure. In particular, [Ignaciuk
P. and Bartoszewicz A. (2011)] studied the control of per-
ishable inventory systems using smith predictor principle.
After, different optimization frameworks were proposed
using programming techniques, empirical experiences and
control theory methods, in order to satisfy at each time
the customer’s demand (Nakasumi (2017), Tripoli and
Schmidhuber (2018)). Our concern focused on the use of
the control theory methods which provide an analytic and
formal framework, since such systems can be considered
as time-delayed systems with uncertainties. Moreover, the
invariance principle is one of the basic notions in control

theory. It answers as well to the issues of existence of
feasible controllers for constrained systems. So we are in-
terested in these questions of invariance and D-invariance,
in the context of solving constrained control problems for
logistic systems.
In this section, we discuss the stability for the inventory
regulation problem in agri-food productions systems using
feedback control law structure, in the conception phase.
The inventory control system is considered as an input-
delay system with uncertainties on customer demands,
and positive constraints due to the specifications of the
agricultural supply chain. Also, the system is characterized
by the presence of delay due to the process time and the
distribution time, and the agri-food products are perish-
able with fixed preemption rate. Due to the lead time of
the control law and loss factor, the objective is to define
a control law which permits to satisfy the end-customer
demand and for which the agricultural production system
requirements will be completely met.

The remaining section of the study is organized as follows.
The Section 2 deals with the problem statement and
objective. We give the system description and model
formulation, and describe the main problem. state of
the art. In section 3, the different steps of the proposed
control strategy is developed. In section 4 a comparative
analysis of impact of transportation delay and expiration
date uncertainties on a robust design is given through an
illustrative example, followed by the robustness analysis.
Results with numerical applications and discussions are
carried out in Section 5. Finally, we conclude our study
and suggest an area for future research in section 6.



2. PROBLEM STATEMENT AND OBJECTIVE

2.1 System description

we consider a production system composed of a transport
unit due to the mobility of goods and flow services, and a
storage unit that is characterized by the incoming flow of
products, and the outgoing flow of products leaving the
system due to the customers demand and sales made.
Such a system makes it possible to describe the basic
distribution processes, namely the routing and the delivery
as well as the planning and the management of the
purchases. The generic model for the output inventory
level w(t) is described by the following first order delayed
equation:

ẇ(t) =

{
−σw(t) + o(t− T )− d(t) , for t ≥ T,
−σw(t) +WIP (t)− d(t) , for 0 ≤ t < T.

(1)

This model was introduced by Simon in (1952). Then, it
was used by Blanchini in (1990). He treated the commu-
nication networks control using the same model.
The system variables are o(t), w(t) and d(t) that are non-
negative entities. The output w(t) presents the instanta-
neous warehouse or the storage level. The system distur-
bance d(t) corresponds to the flow of products leaving the
storage at any moment t due to the customer demand , and
the input of the system o(t) presents the order to produce
and deliver the flow of products.
Our study deals with the perishable products which means
that we have a deterioration on the goods. So these items
are modeled by a loss factor σ with 0 ≤ σ < 1.
In reality, to obtain the products, a non-negligible lead
time is necessary, and it is noted by T and supposed
to be constant. It corresponds to the time needed since
taking the decision to produce the goods until delivering
the goods to the storage unit.

2.2 Constraints and objectives

This problem is used to describe the basic logistics pro-
cesses, namely production, routing and delivery process.
So the system is subject to two types of limitations.
First, physical quantities like production order o(t) and
inventory level w(t) can take only non-negative values.
The second specificity of the system is that these enti-
ties are limited resources, so maximum storage capacities
and maximum production orders are imposed and must
be respected. So the controller design should take into
account these positive and saturation constraints that are
formulated as follows.
For the inventory level w(t),

0 < wmin ≤ w(t) ≤ wmax. (2)

For o(t), we suppose that

0 < omin ≤ o(t) ≤ omax. (3)

Finally, the customer demand d(t) must always verify

0 < dmin ≤ d(t) ≤ dmax. (4)

The system is studied in terms of a time-delayed system
with a constant lead time T , where the specifications are

introduced in form of constraints imposed to the controller.
So the problematic consists of finding a robust strategy
for this system so that the storage level w(t) and the flow
of goods o(t) verify their constraints already mentioned,
and this for any disturbance that varies arbitrary in the
range [dmin, dmax]. The necessary and sufficient conditions
for the existence of admissible control laws are then
interpreted in order to ensure the stability of the transport
unit by forbidding any overrun on the delivery orders and
on the storage level, and to absorb the uncertainties on
the losses and the customer demands d(t). So that we can
finally determine the decision support system for transport
and logistic supply chain.

3. CONTROL STRATEGY AND MAIN RESULTS

The control approach is build as follows. First step is to
find an equivalent delay-free system by applying a state
feedback prediction to the system. After that the basic
conceptual idea is to verify the system constraints in terms
of invariance by determining the D-invariance conditions
to the prediction system. Following this approach we pro-
pose to apply two different types of the control to the
dynamic system. Finally we end the study by verifying
the admissibility of the control theory and by finding the
attainable bounds for the system output and the necessary
and sufficient conditions of the original time delay system.

As developed in [Bou Farraa B. et al. (2018)] and [Abbou
R. et al. (2017)], the proposed approach to control systems
with delayed inputs is based on a prediction state feedback
principle. This structure permits both the stability the
system in closed loop and the compensation of the delay
effects present in the loop. We denote z(t) the prediction
of the future state of the storage level w(t). This prediction
is expressed by

z(t) = e−σTw(t) +

t∫
t−T

e−σ(t−τ)o(τ)dτ. (5)

By time derivation of (5) and using (1), we obtain a
feedback-predictor structure known as model reduction
[Artstein Z. (1982)], and that is expressed as follows

ż(t) = −σz(t) + o(t)− e−σT d(t). (6)

The Artstein reduction can be expressed by the general

form ˙w(t) = f(w(t), o(t), d(t)), with the interval of predic-
tion W = [wmin, wmax] and the interval of the disturbance
d(t), D = [dmin, dmax]. Thus we can apply the invariance
theorem developed in [Blanchini F. (1990)] to the non-
delayed system (6).

Proposition 1. Given the system of form (1), there exists
a control law so that the prediction interval [zmin, zmax] is
D-invariant for the closed-loop system (6), if and only if
the following two conditions are verified.

σzmin + e−σT dmax ≤ omax (7)

omin ≤ σzmax + e−σT dmin (8)

These conditions, (7) and (8) are the necessary and
sufficient conditions for the D-invariance of the interval



[zmin, zmax], and they are deduced verifying the following
inequality

zmin ≤ zmax. (9)

We can propose properly two different types of control
law o(t) that verify (10), and that the interval [zmin, zmax]
is D-invariant for the closed-loop system (6). The big
advantage is that the control can be easily used first
for both continuous and hybrid type of production and
transportation flows, and second for a large type of logistic
and distribution systems. To do that we define first two
values of the control law o(t), o1 and o2 verifying (3) and
expressed by

o1, o2 ∈ [omin, omax]. (10)

Affine control law This type of the control law o(t) takes
the form of a linear feedback defined as

o(t) =

{
K(z0 − z(t)) , for o1 6= o2,
o1 = o2 , for o1 = o2.

(11)

K = o1−o2
zmax−zmin

is a static gain, and z0 = o1zmax−o2zmin

o1−o2 is
a reference value.

Bang-bang control law This law is expressed for a hybrid
system. It’s given by the following expression.

o(t) =

{
o1 , for z(t) ≤ zmin,
o2 , for z(t) ≥ zmax. (12)

Its behavior is described by the hybrid automaton of the
figure below.

o(t) = o1 o(t) = o2

z(t) ≥ zmax

z(t) ≤ zmin

Fig. 1. Automaton of Bang-bang control law

Based on the above results, we will deduce the necessary
and sufficient conditions of the control law admissibility
for t ≥ T for the reduced model (Bou Farraa B. et al.
(2018)).

Proposition 2. Given the system of the form (1), there
exists o1 and o2 such that the control law o(t) is admissible
if and only if the parameters zmin and zmax satisfy (10),
(7), (8), (9),

wmin ≤ zmin −
1− e−σT

σ
dmax, (13)

zmax −
1− e−σT

σ
dmin ≤ wmax. (14)

Or these conditions are written in form of inequalities
that depend on the intrinsic parameters T , σ, the system
parameters wmin and wmax, omin and omax and dmin and
dmax, and the prediction parameters zmin and zmax. The
conditions (7), (8), (9), (13) and (14) are reformulated

in the following theorem (Bou Farraa B. et al. (2018)),
in order to eliminate zmin and zmax from the above
inequalities.

Theorem 3. Given the dynamic system (1), there exists
control laws in affine type (11) or bang-bang type (12)
that stabilize the system, and for which the constraints
(2) and (3) are fulfilled for any disturbance verifying (4),
if and only if the following conditions remain always true.

σwmin + dmax ≤ omax (15)

omin ≤ σwmax + dmin (16)

wmin +
1− e−σT

σ
dmax ≤ wmax +

1− e−σT

σ
dmin (17)

At the end of this approach, we have found the neces-
sary and sufficient conditions (15), (16) and (17) for the
existence and admissibility of the control laws for the
original delayed system, in order to stabilize the perishable
dynamic inventory system.
In the following, a comparative analysis of the impact
of production delay and expiration date uncertainties on
the system co-design has been given and followed by a
robustness analysis.

4. ROBUSTNESS ANALYSIS AND DISCUSSIONS

4.1 Admissible area analysis

We first start to determine the admissible area of the
decision-making system by expressing the necessary and
sufficient conditions (15), (16) and (17) in terms of the
intervals 4o , 4w and 4d. We note that 4o = omax −
omin, 4w = wmax − wmin and 4d = dmax − dmin. In the
following, the specification values for the production order
are o(t) ∈ [20, 45] with T = 6, and w(t) ∈ [0, 85] with
σ = 0.2 for the inventory level. In addition, the customer
demand bounds are d(t) ∈ [25, 35].
First, we can notice the equivalence between the condition
(17) and the following condition

4w ≥ 1− e−σT

σ
4 d. (18)

Then the conditions (15) and (16) can be expressed in
terms of intervals by

4o ≥ 4d− σ4 w. (19)

As a result, based on (18) and (19) we obtain the following
two curves that correspond to the limits of the admissible
area of the system.

4w =
1− e−σT

σ
4 d, (20)

and

4w = − 1

σ
4 o+

1

σ
4 d. (21)

As a conclusion, based on the necessary and sufficient
conditions of the existence of admissible control laws and
respecting the system constraints, we are able to define
the admissible area that is bounded by (20), (21), omax
and wmax as shown in the figure (2). Consequently the
admissible area is useful to define the decision-making
support system that size properly the system parameters.



Fig. 2. Illustration of the admissible area

Discussions

- In the considered example, the values of different pa-
rameters of the studied system are such that wmin =
0, wmax = 85, omin = 20 and omax = 45. In addition,
if we suppose that the minimum value of omin = 0
which is an accepted value, we obtain 4o = omax.
In this case, the admissible area is not limited by the
green area, but extended until the value of omax = 45.

- From the equation (18) we notice that

4d ≤ σ

1− e−σT
4 w ≤ 25 (22)

We can conclude that to be able to size 4o and 4w
according to the variations of the customer demand
4d, it is necessary that (22) is always checked. Oth-
erwise we can not determine property the admissible
zone due to the presence of the Bullwhip effect all
over the logistic-transportation line.

4.2 Impact of (σ, T ) variations on the robust system, σ 6= 0

We first start to see the impact of the delay on the
admissible area of the system. It is clear that the curve
(21) does not depend on T , while (20) as shown in the
following figure, can vary from 4w = 0 for T = 0, up to
4w = 50 for large values of T . It is well explained by the
fact that we don’t need a security storage when we have
direct access to the products without taking any lead time
to produce and transport the products. And inversely we
have an interest in having a important warehouse when
the process time to deliver the products become larger.

Fig. 3. The impact of T on the curves (20) and (21)

Then, referring to the figure (4) and table 4.2, we can study
the variations on the loss factor and show its impact on
the admissible zone for the distribution robust system.

Fig. 4. The admissible areas Ai for different values of σ

Table 1. 4o and 4w of the polytopes vertices
Ai for different values of σ

σ 4o 4w
0.2 4o = [3.01 25 25 0 0] 4w = [34.94 34.94 85 85 50]
0.1 4o = [5.49 25 25 1.50] 4w = [45.12 45.12 85 85]
0.01 4o = [9.42 25 25 9.15] 4w = [58.24 58.24 85 85]
0 4o = [10 25 25 10] 4w = [60 60 85 85]

Discussions

We can notice the following remarks.

- The admissible areas A1, A2, A3 and A4 are defined
as polytopes in the plan (4o,4w) that are limited by
vertices as mentioned in table 4.2. When σ increases
the areas Ai become larger, so we have A4 ⊂ A3 ⊂
A2 ⊂ A1.

- When σ decreases, the losses decrease, and the ad-
missible area Ai of the system become smaller. So we
have more limitations on the storage variations 4w
and on the production variations 4o.

- When σ increases, the losses increase. So we have a
larger gap in the transport 4o in order to deliver
more quantities of products and compensate losses,
and a storage gap4w more important to store all the
products that have been produced and distributed.
On the other hand, a simple drop on the outgoing flow
of products d(t) can cause a big loss on the warehouse
level. That’s why we notice this big gap on 4w and
4o in order to act against the bullwhip effect.

- In addition to inequalities (18) and (19) which define
the intervals of variations on the storage level and the
production order, the average levels of production and
storage, (15) and (16) are also involved to limit the
sizing area of the system.



- We can optimize the cost of storage by choosing
wmin = 0. We obtain the following conditions.

dmax ≤ omax
1− e−σT

σ
4 d ≤ wmax

omin ≤ σwmax + dmin
We have the possibility to increase omin by increasing
wmax, but it may cause an unfair and expensive
increase in general.

4.3 Impact of (σ, T ) variations on the robust system, σ = 0

In the distribution system, we suppose in this case that
we are dealing with non perishable products that have
an unlimited lifetime, which correspond to σ = 0. In
this case we don’t have losses during the production and
distribution processes. The conditions (15), (16) and (17)
become

dmax ≤ omax, (23)

omin ≤ dmin, (24)

wmin + Tdmax ≤ wmax + Tdmin. (25)

Therefore, the intervals of variation are reduced to 4w ≥
T 4 d, and 4o ≥ 4d, and the admissible area of the
system, limited by both straight curves and constraints
on o and w, is presented by A4 in the figure (4).

Discussions

- From the obtained results, we can also optimize the
level of the storage, the production and the sales by
considering the minimum positive values. In our case
study, we obtain the following values: wmin = omin =
dmin = 0. So the constraints (2), (3) and (4) become

0 ≤ w(t) ≤ wmax,
0 ≤ o(t) ≤ omax,
0 ≤ d(t) ≤ dmax.

The conditions (23), (24) and (25) are reduced to

dmax ≤ omax, (26)

Tdmax ≤ wmax. (27)

- The following figure shows that when omax increases,
wmax needs to be larger consequently in order to store
all the delivered products.

Fig. 5. The admissible area in the optimal case

5. NUMERICAL APPLICATION

In this numerical application we illustrate the effect of
the proposed control strategy following the theoretical
approach. We consider the elementary logistic system of
the form (1), and we apply the proposed affine or bang-
bang control laws.
For this system, we follow a co-design methodology in
order to calculate the system parameters, so that the
necessary and sufficient conditions given before are all
satisfied. So supposing the customer demand as unknown
but varying in [25, 35], and a global lead time T = 6, with
a loss factor σ = 0.2 due to perishable products, we have
obtained the values of the system parameters as seen in
table 3.

Table 2. System parameters

Control law omin = 20 omax = 45
Delay T = 6

Storage level wmin = 0 wmax = 85
Loss factor σ = 0.2

Customer demand dmin = 25 dmax = 35

Prediction interval zmin = 123 zmax = 148

Control parameters o2 = omin = 20 o1 = omax = 45
K = 1 z0 = 168

Initial conditions
w(0) = 50 WIP (t) = 33 z(T ) = 130

Case of affine control law In this simulation, we consider
an affine control law of the form (11). This law corre-
sponds to the continuous flow of goods during production.
Moreover the leaving flow of goods that is the customer
demand is represented by a random signal varying between
dmin = 25 and dmax = 35 units for instants between t = 0
and t = 20 time units. The results of this simulation are
given by figure (6).

Fig. 6. Temporal evolution of o(t), z(t), w(t) and d(t)

Case of bang-bang control law In this simulation, the
leaving flow of products is represented by a rectangular



signal that evolve during 20 units of time. In addition the
bang-bang control law of the form (12), with o1 = 45 and
o2 = 20, describe very well the production and transport
by batches or discrete flows of products moving to satisfy
the customers demands. The simulation results are figured
in (7).

Fig. 7. Temporal evolution of o(t), z(t), w(t) and d(t)

In the two case studies, we can notice that:

- the warehouse level w(t) has no overruns of wmax,
and is always positive. The same for the control law
o(t) that always remains between omin and omax for
the affine control law, and switch between o1 and o2
with z(t) moving between zmin and zmax, and this is
well verified in the temporal evolution of o(t) and of
z(t). So the constraints (2) and (3) are well verified.

- The system responses for different signals of d(t)
show small variations. On the one hand, the affine
control law o(t) varies very little (roughly between 35
and 38 units). In terms of regulation, it’s perfect. In
terms of production management, it makes possible
the optimization of the production resources. On the
other hand, the warehouse is in decreasing mode
but remains quite high relative to wmin = 0 and
does not go below 19 units. In terms of production
management, a large storage of products is expensive,
so we have the possibility to reduce the warehouse
level by applying algorithms and methods for storage
costs optimization. This degree of freedom is very
important in practice.

6. CONCLUSION

The paper deals with the problem of perishable inventory
control of distribution system, subject to a constant loss
factor and a constant lead time, using an approach based
on control theory studied in terms of invariance. The
inventory control system is considered as an input-delay
system with uncertainties on customer demands, and posi-
tive constraints due to the specifications of the agricultural
supply chain. We discuss the impact of uncertainties of the
lead time and the expiration date on the stability of the
inventory regulation problem within distribution system

using feedback control law structure.
As further work, it is interesting to reduce the uncertainty
on the external demands by using customers demands
estimation. By the way, our control approach is developed
right now in the continuous-time domain, so we have to
move on to the discrete analysis. Finally, we have already
started to improve the performance of the proposed ap-
proach by considering variable lead time. Moreover, we
have extended the study in the case of distributed systems
that present real applications on logistic networks.
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