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Abstract:
This paper discusses stability analysis supply chain dynamics using feedback control law structure. The
case study concerns the inventory control system which is considered as an input-delay system under
uncertainties on customer demands with constraints related to losses of stored products. Due to the lead
time of the control law and factors such as the customer demand which is supposed to be unknown, the
objective is to define a control law which permits to satisfy the end-customer demand and for which the
production system requirements will be completely met. The end customer demand is considered as the
external perturbation. To study the stability analysis, two types of control law are proposed, both based
on a feedback predictor structure. The necessary and sufficient conditions on the existence of control law
are then formulated. The results demonstrate that it possible to improve the performances of the supply
chain by choosing optimally the control parameters and the specifications of the production system.
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1. INTRODUCTION

In any supply chain, the production orders are issued for the
needed products to be purchased and those goods or products
are received after a delay named a lead time. Since the de-
lay is encountered in various production systems, the dynamic
behavior of many physical processes inherently contains time
delays and uncertainties. In addition, time delays are often the
main cause of the instability of control systems. For that, there
has been increasing interest in research into robust stabilization
for uncertain time-delay systems. Application of control engi-
neering to production and inventory control was first studied
by (Simon, 1952) by using Laplace Transform to analyze a
supply line dynamics. After, further research works have been
developed such as (Wang et al., 1987), (Kharitonov, 1998),
(Moon et al., 2001), (Dion et al., 2001), (Chiasson and Loiseau,
2007), (Tarbouriech et al., 2011), (Forrester, 1973), (Riddalls
and Bennett, 2002), (Ignaciuk and Bartoszewicz, 2011) , (Wang
et al., 2012), in which the production system was modeled using
block diagrams and controlled through feedback structure. In
particular in (Sterman, 1989), the author developed method
of interpreting the causal loop diagrams to translate the infor-
mation flows in the form of bock diagram presentation. This
presentation was very useful because that facilitated the use of
control theory to analyze such delayed systems.

In this paper, we are interested on the inventory regulation prob-
lem in production systems which must respond to the customer
demand. We suppose that the customer demand is unknown
but bounded by a defined value. Also, the production system
is characterized by the presence of delay due to the process
time and the products are perishable with fixed preemption rate.
Furthermore, positive constraints due to the specifications of

the supply chain, such as production and storage capacities, are
imposed.

To resolve such problems, different frameworks were proposed
based on optimization procedures using programming tech-
niques, empirical experiences and control theory methods as
explained before. Our concern focused on the use of the control
theory methods which provide an analytic and formal frame-
work, since such systems can be considered as time-delayed
systems, with uncertainties on the customer demand.

To deal with the inventory control problem, we propose a
control law based on the feedback-predictor structure. The
complexity of this study is the fact that customer demand,
which corresponds to a disturbance for our input-output system,
is unknown. In addition, the inventory level of stored products
decreases proportionally over time due to the expiration of
stored products. The objective is to provide necessary and
sufficient conditions to obtain a control law which stabilize the
inventory level and which must meet all required specifications
and constraints.

The paper is organized as follows. In section 2, the inventory
control problem with principal variables, assumptions and ob-
jective are given. In section 3, we recall the control law used
based on predictive and saturated feedback structure, consider-
ing the preemption rate of products. In section 4, an inventory
control structure is described and the necessary and sufficient
conditions on the existence of control law are then expressed.
We conclude the paper with discussions of using the proposed
approach by simulation examples and give directions for future
work.



2. PROBLEM STATEMENT AND METHODOLOGY

2.1 Supply Chain description

In our study, we consider a simple supply chain consisting
of a single retailer, a single manufacturer and composed of a
storage unit. At any moment t, the retailer receives the products
of a manufacturer within a specified time θ and issuing a
supply order u(t). Also, a demand d(t) is observed and must
be completely satisfied. The storage unit is characterized by the
level y(t), the incoming flow i.e. the final products coming from
a manufacturer, and the outgoing flow from customers demand
d(t), and of course the stock is of limited capacity. In its most
basic form, the generic model for the inventory level dynamics
is described by the following first order delayed equation:

ẏ(t) =
{

u(t−θ)−d(t) , for t ≥ θ ,
ϕ(t)−d(t) , for 0≤ t < θ .

(1)

y(t) represents the instantaneous inventory level. d(t) is the in-
stantaneous customer demand, which corresponds to the flow of
products leaving the stock at any moment t. In reality, to obtain
the products, a non-negligible execution time is necessary, and
it is noted by θ . It corresponds to the time needed to complete
the finite products, from receiving the production order until
obtaining the final products. Thus, u(t) corresponds to the in-
stantaneous production order. These are only available from the
instant t = θ , precisely because of this time of production θ .
Moreover, the function ϕ(t) corresponds to the production flow
for instants t between 0 and θ . It is called the work in process
WIP of the delay system.

Furthermore, we are interested in perishable products systems.
Such systems are modeled by an expiration rate noted σ . After
this change on the dynamics of the stock, the fundamental
equation takes the following form:

ẏ(t) =
{
−σy(t)+u(t−θ)−d(t) , for t ≥ θ ,
−σy(t)+ϕ(t)−d(t) , for 0≤ t < θ .

(2)

The parameter σ represents the static loss factor. We notice
the appearance of −σy(t) in the fundamental equation. It
shows that the stock is decreasing without the application of
any control law, because of the preemption of the perishable
products.
This model has been used by Blanchini (1990). He treated
the communication networks control using the same model.
Similarly, Ignaciuk and Bartoszewicz use the same model (2)
in their work (Ignaciuk and Bartoszewicz (2011)), and consider
the case of multiple sources, which corresponds to the study of
a logistic system with several suppliers.

2.2 Constraints and objectives

In the study of our system, production units u(t) and inventory
level y(t) are limited resources, and they can take only non-
negative values. They are defined as follows.

• The production level u(t) is limited by a minimum sup-
plying order rate denoted um and a maximum supplying
order rate uM .
• The inventory level y(t) is bounded by ym and yM which

are respectively the minimum and the maximum storage
capacity.

• The customer demand d(t) is supposed to be unknown but
assumed to be bounded by a minimum and a maximum
demand rates denoted respectively dm and dM .

The controller should be designed taking into account positive
and saturation constraints that are formulated as follows.
For all t ≥ 0

y(t) ∈ [ym,yM], (3)
u(t) ∈ [um,uM], (4)

and every demand function d(t) must satisfy
d(t) ∈ [dm,dM]. (5)

The problem in to find a control strategy for the system so
that the constraints on y(t) and u(t) already mentioned remain
always verified for any arbitrary demand satisfying d(t) ∈
[dm,dM]. The main objective consists of defining necessary and
sufficient conditions for the existence of an admissible control
law u(t).

3. FEEDBACK CONTROL STRATEGY

3.1 Prediction structure

As developed in (Abbou et al., 2015), the proposed approach
to control systems with delayed inputs is based on a prediction
state feedback principle. This structure permits to stabilize the
system and to compensate the delay effects present in the loop.
The specifications of the production system are introduced
as constraints imposed to the controller, so as to forbid any
overruns on the production rates or on the inventory levels,
which can cause the saturation of the production unit. The role
of the controller is then to keep the production rate and so, the
inventory level, as far as possible within their limits.

Using the feedback-predictor structure, also known as model
reduction or Arstein reduction (Artstein (1982)), the basic idea
of state prediction is to compensate the time delay by generating
a control law that use directly the corresponding delay-free
system. We denote z(t) the prediction of the future state of
the stock level y(t). This prediction is carried out over a time
horizon from t to (t +θ), and is expressed by

z(t) = e−σθ y(t)+
∫ t

t−θ

e−σ(t−τ)u(τ)dτ. (6)

The prediction expressed by (6) can be written by another
approach using (2) in the form

z(t) = y(t +θ)+
∫ t+θ

t
e−σ(t+θ−τ)d(τ)dτ. (7)

By time derivation of (6), we obtain the following system
ż(t) =−σz(t)+u(t)− e−σθ d(t). (8)

We note that the derivative equation obtained is expressed
without delay. We can therefore apply the invariance theory
which is recalled in the next paragraph.

3.2 Application of D-invariance principle

The reduction of Artstein can be expressed by the general form
˙z(t) = f (z(t),u(t),d(t)), with the interval Z = [zm,zM] and the

interval of the disturbance d(t), D = [dm,dM]. Thus we can
apply the D-invariance conditions. So Z is D-invariant for this
system if and only if the following conditions are fulfilled.

f (zm,dM)≥ 0 (9)
f (zM,dm)≤ 0 (10)

We deduce the following relations.



• For the minimum value z(t) = zm

−σzm +u(t)− e−σθ dM ≥ 0 , (11)
• and for the maximum value z(t) = zM

−σzM +u(t)− e−σθ dm ≤ 0 . (12)

We consider two values of the control law, u1 and u2 which
fulfill the constraint (4) and expressed by

u1 ∈ [um,uM], (13)
and

u2 ∈ [um,uM]. (14)
In addition, we suppose that the interval [zm,zM] for the system
(2), verify the following condition

zm ≤ zM. (15)

By interpreting the concept of D-invariance, and taking into
account the inequalities (11) and (12), we suppose

• u1 verifying (13) such as
u1 ≥ σzm + e−σθ dM, (16)

• and u2 verifying (14) such as
u2 ≤ σzM + e−σθ dm. (17)

The following conditions are deduced from the inequalities
(16), (17), (13) and (14).

σzm + e−σθ dM ≤ u1 ≤ uM (18)
um ≤ u2 ≤ σzM + e−σθ dm (19)

Proposition 1. Given the system of form (2), as well as zm and
zM verifying (15), there exists an affine or a hybrid control law
which verifies the constraints (13) and (14), and that the interval
[zm,zM] is D-invariant for the closed-loop system (8), if and
only if the following two conditions are verified.

σzm + e−σθ dM ≤ uM (20)
um ≤ σzM + e−σθ dm (21)

Proof. The inequalities (18) and (19) can be deduced from the
inequalities (16) and (17) taking into account (13) and (14).
Therefore, if the parameters u1 and u2 verify (13) and (14),
(16) and (17), then they verify (18) and (19). Inversely, if 18)
and (19) are verified, then u1 = uM and u2 = um can be chosen.
Given the parameters zm and zM , this choice define an affine or a
hybrid control law, such that the interval [zm,zM] is D-invariant
for the closed loop system.

4. CONTROL LAW ADMISSIBILITY

4.1 Proposed types of control laws

We introduce two forms of control laws u(t) that stabilize the
inventory level y(t) of the closed loop dynamic system, taking
into account positive and saturation constraints (3) (4). The
first control law is affine of feedback-predictor type, while the
second one is a bang-bang control law.

Affine control law This type of the control law is an affine one,
such as, for all d(t) ∈ D , and for z(t) ∈ Z , the affine control
law is defined as

u(t) =
{

u1 , for z(t) = zm,
u2 , for z(t) = zM.

(22)

It is structured as follows.

u(t) =
{

K(z0− z(t)) , for u1 6= u2,
u1 = u2 , for u1 = u2.

(23)

• K is a static gain expressed by K = u1−u2
zM−zm

.
• z0 is the stock order of the controlled system expressed by

z0 =
u1zM−u2zm

u1−u2
.

• z(t) is the prediction of the future state of the inventory
level.

Fig. 1. Closed loop system with affine control law

Bang-bang control law Another type of control laws is used
in the study, and it is the way of defining u(t) in the form of a
bang-bang control law. This law is expressed as a hybrid system
and belongs to the class of well-known optimal control laws. It
can take either the minimum value u2 or the maximum value
u1. It is given by the following expression.

u(t) =
{

u1 ,pour z(t)≤ zm,
u2 ,pour z(t)≥ zM.

(24)

Fig. 2. Bang-bang control automaton

4.2 Admissibility conditions

Definition. (Control law admissibility) A control law is ad-
missible if for any initial condition y(0)∈ [ym,yM], and any WIP
ϕ(τ) having τ ∈ [0,θ [, there exists real control parameters u1,
u2, zm and zM such that the unique solution of the closed loop
system verifies the constraints on the inventory level y(t) (3)
and the production order u(t) (4), for t ≥ 0 for every customer
demand d(t) satisfying (5).

In order to determine the admissibility conditions of the control
law of the system (2), we apply the principle of state feedback
prediction. So that the expression (7) justifies the term of
prediction that we used to denote z(t). This identity also shows
that

y(t +θ) = z(t)−
∫ t+θ

t
e−σ(t+θ−τ)d(τ)dτ. (25)

When the system evolves in time, the variable d(t) varies
between dm and dM and the variable z(t) vary between zm and
zM . Therefore y(t) will vary between two exact bounds noted y1
and y2. We assume in the following work that

y1 ≤ y2. (26)
Since the value of z(t) is determined only by the values defined
by d(τ) for the instants preceding t, and the integral depends



only on the values taken by d(τ) for the instants following t,
we deduce the relation that exists between the bounds y1, y2
and zm, zM of the zones traversed by the variables y(t) and z(t).

Proposition 2. With the above notations, the exact values of the
reachable output bounds y1 and y2 take the following forms:

• for z(t) = zm and d(t) = dM

y1 = zm−
1− e−σθ

σ
dM , (27)

• and for z(t) = zM and d(t) = dm

y2 = zM−
1− e−σθ

σ
dm . (28)

Proof. The integral in the expression (25) is a convolution,
whose kernel is stable, its norm in the L1 sense being 1−e−σθ

σ
.

We deduce that when
dm ≤ d(t)≤ dM,

the integral varies between

1− e−σθ

σ
dm ≤

∫ t+θ

t
e−σ(t+θ−τ)d(τ)dτ ≤ 1− e−σθ

σ
dM.

The right hand side of expression (25) is therefore smaller than
the right hand side of expression (28), and larger than the right
hand side of expression (27). The equality comes from the fact
that the limits y1 and y2 are really reachable.

• If z(t) = zm, and the demand d(t) applied between instants
t and t +θ is equal to dM , then y(t +θ) assumes the value
y1 verifying (27). This value is therefore the lower bound
of the set traversed by y(t) when t ≥ θ .
• In the same way, if z(t) = zM , and the demand applied

between t and t +θ is dm, then we see that y(t +θ) takes
exactly the value y2, which is therefore the lower bound of
the set traversed by y(t) when t ≥ θ .

Corollary 1. The system (2) and the prediction (7) being given,
and the numbers y1, y2 and zm, zM verifying (26), (15), (27)
and (28) being given, it is observed that the two the following
statements are equivalent.

∀ t ≥ 0 ,∀ d(t) ∈ [dmin,dmax], z(t) ∈ [zmin,zmax] , (29)

∀ t ≥ θ ,∀ d(t) ∈ [dmin,dmax], y(t) ∈ [y1,y2]⊂ [ymin,ymax] .
(30)

Proof. From proposition 2 it is clear that (29) implies (30).
Inversely, there exists a value of t for which z(t) is not in the
interval [zm,zM]. Two cases occur, depending on whether z(t) is
greater than zM or smaller than zm.

• In the first case, if z(t)> zM , a demand equal to dM applied
between the instants t and t +θ causes y(t +θ) to take a
value smaller than y1.
• In the second case, if z(t) < zM , the demand equal to dm

produces an output greater than y2, which completes the
proof.

5. MAIN RESULTS AND DISCUSSION

From the above results, we can formulate the necessary and
sufficient conditions ton obtain a control law as follows.

Proposition 3. Given the system of the form (2), the control
law u(t) of affine type (23), or bang-bang type (24) for which
the system is stable, is admissible if and only if

• the control parameters u1, u2, zm and zM verify (16), (17),
(13), (14)and(15),

• the output parameters y1, y2 verify (26) and (30).

Corollary 2. Given the system of the form (2), there exists u1
and u2 such that the control law u(t) is admissible if and only if
the parameters zm and zM satisfy (20), (21), (13), (14), (15) and
ym ≤ y1 and y2 ≤ yM .

The conditions are:
σzm + e−σθ dM ≤ uM

um ≤ σzM + e−σθ dm

ym ≤ zm−
1− e−σθ

σ
dM

zM−
1− e−σθ

σ
dm ≤ yM

zm ≤ zM

These conditions are written in form of inequalities that depend
on the parameters θ , σ , zm and zM , ym and yM , um and uM and
dm and dM . They are classified in different categories:

• the intrinsic parameters of the system are θ and σ .
• the parameters related to the specification of our system

are ym and yM , um and uM , dm and dM .
• the parameters zm and zM are used to determine the control

law.

Geometrically

• First, we define the expressions za, zb, zc and zd based on
the conditions above.

za = ym +
1− e−σθ

σ
dM

zb =
1
σ
(uM− e−σθ dM)

zc =
1
σ
(um− e−σθ dm)

zd = yM +
1− e−σθ

σ
dm

• After, we define the admissible area of existence of control
law in the plan (zm,zM). By simple projection in this plane,
we can eliminate the control parameters zm and zM .

• Referring to (3), the necessary and sufficient conditions of
existence of control parameters, zm and zM satisfying these
conditions, are simplified to za ≤ zb, zc ≤ zd and za ≤ zd .

Fig. 3. Illustrative graph for conditions



As a result we obtain:

• necessary and sufficient conditions for admissible control
law for σ 6= 0,

σym +dM ≤ uM (31)
um ≤ σyM +dm (32)

ym +
1− e−σθ

σ
dM ≤ yM +

1− e−σθ

σ
dm. (33)

• necessary and sufficient conditions for admissible control
law for σ = 0,

dM ≤ uM

ym +θdM ≤ zm

um ≤ dm

zm ≤ zM,

which leads to
dM ≤ uM (34)
um ≤ dm (35)

ym +θdM ≤ yM +θdm. (36)

At the end of this approach, we have obtained the necessary and
sufficient conditions for admissible control laws for either affine
type or bang-bang type, in the case of perishable final products
(31), (32) and (33), and in the general case for any type of final
products (34), (35) and (36).

6. ILLUSTRATION EXAMPLES

In order to illustrate the effect of the proposed control strategy,
following the theoretical study, we consider in this simulation
example the logistic system of the form (2), and we apply either
an affine control law or a bang-bang control law.
For this system, we follow a co-design methodology in order
to calculate the system parameters, so that the necessary and
sufficient conditions of existence given before are all satisfied.
We have obtained the values of the system parameters as follow.

• Customer demand d(t) : dm = 25, dM = 35.
• Inventory level y(t) : ym = 0, yM = 85 with loss rate

σ = 0.2.
• Control law u(t) : um = 20, uM = 45 with the delay θ = 6.
• Prediction interval Z = [zm,zM] = [123,148].
• Control law parameters u2 = um = 20, u1 = uM = 45,

K = 1 and z0 = 168.
• Initial conditions y(0) = 50, ϕ(t) = 33, z(θ) = 130.22.

In our study, we apply a random signal form of the customer
demand d(t) that evolves arbitrary between dm and dM .

Fig. 4. Random demand signal

6.1 Case of an affine control law

The obtained results for the case of an affine control law are
described on figures 5 and 6.

Fig. 5. Trajectory in the plane (u,y)

Fig. 6. The temporal variations of u(t), z(t) and y(t)

6.2 Case of a bang-bang control law

The obtained results for the case of a bang-bang control law are
described on figures 7 and 8.

Fig. 7. (z(t),u(t)) trajectory



Fig. 8. The temporal variations of u(t), z(t) and y(t)

6.3 Simulation analysis

We can say that the inventory level y(t) has no overruns of
yM , and is always positive. The same remark is noted for the
control law u(t) which remains always between um and uM . So
the positive and saturation constraints (4) (3) are well respected.
Moreover, z(t) evolves inside the interval [zm,zM], which verify
the D-invariance conditions.
In addition, we notice that the evolution of the inventory level
y(t) according to the control law u(t) does not show any exceed
of the domain limited by the physical constraints of y(t) and
u(t), which explain the control law admissibility for every cus-
tomer demand varying between 25 and 35.

7. CONCLUSION

This paper deals with the problem of perishable inventory con-
trol of supply chain, subject to a loss factor σ and production
delay θ , using an approach based on control theory. The system
is subjected to positive and saturation constraints related to the
physical characteristics of the production order u(t) and the in-
ventory level y(t). These constraints must be taken into account
in the conception of control strategies for the delayed logistic
system in order to satisfy any arbitrary and limited customer
demand d(t). More specifically, we presented the delayed dy-
namic model of the system, on which we have applied Arstein’s
reduction to compensate the delay and to obtain an equivalent
non delayed system. Then we have found the necessary and
sufficient conditions for the existence and admissibility of the
control laws, in order to stabilize the dynamic system.

In the continuity of this study, several perspectives can be
elaborated and developed in further work. First we can assume
a variable expiration rate σ as a function of time t, and study
its impact on the control laws structures. Similarly, we have

considered that the delay θ is constant, it would be interesting
to extend this approach in the case of uncertain or variable
delays. Moreover, it is necessary to use the approach of our
study to deal with the problem of robustness with respect to
uncertainty on σ and θ . Finally, this study deals with entirely
unknown customer demand d(t). It is necessary to consider an
estimated demand d(t) and exploit it in the results and methods
developed in this paper.
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