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Abstract

Understanding the chaotic motions of dynamic textures (DTs) is
a challenging problem of video representation for different tasks in
computer vision. This paper presents a new approach for an efficient
DT representation by addressing the following novel concepts. First, a
model of moment volumes is introduced as an effective pre-processing
technique for enriching the robust and discriminative information of
dynamic voxels with low computational cost. Second, two important
extensions of Local Derivative Pattern operator are proposed to im-
prove its performance in capturing directional features. Third, we
present a new framework, called Momental Directional Patterns, tak-
ing into account the advantages of filtering and local-feature-based
approaches to form effective DT descriptors. Furthermore, motivated



by convolutional neural networks, the proposed framework is boosted
by utilizing more global features extracted from max-pooling videos to
improve the discrimination power of the descriptors. Our proposal is
verified on benchmark datasets, i.e., UCLA, DynTex, and DynTex++,
for DT classification issue. The experimental results substantiate the
interest of our method.

1 Introduction

Dynamic textures (DTs) are textures repeated in a temporal domain, such
as fountain, smoke, foliage, sea-wave, a blowing flag, fire, etc [1]. Efforts of
analysis to make them more “understandable” are crucial for important tasks
of recognition, segmentation, synthesis, and indexing for retrieval. Those
are primary keys in a large range of applications in computer vision, such
as visual surveillance of traffic scenes, crowded people [2], human interaction
3,4, 5, 6], detecting objects and events [7, 8], tracking motion objects [9], etc.
The major challenges in DT analysis are due to the wide range of appearances
and non-directional motions of DTs. Many works for DT representation have
been raised to deal with the problems by exploiting the advantages of spatio-
temporal features and other properties of DTs. Roughly, those works can be
categorized into six main groups: optical-flow-based, model-based, learning-
based, filter-based, geometry-based, and local-feature-based.

First, optical-flow-based methods, which efficiently compute and encode
videos in natural way, have been taken in remarkable consideration. To
shape and trace the path of a motion in a sequence, [10] aggregated spatio-
temporal textures formed by magnitudes and directions of the normal flow
which are essential to identify motion types. [11] presented a qualitative
approach based on the normal vector field and criteria of videos to describe
DT features. In another work, these authors combined the normal flow with
filtering regularity to capture the revealing properties of DTs [12]. In the
meanwhile, [13] utilized the velocity and acceleration properties estimated
by a structure tensor to form spatio-temporal multi-resolution histogram.
Recently, [14] have proposed Features of Directional Trajectory (FDT) in
accordance with Motion Angle Patterns (MAP) for addressing local charac-
teristics and angle information of motion points which are along the paths of
dense trajectories of a DT sequence. Due to [15], in the optical flow methods,
assumption of brightness constancy and local smoothness is not suitable for



stochastic DT in reality. Moreover, just motion features of DT's are encoded
while their textures and appearances have not been regarded.

Second, model-based methods have recently attracted researchers in DT
representation. [1] laid the foundation of those with a typical model of Linear
Dynamical System (LDS) based on a combination of Hidden Markov Mod-
els (HMM) and Gaussian noise. Inspired by the idea of LDS, many works
have taken it into account DT estimation for recognition tasks as well as
for other problems in computer vision. [16] utilized kernel-PCA (Principal
Component Analysis) to model LDS’s observation component as a non-linear
function to apprehend characteristics of dynamic features in complex mo-
tions, such as chaotic motions (e.g., turbulent water) and camera motions
(e.g., panning, zooming, and rotations). Later, to capture the motions of
objects in sequences, they presented a model of DT mixtures (DTMs) based
on the LDS’s concept. The outputs are then fed into an algorithm of hierar-
chical expectation-maximization (HEM-DTM) in order to categorize DTMs
into k clusters for DT description [17]. Also based on the LDS model, [1§]
made it be in accordance with a bag-of-words (BoW) method to extract
chaotic features in videos, while [19] based on bag-of-systems (BoS) to form
the corresponding spatio-temporal patterns. To enhance the lookup speed
of BoS’s codebook, [20] proposed BoS Tree, in which a bottom-up hierar-
chy is constructed for indexing the codewords. In terms of efficiency, the
model-based methods have achieved the modest results on DT recognition
because their major drawback is that their encoding mostly concentrates on
spatial-appearance-based characteristics of DTs rather than dynamic-based
[1]. Furthermore, efforts taking them into account dynamic features have
made the models more complex [19].

Third, learning-based methods have been growing into potential approaches
as their noteworthy estimations in DT recognition. A well-trained Convo-
lutional Neural Network (CNN) has considerable attention for learning DT
characteristics. [21] adopted CNN with the concept of deep structures in still
images to learn Transferred ConvNet Features (TCoF') for DT classification.
CNN is also utilized in [22] to extract DT features (DT-CNN) from three
orthogonal planes of sequences, while [23] took it into account constructing
a multi-layer convolutional architecture (PCANet-TOP) in which the PCA
procedure is involved with three orthogonal planes of a DT video for learning
filters. Lately, a deep dual descriptor [24] is based on characteristics of “key
frames” and “key segments” to learn static and dynamic features. In addi-
tion, techniques which are based on dictionary learning with kernel sparse



coding to extract local DT features have obtained promising evaluations in
DT recognition. In [25], each video is partitioned into patches, known as
atoms, in order that local DT features are pointed out using a dictionary
learned by the sparse coding method with the input of atoms. However, it
is difficult for this work to perform in multi-scale configuration because of
the constraint of the atoms in the identical dimension. On the other side,
[26] introduced equiangular kernel to learn a dictionary with reasonable size.
Although the learning-based approaches have usually outperformed in com-
parison with others not only in DT representation but also in other tasks of
computer vision, they take a long time to encode a huge vector of features
using complicated learning algorithms. Our proposed framework below can
achieve competitive recognition results with a simple operator and less cost
of time for computation.

Fourth, filter-based methods have evinced their efficiency in performance
of DT recognition. [27] extracted Binarized Statistical Image Features us-
ing filtering operations on various spatio-temporal regions and binarizing the
filter responses. These filters are learned by employing Independent Com-
ponent Analysis (ICA) transformation on Three Orthogonal Planes (BSIF-
TOP). Then its multi-resolution scheme (MBSIF-TOP) is also introduced
to enhance the capacity of DT depiction. [15] presented spatio-temporal
Directional Number transitional Graph (DNG) as a dynamic-micro-texture
descriptor in which DT appearance and motion features are encoded by cap-
turing directions of natural flow along temporal domains. Experiments illus-
trate that the filter-based approaches have performed well on DT datasets
with simple motions (e.g., UCLA). They, however, either remain several lim-
itations or have not been verified on challenging datasets (e.g., DynTex,
DynTex++). In addition, it takes a significant time to learn filters in BSIF-
TOP or to divide a sequence into 3D grids for DNG, these constraints can
raise the computational complexity.

Fifth, geometry-based methods encode DTs based on fractal techniques
to tolerate environmental changes of videos. A typical procedure of those
is named Dynamic Fractal Spectrum (DFS) [28], (then extended to Multi-
Fractal Spectrum (MFS) in [29]), in which DT features are figured out by
a combination of capturing stochastic self-similarities and analyzing fractal
patterns of DT sequences. However, only spectral information is considered
in those, regardless spatial domain. [30] addressed this issue by embedding
spatial appearance analysis into MF'S in accordance with wavelet coefficients
to form Wavelet-based MFS (WMFS) DT representation with more robust-
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ness. Lately, [31] presented Spatio-Temporal Lacunarity Spectrum (STLS)
descriptor with lacunarity-based features which are captured from lacunarity
analysis on local binary patterns in DT slices. Another effort [32] based on
Stationary Subspace Analysis (SSA) to extract the stationary components
across multiple videos of the same class and then encoded them in a feature
vector with lower dimension. It can be seen that the geometry-based meth-
ods just perform well on a few particular DT datasets, not on the whole DT
benchmarks. In addition, some of them have not been exploited the temporal
part, the important information for DT description.

Finally, local-feature-based methods have taken into account local features
for DT representation. Most of them are derived from the variants of Local
Binary Patterns (LBP), adapted to deal with DT videos, to take advantage
of their simplicity and efficiency in computation for carrying out various is-
sues of DT representation. [4] proposed two LBP-based variants to encode
videos: Volume-LBP (VLBP) operator acquires spatio-temporal characteris-
tics by considering three consecutive frames of DT sequences, while the other
addresses LBP operator on Three Orthogonal Planes (LBP-TOP). Inspired
by those works, several efforts extended them to treat the LBP’s conven-
tional shortcomings in order to enhance the performance of DT represen-
tation: rotation-invariant [33], complementary components and problems of
sensitivity to noise [34, 35, 36, 37]. In other ways, [38] focused on feature
vector reduction through a technique of learning data-driven LBP (DDLBP)
structures. To eliminate misleading patterns in encoding LBP features, [39]
then presented Principal Histogram Analysis (PHA) in which PCA is ex-
ploited to improve the reliability of LBP histograms. This method, however,
only concentrates on the appearances of DT and has high-dimensional feature
space (i.e. 256 x 256 x number of patches).

Beside their promising results, the local-feature-based methods remain
several essential issues, such as large dimension [4, 38, 34], sensitivity to
noise, near uniform regions [35, 36]. To address these problems, we present
in this paper a new framework for DT representation based on three stages:
At first, a new model of r-order moment volumes is introduced by consid-
ering the local neighbors of each dynamic voxel sampled by an element of
structuring volume. Second, an extended operator of Local Derivative Pat-
terns (LDPs) is proposed by integrating two major extensions to improve the
performance of the typical LDP operator. Third, we present a framework for
integration of these components in order to produce effective DT descriptors,
named Momental Directional Patterns (MDP). To verify our works, we have

5



experimented on benchmark DT datasets (UCLA, DynTex, and DynTex++)
for the recognition task. Evaluations show that our framework outperforms
significantly compared to the existing approaches. Consequently, the major
contributions of this paper can be listed as follows.

e A new model of moment volumes extracting from different orders is
proposed in order to make the descriptor more robust against noise and
illumination sensitivity, near-uniform regions. This operation enriches
the robust and discriminative information of dynamic voxels with low
time cost of computation and is also regarded as a pre-processing step
of our framework.

e A novel concept of completed second-order LDP operator, which allows
to exploit more efficiently different local higher derivative variations
(sign, magnitudes, etc.) to enhance discrimination power by addressing
three complementary components, is introduced.

e Adaptive directional thresholds for the components are also proposed
to mitigate the near uniform image problem. They are then taken into
account the above completed model to construct an extended version
of LDP operator making it even more robust and discriminative.

e A new framework for DT description, called Momental Directional Pat-
terns (MDP), is formulated by integrating the above complementary
components in several ways. It allows to obtain both shape and mo-
tion cues of directional DT features through filtered videos figured out
by the model of r-order moment volumes.

e Inspired from CNN architecture, the max-pooling operator is addressed
in the encoding of MDP descriptor to improve its performance by cap-
turing more global features.

The rest of this paper is structured as follows. Section 2 recalls some
related works of LBP-based variants in still images and DT description as
well. The proposed model of r-order moment volumes is presented in Section
3. The next section is to introduce some crucial extensions of LDP operator
for capturing local features of textured images. Then DT descriptors based
on the above components are detailed in Portion 5. Section 6 addresses max-
pooling properties to boost the performance. Section 7 presents settings
for experiments and evaluations of the proposed approach compared to the
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state-of-the-art results on various benchmark DT datasets. The last section
states conclusions and several suggestions for the future works.

2 Related work

As mentioned in the previous section, image texture description based on
the LBP operator has significantly obtained outperformance of recognition
issue thanks to its simple calculation and efficient discrimination power. In
this section, we briefly expose the performance of LBP and its variants on
encoding features in still images and dynamic textures.

2.1 A brief review of LBP

In order to structure spatial features of a local image texture as binary codes,
[40] proposed Local Binary Patterns (LBP), in which a center pixel q. is
involved with its neighbors. Let Z be a 2D gray-scale image, LBP code of q.
is formed as follows.

P-1
LBPpr(q.) Zs Z(q.))2’ (1)
=0

where Z(.) means gray-scale level of a pixel, {p;} denotes P interpolated
neighbors on a circle of the center q. with radius R, and function s(.) is

defined as
1,z >0
s(r) = { . (2)

0, otherwise.

Accordingly, this basic encoding leads to the fact that up to 27 discrete
values are utilized to depict an image texture. To address this problem, three
popular mapping techniques are usually employed in practice as follows to
decrease the dimension of descriptor. First, based on the fact that most of
the LBP patterns in natural images are uniform, [40] proposed u2 mapping
to capture uniform patterns (LBP“?), those which have number of bitwise
transitions (1-0 or 0-1) in their binary string at most two. The uniform
descriptor then has P(P — 1) + 3 distinct values including P(P — 1) 4 2 of
uniform patterns and one of that all non-uniform patterns are grouped into.
Second, rotation invariant (ri) mapping is also introduced in [40] to make



the LBP patterns more resistant to image rotation as follows.

where ROR(LBP, i) computes the distribution of the right circular bitwise
shift of ¢ bits on the LBP binary chain. In case of that, uniform patterns
LBP%? are taken into account ri mapping, the third mapping is formed,
named 7iu2, to structure rotation invariant uniform descriptor (LBP7%“?)
with a much lower dimension of P + 2 compared to 2° of the basic LBP.
Thereafter, other important mappings are also presented to enhance the per-
formance of representation, such as Local Binary Count (LBC) [41] - an
alternative of uniform patterns, extra uniform patterns [42] for taking ad-
vantage of useful non-uniform patterns, TAP# mapping [43] for acquiring
topological information.

2.2 LBP-based variants in still images

The typical LBP operator has been prominently taken into account diverse
applications in computer vision owing to its imposing performance with sim-
plicity in computation and implementation as well. However, it remains
several internal restrictions, such as small supporting regions, lack of local
and global textural information, and noise sensitivities. A lot of efforts have
then addressed these shortcomings in order to improve the LBP’s execution.

[44] proposed a completed LBP (CLBP) model by adopting local varia-
tions of magnitudes which include useful information of local textural pat-
terns. More specifically, CLBP consists of three complementary components:
CLBPg that is identical to the basic LBP, CLBP,, for acquiring local varia-
tions of magnitudes, and CLBP¢ for measuring the difference between gray-
scale level of each center pixel and the global one of a texture image. Inte-
grating these complementary components in different ways can significantly
ameliorate the performance. One of the most favorite combinations is that
probability distributions of those are joined to form a descriptor with more
robust discrimination. Furthermore, [45] took variance into account LBP-
based encoding as a regional contrast estimation to exploit valuable informa-
tion which is not considered in the typical LBP model. [46] then advanced
this idea to investigate various order moments as LBP-based filters to capture
Statistical Binary Patterns (SBP).

Other proposals have attempted to handle the inherent restrictions of
LBP in several ways, such as multi-scale analysis [47], pattern encoding and
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selecting [48, 49, 50], feature training [51], preprocessing [52, 46|, thresholding
[53, 54], mapping issues [42, 43], etc.

2.3 LBP-based variants for dynamic textures

Inspired by the leverage of LBP-based variants in still images, several at-
tempts have taken them into account dynamic texture processing. [4] pro-
posed VLBP in which 3P neighbors are located on three circles of center
voxels with the same coordinate from three consecutive frames of DTs. The
center voxel at the middle frame is then binarized by exploiting the typical
LBP operator for these neighbors and two other centers of the first and last
frames. As a result of that, VLBP binary codes are formed with length of
3P + 2, leading to the descriptor with large dimension of 237*2 bins. To
treat this problem, [4] introduced LBP-TOP in which LBP operator is ap-
plied for a center voxel in consideration of Three Orthogonal Planes (TOP)
of a sequence to capture spatial structures on XY plane and motion cues
on XT, YT planes. The final descriptor of DT sequence is then shaped by
concatenating the histograms calculated on these corresponding planes, i.e.,
[LBPxy, LBPx7, LBPy7| with dimension of 3 x 27 bins.

Thereafter, most of works for DT representation are stated as variants
of above approaches in order to enhance the discriminative power of DT
descriptor, such as merging CLBP into VLBP to form CVLBP framework
[34], taking advantage properties of both LBP-TOP and VLBP to procedure
Helix Local Binary Patterns (HLBP) [35], adopting adaptative thresholds to
encode Local Structure Patterns on Three Orthogonal Planes (LSP-TOP)
36].

3 Moment models

Taking into account the advantages of filter-bank approaches, we propose
in this section a new concept of moment volumes as a filtering technique in
which different order moments of a sequence are calculated from a pre-defined
element of supporting volume. In our framework, this operation is regarded
as a preprocessing with a low cost of computation to enrich robustness and
discrimination for local DT features.
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Figure 1: A sample of structuring ele- terg of volume support Q = {(6,1)}

ment with {(P,R)}={(4,1),(8,2)} [46]. which has P, = 6 blue neighbors sam-
pled on a sphere with the center of red
point and radius Ry = 1.

3.1 Moment images

In [46], the authors presented a model of moment images, also known as
a pre-processing step of image texture classification, in which still images
are filtered by exploiting a LBP-based filter with a pre-defined supporting
region. Encoding based on the filtered images points out local relationships
with more stable textural structures against changes of environment. Two
types of local statistical moments are produced as follows. First, the r-order
moment image calculates the statistic distribution around a pixel q. as

miz p)(de) = |B|Z( qc‘i‘pz)T (4)

in which Z means a 2D gray-scale image texture, q. is a center pixel (i.e.,
q. € Z), B is a supporting regional element consisting of points sampled by
one or more concentric circles of the center q,. with different radii R, i.e.,
{(P,R)} (see Fig. 1), |B| is the cardinality of B.

Second, the r-order centered moment image (r > 1) defines the statistic
distribution around a pixel q. as follows.

,U(ZB) qc ’B| Z ( qc+pz ( B)(qc)>r (5>

p:€B

where m%L )(ac) denotes the mean value (1-order moment) formed around
pixel q..
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[46] have also shown that working on a series of moment images of different
orders brings more textural information because the regional gray distribu-
tion is better captured using different statistical moments.

3.2 Moment volumes

The model of moment images has just considered spatial relations of a center
pixel with its neighbors for image texture classification. To be in accordance
with video representation, we hereafter propose a new local statistical model,
called moment volumes as an extension of moment images, based on statis-
tical moments calculated from a pre-defined spherical support. Similar to
[46], our idea is motivated from filter-bank approaches to exploit more rich
and robust information of shape and motion cues of DT videos by addressing
different statistic distributions.

Let V denote a 3D gray-scale level of a video and q. an arbitrary voxel
of V. Let Q1 = {51,52, ...,Sn} be a local supporting volume as union of
discrete spheres, centered at the same spatial coordinate, for calculating the
statistic distributions at each voxel of V. Each single spheric structuring
support Sy = (Pg, Rx) expresses that Py neighbors are located on a sphere
with radius Ry. In order to compute local statistic distribution at voxel q,
it is simply to settle the center of €2 at q. and then to determine its neighbors
defined by €2. To simplify the presentation, we adopt hereafter an assumption
that coordinate of q. is (0,0, 0), it is possible to situate P, neighbors on the
sphere Sy in two following configurations:

e First, six points are placed on the endings of its orthogonal diam-
eters, ie., {(0,0,Rk), (0,0,—Ri), (—Ry,0,0), (R,0,0), (0,—Ry,0),
(O,Rk,O)}.

e Second, in addition to the above set, this also consists of eight radial
points. Each of which is located on the center of each one-eighth of
the sphere Sy, i.e., its coordinate can be referred as one of different
instances of ( + Rk/\/g, iRk/\/§, iRk/\/g). As the result, there are
14 neighbors in this configuration which can be considered for each
supporting volume.

A sample of S, = (6,1) for the center q. can be formed by P, = 6 local
neighbors on a sphere of R, = 1 as graphically illustrated in Fig. 2. On the
other hand, a local supporting volume may be unions of different discrete
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spheres. For example, Q@ = {(6, 1), (14,2)} consists of two spheric structuring
supports.

Given a pre-defined supporting volume (), we propose to consider two
following statistic distributions. Firstly, the r-order moment volume of as-
sociation between video )V and the local supporting volume €2 is defined as
follows.

ma(a) = 7 2 (s(a + ) (6
i=1
in which q. € V is the current voxel with its surrounding neighbors p; € €2,
the volume element 2 can be structured by one or more spheres with the
same center voxel and different radii, || is the total of considered neighbors,
function g¢(.) returns the gray level value of a voxel. Secondly, the r-order
centered moment volume (r > 1) can also be defined as

T 1 "
(@) = gr 3 (900 + 00— mbala)) (7)
i=1
where m%,@(qc) is the 1-order moment volume at the voxel q.. In practice,
our model particularly considers two following types of moment volumes: the
mean m! and the variance ;2 that are complementary and exploit well shape
and motion cues of DT videos.

3.3 Advantages of moment volume model

By addressing different statistic distributions calculated from a pre-defined
structuring volume, the proposed model of moment volumes has several fol-
lowing beneficial properties.

o Insensitivity to noise: Considering local statistic distributions (mean
and variance) calculated from neighbors allows moment volumes to be
more robust against noise than the raw video because the proposed
model works like a low-pass filter which is able to eliminate dynamic
voxels with intensely high frequency corresponding to noise.

e Invariance to rotation: Our model is independent on angle changes of
frames in DT sequences because the pre-defined supporting region for
calculating volume of moments is a union of discrete spheres, which is
isotropic and so on discards all orientation information. Therefore, the
moment volumes are invariant against rotation.
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e Information richness: The concept of moment volume, which exploits
textural information about local structures, allows to capture more
global information. In addition, taking into account the advantages
of filter-bank methods, our model permits to obtain more numerous
types of local structures by using various moment distributions with
different elements of the structuring volume. In practice, two order
moments “mean” and “variance” are complementary, so these convey
richer information than the original video.

o Low computational cost: Concerning the computational complexity, as
filtered sequences are calculated on a pre-defined structuring volume,
their calculation is simple and efficient along with the same computing
cost like the typical LBP operator. Our algorithm in raw MATLAB
code runs impressively fast on a Linux laptop of CPU Intel Core i7
1.9 Ghz with 4G RAM. It just takes less than 0.11s to handle a video
with dimension of 48 x 48 x 75 for a 3D spherical supporting volume
of @ ={(6,1)} (see Fig. 2).

4 Some crucial extensions of Local Derivative
Patterns

The typical LDP operator has been initially proposed for face recognition
[55] by exploiting local derivative direction variations and then successfully
applied to other applications, such as action recognition [3]. We adopt in
this work for the first time this operator to capture shape and motion cues
for DT representation. Moreover, we also propose hereafter two following
important extensions of LDP operator to improve its discriminative power:
adaptative directional thresholds and a completed model of LDP.

4.1 Local Derivative Patterns

[55] introduced Local Derivative Patterns (LDPs), a directional extension of
LBP, by taking into account local high-order derivative variations based on
considering a pixel and its neighbors in different directions to capture more
robust features.

The first-order LDP at a pixel for a set of considered directions D is
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Pi=0,a=0°

Figure 3: (Best viewed in color) Model of the first-order LDP patterns of q.
(Z!(q.)) and p; (Z.(p:)) pixels in directions @ € D in which q. (in red) is
the considered point, p; is the i neighbor of q., and p; is the j" neighbor
of Pi-

defined as follows.
Z.(de) = Z(qe) — Z(pia) (8)

where p;,, is the i neighbor of a center point q. in a concerning direction
a, Z(.) is gray-scale image level of a pixel. Fig. 3 graphically illustrates
the regular computation of the first-order LDP patterns corresponding to
directions a € D.

In general, the nt"-order LDP is defined as follows, for the center pixel q,
and its P neighbors circled with radius R.

LDP} po(ae) = {f (107 (), Lo (P)) }1cicp (9)

where I"7!(.) means the (n — 1)"-order derivative in direction a at a pixel,
p; is the " neighbor of the center point q., and function f(.) is defined as

1, ifxxy<0
T,Y) = - 10
J(@y) { 0, otherwise. (10)

The detail of other LDP’s formulations as well as samples of its calculation
is discussed in [55]. In practice, four directions are often considered, i.e., a €
{0°,45°,90°,135°}, to capture directional mutual relations of pixels [3, 55].
In case of inspecting the first-order derivative variations in all of directions,
LDP is simply identical to the basic LBP.
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4 6 5 7 3 1 4 | -4
319 | 8| 4—4»ps |—>| 2| 3 | 4
(a)| 5 7 9—>6—>2 1 31 -5
8 8 7 4 9 l
6 5 7 4 2 0 0 1
1 0 |— 00101001
120 70 | 26 | 92 | &4 0 0 1
10 | 170 | 150 | 30—»70 T
(b)| 8 | 10 | 100->60—»30 20 | 120 | -40

30 | 150 | 120 | 110 | 180 | ——| -90 | 40 | 30

95 | 56 | 40 | 25 | 5 30 | 10 | -70

Figure 4: (Best viewed in color) An example of two different local structures
(marked in red color) are encoded by the same LDP pattern in concerned
direction a = 0°.

4.2 Adaptative directional thresholds

Similar to a well-known restriction of the typical LBP, LDP is not occasion-
ally able to judge different structure patterns because its encoding is still
thresholded by the center with around neighbors. It can be observed in Fig.
4 that two different local structures (a) and (b) are figured out by the same
pattern. In order to handle this issue, we propose to define three following
adaptative thresholds® for LDP operator. The key idea for that is the con-
sideration of the first-order LDP. These thresholds will be then exploited in
Section 4.3 to construct the completed model of LDP.

First, Global Directional Difference (GDD) of an image texture is calcu-
lated as the mean of absolute directional differences on the entire of concerned

LContrary to two last thresholds, the first one is empirically proposed without depend-
ing on « because this leads to more robust and stable results.
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directions.

(11)

aeD

aDD(@) = 5 (3 1Tl

where NV = (W — 2) * (H — 2), W and H are width and height dimensions
of 2D image 7T respectively, |D| is the total of considered directions, Z/(.) is
the first-order local derivative pattern of a pixel in regarding direction a.

Second, to capture the information of Directional Magnitudes (DM,,)
for each direction «, we compute the mean of absolute multiplication of
directional differences on the whole image as follows.

DMLD) = 1 (X e = Zuwa) | (12)

in which p; is the " neighbor of current pixel q; of image Z, P is the number
of considered neighbors.

Third, the Directional Center (DC) threshold is defined as the average of
directional centered differences on the whole image.

DC(T) = 1+ 3 [Zalay) (13)

q; €T

4.3 Completed model of LDP

[44] showed that considering local variations of magnitudes together with
the typical LBP makes the descriptor more robust and discriminant because
they are complementary. Inspired by this idea, we introduce in this portion,
a completed model of the second order LDP using adaptative thresholds,
which are presented in Section 4.2. Similar to [44], it also consists of three
following complementary components.

First, we propose LDP-D operator as the first component in order to
capture the second-order local derivative patterns adjusted by an adaptive
thresholding GDD (see Equation (11)) as

P—

LDP-Dpra(ac) = Y ¢(Z,(ac), Z,(pi), GDD(Z)) 2" (14)

1=0

—_

where p; is the i** neighbor of the center pixel q. in accordance with direction
a, P is number of considered neighbors circled by radius R, and function (.)
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| 2|34 |—] 16| 7 |— 0 0

GDD = 27/9 = 3

20 | 120 | -40 70 | 170 | 10 0 0 0
(b)[-90 | 40 | 30 | —»| -40 | 90 | 80 | —»| 1 0
30 | 10 | -70 80 | 60 | -20 0 0 1

GDD = 450/9 = 50

Figure 5: Two different local structures (a) and (b) in Fig. 4 are encoded by
different LDP-D patterns in direction o = 0°.

is estimated as

L, if(x+2)x(y+2)<0

. (15)
0, otherwise.

U(z,y,2) = {
In assumption of just considering one direction of a = 0° (i.e., |D| = 1), in
contrast to the basic LDP, the proposed operator LDP-D is able to differen-
tiate the local structures (a) and (b) as detailed in Fig. 5.
Second, LDP-M component exploits the information of magnitudes in a di-
rection a by using adaptative threshold DM, (see Equation (12)) and is
formed as

!

LDP-Mpra(qc) = Y h(Z,(qa.), I, (pi), DM4(Z))2’ (16)

7

Il
=)

where h(.) is defined as

1, iflexy| >z (17

0, otherwise.

h(x7 y’ Z) - {

Third, LDP-C regards to the directional contrast of a center against the mean
of directional differences on the whole image.

LDP-Cy(q,) = 5(Z, () — DCa(T)) (18)
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in which s(.) is defined by Equation (2).

Three above complements (abbreviated to LDPp, LDP,;, and LDP¢)
should be combined in different ways to produce extended LDP operator,
named xLDP, for investigation to find out an enhanced operator LDP for
encoding DT features. An instance of those is xXLDP = LDPp /¢, in which
the signals of “_” and “,” in the style p_y;/c mean that histograms obtained
by the corresponding components are concatenated and jointed respectively.
It should be noted that our operator can be also generated in high-order
derivative patterns (xLDP™) by exploiting the n'’-order directional LDPs
(n > 2) [55] for calculation of the proposed components above.

Our xLDP operator is different from the typical LDP [55] in several prop-
erties to enhance the performance:

e The xLLDP operator considers local structures in diversity of directional
relations based on three complemented components, in contrast to LDP
with only in consideration of local derivative patterns.

e Our operator is more insensitive to noise when exploiting adaptative

directional thresholds (see an instance of encoding patterns in Fig. 4
and Fig. 5).

e To encode a local structure in each direction, LDPs are separately
computed by using the corresponding components. In the meanwhile,
the basic LDP encodes a pixel in a long binary chain for all concerned
directions, e.g., a string of 32 bits for four 8-bit LDPs.

e Thanks to structuring patterns in separative strings of binary codes,
two popular mappings of riu2 and u2 for the processing of description
can be utilized to advance the performance of descriptor with practical
dimension. In contrast, LDPs are calculated on sub-regions of an image
texture with various parameters of histogram bins.

4.4 Assessing our proposed extensions of LDP

In order to evaluate the proposed complementary components for LDP oper-
ator, we also implement the basic LDP [55] for DT description based on the
filtered videos captured by the proposed model of r-order moment volumes.
For a center pixel q. and its P considered neighbors sampled by a circle with
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radius R, the second-order typical local derivative pattern (LDP) of q. in
direction o, named LDPp g ,, is defined as

b
_

LDPpra(qac) = »  f(Zh(ac), I, (p:))2" (19)

%

Il
o

where the function f(.) is defined by Equation (10). Actually, this operator
is the same LDP-D without exploiting the adaptative threshold of GDD.

5 Momental Directional Patterns for DT rep-
resentation

In this section, we propose a new operator, named Momental Directional
Patterns (MDP), to efficiently capture directional DT patterns from filtered
videos obtained by the r-order moment volume model. Our idea is to take
into account the advantages of filter bank approaches and a complemen-
tary LBP-based variant allowing to obtain more textural information in DT
videos. We then consider our extended xLLDP operator, presented in Section
4, on a series of moment volumes which are introduced in Section 3 to result
in Momental Directional Patterns for DT representation. Let us recall that
the extended operator xLLDP is introduced to work in still images. For that
reason, in order to take it into account describing shape and motion cues of
a DT video, we adopt the idea of [4] to address xLLDP on three orthogonal
planes of moment volumes.

Let V denote a video and D be a set of considered directions. The r-order
moment volumes with supporting region €2 are utilized to point out filtered
sequences, i.e., mean (m”) and variance (p") videos. DT characteristics in
each of these are then encoded by exploiting the proposed operator xLDP
with directions o € D on three orthogonal planes XY, XT, YT of these
moment volumes to compute the corresponding probability distributions, as
graphically demonstrated in Fig. 6. The obtained histograms are concate-
nated and normalized to form the final descriptor of video V as follows.

MDPQ”D (V) == [XLDPP’RD (mrxy) s XLDPP,RD (TTLTYT) s
xLDPp g p(m"x7),xLDPpr p(ty ), (20)
XLDPp ro(tir), XLDPp g p (157)]
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From now on, we use the combination way of the extended xLLDP operator to
denote the corresponding descriptor MDP. For example, MDPp 5;/c means
that it is based on the extended operator xLDP = LDPp_LDP,;/LDP¢,
which is the concatenation between LDPp and the joint of two components
LDP,; and LDP¢.

In order to evaluate the contribution of the proposed extensions of LDP
operator, a basic descriptor MDP-B, which is based on the second-order
LDPs, is also considered by using the similar construction.

MDP-BQ,D(V) = [LDPP,R,D(mrXY)> LDPRR,D(mTYT)a
LDPprp(m”xr), LDPpro(iyy ), (21)
LDPprp(ixr), LDPprp(1y7)]

On the other hand, to verify the eminent contribution of our model of moment
volumes, we also structure LDP-TOP patterns to depict the original DT se-
quence ) with non-supporting volume elements. These patterns are encoded
by the typical second-order LDP operator on three orthogonal planes.

LDP-TOPp(V) = [LDPprp(Vxy),LDPprp(Vxr),
LDPprp(Vyr)]

Two possible mappings can be taken into account encoding DT features
in order to reduce the dimension of representation: riu2 and u2 giving
Lyiwo = (P+2) and L, = (P(P — 1) + 3) distinct values for each pixel pat-
tern respectively, in which P is the considered neighbors. Particularly, the
size of MDP descriptor depends on the combination ways of complemented
components to form xLDP. For instance, descriptor MDPp »s/c, computed
by a style of xLDP = LDPp_LDP,;/LDP¢s with 3 X [D| X Lyju2/u2 bins,
has dimension of 9 X |D| X Lyjua/u2(|m"| + |1"|) for riu2 and u2 mappings.
Therein, |D| denotes the number of concerned directions. |m”| and |u"| ex-
plain the quantity of “mean” and “variance” videos filtered by the r-order
moment volume model. Towards the MDP-B and LDP-TOP descriptors,
their dimensions are respectively fixed as 3 X |D| X Lyju2/u2(|m"| + |1"]) and
3 X |D| X Lyiuz Ju2 bins corresponding to the mappings.

Furthermore, we also take advantage of the multi-scale performance [47]
to enhance the discriminative power of DT descriptors. According to that,
the proposed operators are utilized to calculate concerning probability distri-
butions with different samples of neighbors {(P, R)}. The output histograms

(22)
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are then concatenated and normalized to produce multi-scale descriptors

MMDP, MMDP-B, and MLDP-TOP.

6 Enhancing the performance with max-pooling
features

Inspirited by CNNs [56, 57], we exploit the stage of max-pooling to obtain
more intensity of global characteristics and “deep” patterns for DT repre-
sentation (hereunder referred as max-pooling features). Accordingly, for a
filtering window with size of w X w, the max-pooling process is taken into
account to analyze a video V by striding the filter at 1 for calculating V;
of “deep” features and at w for capturing V, of global characteristics. Then
MDPs of the obtained sequences are computed and concatenated with those
of V to form an enhanced MDP (EMDP) descriptor as

EMDPg p(V) = [MDPgq p(V), MDPg p(V1), MDPg p(Vs)] (23)

Figure 7 graphically demonstrates an example of this computation. Simi-
larity to MDP operator, EMDP is also considered in multi-scale regions to

capture the further local features for structuring a more robust descriptor
MEMDP.

7 Experiments

We verify our method on different benchmark DT datasets: UCLA [1], Dyn-
Tex [58], and DynTex++ [59]. For DT recognition task, the final histogram,
calculated by our proposed descriptor on a DT video, is used as an input
feature vector for classification utilizing a linear SVM (Support Vector Ma-
chine) which is trained according to specific experimental protocols. Then
the obtained results are compared to those of the state-of-the-art approaches.
In our experiments, we conduct the default parameters of LIBLINEAR? tool
in which learning algorithms of linear SVMs have been implemented into
[60].

Zhttps:/ /www.csie.ntu.edu.tw/ cjlin/liblinear
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7.1 Experimental settings
7.1.1 Settings for moment volumes

Since encoding dynamic textures on the high-order moment volumes results
out DT descriptor with a large dimension, it should be considered in this
work two first orders of moment volume model to calculate mean (m') and
variance (p?) sequences, i.e., |m!| = |p?| = 1. Structuring volume elements
adopted to this filtering process are a set of supporting 3D spheres as S =
{Ql,Qg, ,Qm} Particularly, we have experimented on various elements
of {{(6, D} A{(14,1)},{(6,1),(6,2)},{(6,1),(14,2),{(14, 1), (14, 2)}} In the
coming sections, we only present experiments using supporting volume of
= {(6,1)} owing to its better performance on the different DT datasets.
An instance of filtering process exploiting this structuring element in two
first-order moment volumes (i.e., m! and p?) is graphically illustrated in Fig.
8.

7.1.2 Parameter settings for DT descriptors

Based on the two first-order filtered sequences to structure DT descriptors in
justifiable dimension, we compute MDP, MDP-B, and LDP-TOP descriptors
in 4 directions of D = {0°,45°,90°, 135°}. For MDP descriptor, formed by the
extended xLDP operator, three kinds of integrating complementary compo-
nents can be experimented as {MDPDfM, MDPp /e, MDPDJVLC} (hereun-
der called MDP descriptors for all) corresponding to dimensions of {48Lm-u2 Ju2s 121002 w2, 48(Lyivz jus
2)} with riu2 and u2 mappings respectively. In respect of MDP-B and LDP-
TOP descriptors, their lengths in this case are 24L,;,2/42 and 12L,;,2/,2. Sev-
eral particular dimensions of these descriptors of riu2 mapping can be seen
in Table 1, in which it is possible for our operators to compute multi-scale de-
scriptors for capturing more robust structural relations while retaining their
sizes in reasonable dimensions compared to other LBP-based methods. Simi-
larity to the settings for encoding MDP, descriptor EMDP is extra enhanced
with the enhanced features computed from max-pooling videos which are
formed with the vl_nnpool() function® using the default parameters except
Square filter = 2 x 2, Stride = 1 for “deep” features, and Stride = 2 for
global characteristics.

Shttp://www.vlfeat.org/matconvnet /mfiles /vl nnpool
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7.2 Datasets and experimental protocols

In this section, at first, features of DT datasets and corresponding protocols
are presented in detail. Then their key properties are shortened in Table 2
for a convenient glance.

7.2.1 UCLA dataset

UCLA dataset [1] consists of 50 categories with four sequences for each, i.e.,
200 DT sequences in total, those which are recorded in different conditions
to picture fountain, fire, boiling water, waterfall, plant, and flower. Each
original sequence is captured in 75 frames with dimension of 160 x 110 for
each frame. A slight version of UCLA often utilized for DT classification
task is structured by splitting the initial videos into sub-sequences with a
48 x 48 pixel window located at the major region of dynamical features (see
Fig. 9 for several DT samples). Hereinafter, three benchmark schemes are
popularly used for evaluations of DT recognition.

e 50-class breakdown: Two experimental settings are usually focused on
this scheme:

Leave-one-out (50-LOO): Following the protocol in [1, 64, 27], just
one sample in the scheme is taken out for testing and the rest for
training. This trial is performed in repetition for all samples and the
final estimation is resulted by the mean of all obtained rates.

Four cross-fold validation (50-4fold): Similarity to [28, 27, 35|, one-
fourth of each class is addressed for testing and the remain for learning.
The experiment is repeated four times with distinct test samples for
each runtime. The final recognition rate is reported by the average of
all repetitions.

e 9-class breakdown: This scheme is reorganized from the 50-class model
by categorizing its DT sequences into 9 classes named as boiling wa-
ter(8), fire(8), flowers(12), fountains(20), plants(108), sea(12), smoke(4),
water(12), and waterfall(16), where the numbers in parentheses denote
total of sequences of each class (see Fig. 9 for several samples corre-
sponding to their groups). The experimental setting is adopted as that
in [19, 59, 28|, in which one half of DT sequences in each category are
randomly selected for training and the remain for testing. The average
of 20 runtimes is reported as the output rate.
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o 8-class breakdown: As the dominant cardinality of the plants(108)
group in 9-class, it is eliminated to form 8-class scheme with more
challenges for DT evaluation. Following [19, 28], the configuration for
experiment is set like that 50% of DT sequences randomly taken out
from each class is utilized for training and the rest for testing. Similar
to 9-class, the trial on this scheme is also run 20 times and the mean
of those forms the final rate.

7.2.2 DynTex dataset

DynTex dataset [58] originally consists of more than 650 videos captured
under various changes of environmental elements and taped in AVI format.
In our experiments, we utilize “pr1” DynTex version* of 679 DT sequences
arranged in 10 seconds with justifiable dimension of 352 x 288 and 250 colour
frames. Several videos along with their classification labels are illustrated in
Fig. 10. Following the experimental settings in [4, 27, 35], a sub-dataset
for DT recognition is founded by selecting 35 videos from “pr1”, called as
DynTex35. Each video is treated as a category comprising 8 non-overlapping
sub-DT's that are separated from this sequence using random clipping points
along axes of X, Y, and T, but not at half in these. An instance of splitting
points is sampled as x = 170,y = 130,¢ = 100 in [4]. Furthermore, partition-
ing along T axis of each sequence results out two sub-DTs. Consequently, 10
sub-DT's with different spatio-temporal measurements are collected for each
category.

In addition, three challenging benchmark datasets® are also composed
in [58] for DT classification as follows: Alpha comprises 60 videos catego-

i«

rized into three groups with 20 DTs per each as “grass”, “sea”, and “trees”.
Beta consists of 162 sequences grouped into 10 classes: “sea”, “vegetation”,
“trees”, “flags”, “calm water”, “fountains”, “smoke”, “escalator”, “traffic”,
and “rotation” with different cardinality of sequences for each. Gamma in-
cludes 264 DTs divided into 10 categories as “flowers”, “sea”, “naked trees”,
“foliage”, “escalator”; “calm water”, “flags”, “grass”, “traffic”, and “foun-
tains” with various numbers of sequences for each. Similar to the protocol
set up in [27, 65, 23], leave-one-out cross validation is utilized to verify the

performance of our framework on those for the DT recognition problem.

4http://dyntex.univ-Ir.fr/download.html
Shttp://dyntex.univ-lr.fr /classification_datasets/classification_datasets.html
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7.2.3 DynTex++ dataset

The sequences in DynTex dataset are restructured to form a richer bench-
mark for DT recognition, named DynTex++ [59]. Accordingly, 345 DynTex’s
raw videos are split into sub-sequences with the fixed size of 50 x 50 x 50 so
that they just include the main dynamic texture without any background or
other dynamic structures. The clipped DTs are then filtered by some tech-
niques to expose 3600 sequences, those which are grouped into 36 categories
with 100 DTs for each. We follow the same experimental setting as that in
[59, 27, 62] for evaluation. One half of samples from each class is randomly
selected for training, and the remain for testing. The experiment is repeated
20 times to report the average performance as the final result.

7.3 Experimental results

Performances on different benchmark DT datasets (UCLA, DynTex, and
DynTex++) of our framework, in which the proposed operators along with
riu2 and u2 mappings are ultilized to encode filtered videos in single-scale
and multi-scale analyses for DT description, are detailed in corresponding
Tables 4, 5, and 7 respectively. Based on the experimental results, we could
make some crucial statements as follows.

First, as mentioned in Sections 3.2 and 3.3, exploiting moment volumes
makes DT representation more insensitive to noise and illumination. Our
experiments have verified that the DT descriptors MDP and MDP-B, com-
puted on the filtered videos, have outstanding performance in comparison
to the LDP-TOP’s, encoded on the raw DT sequence with non-supporting
volumes (see Tables 4, 5, 7 for MDP, MDP-B, and Table 8 for LDP-TOP
descriptor). In this regard, two first-order filtered (“mean” and “variance”)
videos have notably contributed to the performance of the proposed descrip-
tors (see Table 3). Second, it is in accordance with our evaluation in Section
4.4 that the combination of complemented components comprises additional
discriminant information. As expected, all MDP descriptors outperform sig-
nificantly compared to MDP-B with a single complementary element (see
Tables 4, 5, and 7). Third, MDP descriptors exploiting the factor of direc-
tional center contrast (the component LDP¢ of an extended operator xLDP)
are often more informative than others. Therein, jointing with this fac-
tor makes those more robust to noise (see Tables 4 and 7). Fourth, MDP
descriptors with rtu2 mapping not only have tiny dimension but also deal
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with more efficiently than u2. Fifth, it is consistent with our analysis in
Section 5 that multi-scale encoding allows to capture more local directional
structures in larger regions. More specifically, multi-scale descriptors of riu2
mapping ({(P, R)}"™?) are more efficient than single-scale. Therein, 2-scale
(e.g., {(8,1),(16,2)}) achieves good results but the performance of 3-scale,
ie., {(8,1),(16,2),(24,3)} seems more “stable” on most of the benchmark
DT datasets thanks to considering spatial features on the broad locality. Con-
sequently, it should be recommended for implementation in practice, and also
be the setting chosen for comparing with the state-of-the-art performances.

Furthermore, the MDP-B, which is based on the basic LDP (see Sections
4.4 and 7.3.4), has not performed as efficiently as MDP descriptors structured
by the extended LDP operator. MDP also outperforms in comparison with
LDP-TOP using the same configuration. These facts prove the effectiveness
of our proposed components: the important extensions of LDP operator and
the model of moment volumes. However, it should be noted that MDP-B also
obtains promising results compared to existing LBP-based methods thanks
to the contribution of the r-order moment volume model.

In aspect of comparison with the existing approaches, our proposed method
with a simple encoding technique conducts outstandingly in DT recognition
issue compared to LBP-based variants for DT representation. In addition,
its ability is the same as that of deep-learning-based frameworks in several
circumstances (see Table 6). Hereafter, comprehensive evaluations of our
proposal on different DT datasets are expressed clearly, in which if MDP
descriptors are not specified their implemented configurations in detail, the
default setting is mentioned for them, i.e., {(8,1), (16,2), (24, 3) }""2.

7.3.1 Recognition on UCLA dataset

It can be verified in Tables 4 and 6 that the proposed method obtains the best
recognition rates of 100% for both 50-LOO and 50-4fold schemes compared
to the state-of-the-art results. For 9-class and 8-class scenarios, our proposal
also acquires competitive performances. Hereafter, estimations on each of
UCLA’s sub-datasets are detailed specifically.

50-class: It can be realized in Table 6 that MMDPp 3 ¢ and MMDPp s
achieve good results with 100% and 99.5% on 50-LOO and 50-4fold scenar-
ios respectively. In aspect of the chosen comparing setting (see Section 7.3),
MMDPp pr/c with only 3888 bins outperforms with rate of 100% on both
scenarios. It is the best performance in comparison to all existing methods
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including deep-learning-based approaches PCANet-TOP [23], D3 [24], and
DT-CNN [22]. The filter-based method, MBSIF-TOP [27], achieves rate of
99.5% using a 7-scale descriptor of larger dimension (5376 bins). Utilizing
multi-fractal analysis to measure spatio-temporal features, DF'S [66] obtains
the same ours (100%) on 50-4fold scheme but it has not dealt with well on
other challenging DT datasets (e.g., DynTex). Similarly, PI/PD-LBP vari-
ants [39] structure DT descriptors with grand dimensions using complicated
learning procedures, and they have not been tested on DynTex.

9-class: In this scheme, MMDPp ;; with rate of 98.90% is the best perfor-
mance compared to other MDP descriptors. In the meanwhile, accuracies of
MMDPp_yr.c and MMDPp_p/c are 98.35% and 98.70%, slightly lower rates
of 99.20%, 99.35%, and 99.60% which are reported by CVLBC [63], FD-MAP
[14], and DNGP [15] respectively. However, CVLBC and FD-MAP is not
better than ours on other scenarios (except 8-class) of UCLA dataset, while
DNGP has a complex representation. It should be noted that our method
outperforms lightly compared to DT-CNN’s [22], 98.05% for AlexNet and
98.35% for GoogleNet deep learning framework. Specific recognition rate on
each category in Fig. 11 illustrates that MMDPp 5;/c has mainly confused
sequences of “Fire” with “Plants”, “Water” with “Waterfall”, and “Smoke”
with “Water”. The reason for that may be the similar characteristics of
those.

8-class: Obtaining rate of 98.7% with MMDPp j;/c in the more chal-
lenging scheme (see Table 4), it is interesting to note that the ability of
our method is nearly the same as DT-CNN’s [22] utilizing deep-learning-
based frameworks: AlexNet (98.48%) and GoogleNet (99.02%). It can be
also observed in Table 6 that our method has the best performance among
LBP-based methods, excluding CVLBC [63]. As mentioned above, it does
not handle well on other schemes and has not been verified on the more
challenging subsets of DynTex (i.e., Alpha, Beta, Gamma). Other non-LBP-
based approaches, like Orthogonal Tensor DL (99.50%) [25], STLS (99.5%)
[31], DNGP (99.4%) [15], DFS (99.2%) [66], 3D-OTF (99.5%) [29], FDT
(99.35%) [14], FD-MAP (99.57%) [14], deal with more effectively than ours
but their drawbacks are either sophisticated computation (e.g., Orthogonal
Tensor DL, DNGP) or inefficient operation on other DT datasets (e.g., Or-
thogonal Tensor DL, DFS, 3D-OTF, STLS, FDT, FD-MAP). The confusion
matrix confusion of each class in Fig. 12 indicates that MMDPp 5;/¢c has
principally confused the properties of “Smoke” sequences with “Water” due
to their alike features.
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7.3.2 Recognition on DynTex dataset

Tables 5 and 6 indicate that our method obtains the best results compared to
existing LBP-based methods and other non-deep-leaning techniques on this
scheme. Specific evaluations on each of DynTex’s variants are expressed in
detail as follows.

DynTex35: It can be observed in Table 5 that the highest rate of recogni-
tion on this scenario is 100% reported by MDP% (24, 3) and MDPY; ,, (24, 3).
In the meanwhile, MMDPp »;, MMDPp 3/ ¢, and MMDPp /¢ result out
lightly lower rate of 99.43%. This is because of the similarity of features in
two classes ¢ and d, as shown in Fig. 14, that they are not able to differ-
entiate. The detail of classification rate of MMDPp_ /¢ is exposed in Fig.
13. CVLBC [63] obtains accuracy of 99.71% on this scheme (see Table 6),
sightly higher than our MMDP descriptors’ but it has not verified on other
challenging variants of DynTex (i.e., Alpha, Beta, Gamma).

Alpha: In this scheme, MMDPp 3, and MMDPp 5, ¢ with rate of 98.33%
(see Table 5) outperform compared to that of MMDP p_ 5/ with 96.67% due
to the confusion of two DT sequences (see Fig. 15). Those results are also the
best in comparison with all existing methods excluding deep-leaning-based
approaches st-TCoF [21], DT-CNN [22], and D3 [24].

Beta: 1t can be realized in Tables 5 and 6 that our MDP descriptors
have the best performance compared to all non-deep-leaning-based methods.
More specifically, MMDPp_y; ¢ of (16,2)(24,3)"? gains the highest rate of
98.15%, slightly better than MMDPp_p; and MMDP p_y7/¢ with (96.91%) and
(97.53%) respectively. Those performances are much better than PCANet-
TOP’s [23] and about 1% to 3% lower than st-TCoF’s [21], DT-CNN’s [22],
and D3 [24], in which exploiting complicated learning algorithms along with
tremendous dimension of DT representation while those are crucial to ensure
feasible implementations in practice. The confusion matrix of MMDPp 51/¢
in Fig. 16 indicates that it has mostly confused “Rotation” sequences with
“Vegetation” and “Trees”.

Gamma: In this scenario, rate of 94.68% is the best recognition pointed
out by MDPZ,, /c(16,2), while multi-scale MMDP also obtains good results
from 92% to 93%. Towards the setting chosen for comparison, MMDPp /¢
achieves rate of 92.05%, better than all existing methods excepting LBP-
TOP’s implemented in [21] and that of deep-leaning-based approaches. In
order to address which categories have enforced the misunderstanding of
MMDP p_ps/¢ for the improvement, the confusion matrix is figured out as in
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Fig. 17. According to that, mutual confusion between sequences of “Foun-
tains” and “Calm water” should be concentrated on for perspectives.

7.3.3 Recognition on Dyntex++ dataset

It can be observed from Tables 6 and 7 that MDP descriptors have performed
well in comparison to the existing approaches. Specifically, the best recogni-
tion rate on this scheme is 96.51% (see Table 7) reported by MDPY; ,, ~(8,1).
The descriptors of MMDP p_5;, MMDPp s ¢, and MMDP p /¢ obtain 95.58%,
95.7%, and 95.86% respectively, those which are the highest rates com-
pared to the existing methods using SVM algorithm for classification. In
aspect of the comparing setting, the performance of MMDPp »;/¢ is nearly
the same MBSIF-TOP’s (97.12%) [27] with 8-scale descriptor formed by 8
learned filters, and about 3% lower than DT-CNN'’s (98.18%) [22] using deep
learning techniques of AlexNet for learning DT features. The LBP-based
method, MEWLSP [62], acquires the highest recognition rate of 98.48% on
this scheme, even better than DT-CNN'’s (98.18%) [22]. However, it does not
outperform on UCLA dataset compared to ours as well as has not been justi-
fied on other challenging DynTex variants (i.e., Alpha, Beta, Gamma). An-
other sophisticated method utilizing deep learning framework of GoogleNet
[22] has prominent classification rate but it takes a long time to handle DT
features with a huge complicated computation while these costs are crucial
in real-time applications of computer vision. Accuracies of MMDPp /¢ on
each categories are detailed in Fig. 18. Accordingly, our descriptor outper-
forms on most of categories, only five of them are really challenges for the
future work (see Fig. 19).

7.3.4 Assessing the proposed components: Recognition with MDP-
B and LDP-TOP

We address in this section some experiments for verifying our proposed com-
ponents. Two following descriptors (see also Section 5 for more details) are
considered: 1) LDP-TOP that applies directly the second-order LDP operator
on three orthogonal planes of raw videos; ii) MDP-B has the same architec-
ture as that of MDP descriptors but on the contrary, it is based only on LDP
operator. It is evident that the comparisons between LDP-TOP and MDP-B,
between MDP-B and MDP, allow to highlight respectively the contribution
of moment volumes, and that of the extended operator xLLDP.
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It could be seen from Tables 4, 5, 6, 7, and 8 that MDP descriptors
are more efficient and “stable” than MDP-B and LDP-TOP ones. Table 6
shows that our proposals permit to prominently improve MDP’s performance
compared to the straightforward LDP-TOP version on most of DT datasets
(e.g., up to 8.64% on Beta dataset). It also outperforms in comparison with
MDP-B on various datasets (e.g., up to 9.26% on Beta).

Moreover, the execution of LDP-TOP is impaired in comparison to MDP-
B’s on most of the DT datasets (see also Table 6) due to non-supporting
volume taken into account. This fact proves that considering moment vol-
umes inspite of raw videos allows to capture more robust and discriminative
features to enhance the performance of DT descriptors.

In the meanwhile, with the same configuration, MDP-B fails behind MDP
descriptors on most of DT datasets because the typical second-order LDP is
used instead of our extended operator xXLDP (see Section 4.4). This shows
the important contribution of two proposed extensions for LDP operator to
make DT descriptors more robust and discriminative. However, it should
be noted that MDP-B’s performance produces competitive results that are
still comparable with the existing methods in several circumstances thanks
to the collaboration of the filtered videos figured out by the proposed model
of r-order moment volumes.

Because of those, the below evaluations mainly focus on the performance
of MDP-B compared to the existing approaches.

UCLA: The performance of MMDP-B with multi-scale setting of {(8, 1), (16, 2), (24, 3) }"2
acquires recognition rates of 99.5%, 98.5%, 98.05%, and 97.61% for 50-LOO,
50-4fold, 9-class, and 8-class scenarios respectively, those which are compa-
rable to the LBP-based methods (see Table 6). In 50-LOO and 50-4fold
schemes, the results of LDP-TOP“?*(16,2) are also promising with rates of
99% and 99.5% (see Table 8).

DynTex: In this scheme, MMDP-B and MLDP-TOP with comparing
configuration just break down on Beta with classification rate of 88.27%
and 88.89% respectively while they and their other settings perform well
on other variants of DynTex dataset (see Table 5). More specifically, the
best recognition rates on DynTex35 is 99.43% resulted by MDP-B*?(24, 3),
LDP-TOP"*(24,3), and 99.14% reported by MDP-B""?(24, 3) with only 624
dimensions. Towards the comparing setting, MMDP-B and MLDP-TOP
achieve rate of 98.86% on DynTex35, the best classification among the LBP-
based variants except MEWLSP’s [62] (99.71%) (see Table 6). Although not
better than the ability of MDP on Beta, MDP-B obtains comparable rates
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against those of all existing techniques excepting deep learning methods, i.e.,
st-TCoF [21], D3 [24], DT-CNN [22]. Furthermore, it is interesting to note
that the operation of MMDP-B is slightly better than MMDP’s in verifying
on Gamma scheme with 93.18% in contrast to 92.05% of MMDP.

DynTex++: Utilizing complicated learning algorithms, DT-CNN [22] out-
performs dominantly on this scenario (98.58%). The MMDP-B descriptor
of {(8,1),(16,2), (24, 3)}"? with only size of 1,350 bins gains the promis-
ing results with rate of 95.82%, lightly better than that of MMDPp_ 5, and
MMDPp s . Thanks to exploiting spatio-temporal information of the mo-
ment volumes, MDP-B“*(8,1) results out the highest rate of 96.51%, just
about 2% lower than DT-CNN’s [22].

7.3.5 Assessing impact of max-pooling features: Recognition with
EMDP descriptor

We conduct in this section several experiments for investigating the impact
of max-pooling features on encoding MDP patterns. As validated in Section
7.3 that the configurations of riu2 mapping and p_j;/c integration reported
the best performance, we just address these settings to compute EMDP de-
scriptor.

It could be verified from Tables 4, 5, 7, and 9 that EMDP descriptor is
more discriminative than MDP thanks to the contribution of max-pooling
features. Specifically, the performance of its single-scale variants has signif-
icantly improved in the recognition issue of 50-class schemes in the UCLA
dataset. For instance, with {(P, R)} = {(8,1)} of riu2 mapping, EMDP ob-
tains 1.5% better than that of MDP (see Tables 4 and 9). In the setting cho-
sen for comparison with the state of the art (i.e., {(8, 1),(16,2), (24, 3)}”“2),
EMDP outperforms about 0.3% compared to MDP (99.43%) on DynTex35.
Particularly, it gains 93.94% rate of recognition on the complicated dataset,
Gamma, about 2% higher than MDP’s. In terms of classification on Dyn-
Tex++4, the operation of EMDP looks more “stable” and achieves a little
better rate with 96.03% in comparison to those of MDP with 95.86% (see
Tables 7 and 9).

In general, it is validated that the impact of the max-pooling features is
positive in enhancing the performance of the proposed descriptors. Table 10
indicates the important contribution of these enhanced features in shallow
analysis. It can be realized from this table that it is possible to take ad-
vantage of these in the deeper max-pooling layers as well as to combine this
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computation with other advance components of CNNs in the further context.

7.4 Global discussion

Based on the above experimental results on benchmark DT datasets, it can
be derived several general findings as follows.

e The proposed moment volume model can be judged as a filter bank ap-
proach for pre-processing techniques since its principle is a local filter
in which its operator is inherited from the basic LBP concept with low
computing costs (see Sections 3.2 and 3.3) to exploit robust and dis-
criminant features of DT videos. Outputs of this process, i.e., “mean”
and “variance” videos, are regarded as complementary parts to boost
the discriminative power of DT representation (see Table 3).

e Considering larger supporting volumes to construct moment volumes
can be lead to outputs of blurred videos. This induces that encoding on
these videos of our proposed operators reduces their performance due to
the increase of noise patterns structured from the near uniform voxels.
It can be seen from Tables 5, 7, and 11 that the performances of DT
descriptors are affected significantly by blurred videos dealt with by the
model of two first-order moment volumes with large supporting regions
Q2 =1{(14,1),(14,2)}. Moreover, bigger elements of supporting volumes
also increase the time cost of filtering voxel features without enhancing
the operation of recognition as expected. In practice, the setting of
regional volume 2 = {(6,1)} should be empirically recommended for
the proposed model of r-order moment volumes.

e Two proposed extensions for LDP operator resulting in the extended
operator xXLDP make our descriptor MDP even more robust and dis-
criminative than the straightforward version MDP-B, which is based
on LDP, in spite of the fact that this simple descriptor is also very
competitive compared to the state-of-the-art results.

e MDP descriptors, based on the configuration of {(8,1), (16, 2), (24, 3) }"®2,
have more substantial performance compared to others thanks to more
relationships of local directional structures involved in.

e Directional complement of center contrast level LDP has a trivial im-
pact on improving the performance of DT descriptor in our framework
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(see Tables 4, 5, and 7). Concatenating it to form the correspond-
ing descriptor would just grow up 2 bins for each concerned direction,
i.e., Lyyo/ue + 2, while that would be double size in case of jointing,
i.e., 2Liu2/u2. Therefore, it is possible to make a trade-off between
accuracy of recognition and the computing consumption in particular
applications.

8 Conclusions and perspectives

We have presented effective descriptors for DT representation. Our main
contribution is four-fold. We have introduced model of moment volumes as a
simple yet efficient pre-processing techniques to take into account robust and
discriminative features of DT videos. We then proposed two major exten-
sions for LDP operator making it more distinctive than the typical version for
capturing local derivative variations. Finally, we address different efficient
descriptors based on above propositions for DT recognition. The experimen-
tal results on various benchmark DT datasets have demonstrated that our
approach significantly outperforms compared to the existing methods.

Due to turbulent motions of DTs, full directions should be addressed for
the future works to entirely investigate the relations of local informative di-
rections for an image texture. Furthermore, in consideration of treating the
large dimension problem, encoding DT features with n-order MDP" (n > 3)
operator can be done on high-order moment volumes or Gaussian-based out-
comes [67, 68]. This may obtain more robust spatio-temporal relationships
to boost the discriminative power of DT description.
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Table 1: Several comparative dimensions of LBP-based descriptors for DT
recognition.

Method Dimensions |with P = 8|with P = 16
LBP-TOP*2 [4] 3(P(P—1)+3)) 177 729
VLBP [4] 23P+2 - -
CVLBP [34] 3 x 2342 - -
HLBP [35] 6 x 27 1536 -
CLSP-TOP"™? [36] 6(P +2)> 600 1944
WLBPC [61] 6 x 27 1536 -
MEWLSP [62] 6 x 27 1536 -
CVLBC [63] 2(3P + 3)? 1458 5202
MDP72, 48(P 4+ 2) 480 864
MDP}2, 48(P + 4) 576 960
MDP}, 72(P +2) 720 1296
MDP-B"#? 24(P +2) 240 432
LDP-TOP"? 12(P +2) 120 216

Note: P is the considered neighbors. riu2 and u2 are two popular mappings

for LBP-based variants. MDP-B and MDP descriptors are structured in 4
directions on two first-order filtered videos (also the settings for compari-
son their performance with the state-of-the-art in DT recognition). In the
meanwhile, LDP-TOP is computed on the original videos. “-” denotes that
the corresponding descriptor is not implemented in practice due to its huge
dimension.
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Table 2: A brief of key features of DT datasets and protocols of recognition.

Dataset || Sub-dataset || #Videos Resolution | #Classes | Protocol of recognition
50-class 200 48 x 48 x 75 50| LOO and 4fold
UCLA ||9-class 200 48 x 48 X 75 9(50%/50%
8-class 92 48 x 48 x 75 8150%/50%
DynTex35 350 | different dimensions 10|LOO
Alpha 60 352 x 288 x 250 3|LOO
DynTex
Beta 162 352 x 288 x 250 10|LOO
Gamma 264 352 x 288 x 250 10| LOO
DynTex++ 3600 50 x 50 x 50 36|50%/50%

Note: 50%/50% means a protocol of taking randomly 50% items for training and the rest (50%) for
testing. LOO and 4fold are leave-one-out and four cross-fold validation respectively.
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Table 3: Recognition (%) on “mean” (m!

) and “variance” (u?) videos.

Dataset 50-LOO (UCLA) Beta (DynTex) DynTex++

Descriptor mt| o {mb | omt 2 {mh | omt 2 {mt, p?}
MDPp s |199.50]99.50 1001/96.30(95.06 97.5394.87/94.89 95.58
MDPp ¢ 199.50]99.50 1001/96.30|95.68 97.531194.88|94.68 95.70
MDPp_ar/c(|99.50| 100 1001/95.68 195.68 96.91(/94.41194.89 95.86
MDP-B 98.00|98.00 99.50 (| 88.89189.51 88.27(93.98|94.02 95.82

Note: D_M, D_M_C, and D_M/C are different integrations of complemented components of the
extended operator xXLDP to form the corresponding MDP descriptors. 50-LOO means results on
50-class breakdown using leave-one-out validation.

Table 4: Classification rates (%) on UCLA using MDP, MDP-B descriptors
and their multi-scale settings with mappings of riu2/u2.

Scheme 50-LOO 50-4fold 9-class 8-class
{(P, R)}”“/"2 D_M|D_M_C|D-M/C||MDP-B| D-M|D_M_C|D_M/C||MDP-B| D-M|D_M_C|D_M/C|MDP-B| DM|DM_C|D_-M/C| MDP-B
) i ) I 5 5.00(97.50] 975 5 .00 97.6 6 4.50| 95.33 4.
8,1)}™ 98.00| 98.00f 98.50| 96.00|97.50| 97.50| 98.50| 96.00| 97.60| 98.60| 98.40| 94.50| 95.33 96.41||  94.89
s . 99.51 98.5 9. 99.1 98.: . 97.85 7. 96. 6.6: 95.3¢ NE 96.
16,2)}"** 99.00{  99.50|  98.50(99.00| 99.00 100| 98.50| 97.70| 97.85| 97.90| 96.10| 96.63| 95.33| 96.74| 96.20
4, 3 99.5 97.! 98.5 97.51 98.! 96.85| 98.25| 97.45 95.50| 96.€ 97. 97.3¢ 95.54
24,3)1" 99.50] 97.00{ 98.50| 100 100| 97.50| 98.00| 96.85| 98.25| 97.45| 95.50| 96.96| 97.17| 97.39| 95.54
{(8.1),(16,2) }m 99.50 100( 98.00(99.00| 99.00 100| 98.00| 98.45| 99.00| 98.20| 96.45| 97.71| 97.71| 97.07| 9522
1), (24,2 99.5 98.00]99.5 99.5 97.50 | 98. 98.65| 98.4 96.55 | 97.82 97.5 98.15 97.2
8.1),(24,3) )" 99.50 100 98.00|99.50| 99.50 100 97.50| 98.20| 98.65| 98.40| 96.55| 97.83| 97.50| 98.15| 97.28
{(16,2), (24, 3)}”“ 100 100 99.00| 100 100 100 98.50| 98.10 98.05| 98.55|| 96.40| 97.61| 97.50| 98.40| 96.41
{(8.1),(16,2),(24,3)} " 100/ 100| 99.50{99.50| 99.50| 100|| 98.50|98.90| 98.35| 98.70| 98.05| 98.15| 98.59| 98.70| 97.61
{(&l)}” 99.00{ 99.00[ 99.00( 98.00{99.00| 99.00{ 99.00| 97.50| 98.60| 98.25| 97.35|| 97.65/98.80| 98.37| 97.93| 95.00
i @ 99.50] 99.50| 99.50( 99.00|99.50| 99.50| 99.50{ 98.00| 96.95| 98.00| 97.30| 95.65| 96.96| 97.50| 96.52| 98.80
16,2
4, 3 99.51 99.5 - . 99.51 99.5 - . 96.4 96.6 - 94.65| 97. 96. - 95.54
24,31 99.50| 99.50 99.50{99.50| 99.50 99.00| 96.40| 96.60 94.65| 97.07| 96.10 95.54

Note: DM, D M_C, and D_M/C are different integrations of complemented components of the extended operator xLDP to form the corresponding MDP descriptors. 50-LOO and 50-4fold

denote results on 50-class breakdown using leave-one-out and four cross-fold validation respectively. “-”

large dimension.

means that the corresponding MDP is not implemented due to the problem of

Table 5: Rates (%) on DynTex using MDP, MDP-B descriptors and their
multi-scale settings with mappings of riu2/u2.

Scheme DynTex35 Alpha Beta Gamma

{(P, R)}”"Q/u2 D_M|D_M_C|D_M/C|MDP-B| D_M|D_M_C|D_M/C||MDP-B| D_M|D_M_C|D_M/C|MDP-B| D_M|D_M_C|D_M/C|MDP-B
{( )y 96.86| 96.57| 97.43 97.43] 95.00| 93.33| 95.00( 96.67| 94.44| 95.06| 95.68 90.12] 92.42| 92.05| 92.80 91.29
{(6,2)}™* 98.00| 97.71| 98.86| 98.57|98.83| 98.83| 98.83| 96.67| 95.68| 95.68| 96.30| 90.74|93.18| 92.05| 91.67| 93.94
{(Z 3 }”u2 99.43| 99.43| 99.43 99.14/98.83| 98.83| 96.67| 96.67| 96.91| 96.91| 96.91 88.89193.18| 92.80| 93.18 90.15
{(8 1),(16,2) }Tm 97.71] 98.00 98.86 98.86/98.33| 98.33| 98.33| 96.67| 95.06| 95.06| 96.30 90.74] 92.80 92.42| 92.05 92.05
{(8 1),(24,3 }”“2 99.43| 99.43| 99.43 98.86/98.33| 98.33| 96.67| 96.67| 96.91| 97.53| 96.91 89.51193.18| 92.80| 91.67 90.91
{(16 2),(24,3 }”M 99.43| 99.43| 99.43 98.57|98.33| 98.33| 96.67| 96.67| 96.91| 98.15| 96.30 88.89] 92.42| 92.42| 92.80| 93.94
{(8,1),(16,2),(24,3)} "% 99.43| 99.43| 99.43| 98.86/98.33| 98.33| 96.67| 96.67|97.53| 97.53| 96.91| 88.27| 92.42| 9242 9205|| 93.18
{( 1)}' 97.14| 97.14| 98.00 98.57| 95.00{ 95.00] 95.00| 96.67| 92.59| 93.83| 93.21 90.12] 92.80| 92.42| 92.80 89.77
{(1 2} 98.86| 99.14| 99.43 99.14| 96.67| 96.67| 96.67| 96.67| 93.83| 94.44| 95.06 91.36/93.18| 92.80| 94.68 91.67
{(24,5)} 100 100 -l 99.43| 96.67| 96.67 - 95.00| 93.83| 93.83 -| 92.59|93.18| 93.18 - 90.91

Note: DM, DM.C, and DM/C are different integrations of complemented components to form the corresponding MDP descriptors.

implemented due to the problem of large dimension.
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Figure 11: Confusion matrix (%) of MMDPp /¢ on 9-class.
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Figure 12: Confusion matrix (%) of MMDPp /¢ on 8-class.
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Figure 13: Specific recognition of MMDP p_ s/ on each class of DynTex35.
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Figure 14: Two mutual confused categories in recognition on DynTex35.
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Figure 15: Confusion matrix of MMDPp _57/c on Alpha.
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Figure 16: Confusion matrix of MMDPp _5;/c on Beta.
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Figure 17: Confusion matrix of MMDPp 5;/c on Gamma.
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Table 6: Comparison of recognition rates (%) on benchmark DT datasets

Category Dataset UCLA DynTex
ategory Encoding method 50-LOO | 50-4fold | 9-class | 8-class || Dyn35 | Alpha| Beta | Gamma || Dyn++
Optical-flow-based FDT [14] 98.50 99.00| 97.70| 99.35 98.86 | 98.33| 93.21 91.67 95.31
price o FD-MAP [14] 99.50 99.00 | 99.35| 99.57 98.86 | 98.33| 92.59 91.67 95.69
AR-LDS [1] 89.90% , B B , , - , -
) KDT-MD [16] -l 9750 . - B B - B .
Model-based NLDR [19] B B -| 80.00 B B R B .
Chaotic vector [18] - - | 85.10% | 85.00% - - - - -
3D-OTF [29] - 87.10| 97.23| 99.50 96.70 | 83.61| 73.22 72.53 89.17
WMEFS [30] - -| 97.11| 96.96 - - - -
NLSSA [32] - - - - - - - - 9240
. L KSSA [32] - - - - - - - - 9220
Geometry-based DKSSA [32] B R . . B R . R 91.10
DFS [66] - 100 | 97.50| 99.20|| 97.16| 85.24| 76.93| 74.82 91.70
2D+T [65] - - - - -] 85.00| 67.00 63.00 -
STLS [31] - 99.50| 97.40] 99.50| 98.20| 89.40| 80.80| 79.80 94.50
Filter-based MBSIF-TOP [27] 99.50% - - -1 98.61% [ 90.00™ |90.70% | 91.30™ || 97.12%
rter-based DNGP [15] - -1 99.60| 99.40 - - - - 9380
VLBP [4] - 89.50% [ 96.30% [ 91.96" || 81.14" - - -l 94.98%
LBP-TOP [4] - | 94.50% | 96.00% | 93.67V || 92.45% | 98.33| 88.89| 84.85%| 94.05"
DDLBP with MJMI [38] - - - - - - - - 95.80
CVLBP [34] -| 93.00%| 96.90% | 95.65~ || 85.14% - - - -
HLBP [35] 95.00% | 95.00% | 98.35% | 97.50% || 98.57% - - -|| 96.28~
CLSP-TOP [36] 99.00% | 99.00% | 98.60~ | 97.72~ || 98.29% | 95.00% | 91.98" | 91.29% | 95.50%
MEWLSP [62] 96.50% | 96.50% | 98.55% | 98.04~ || 99.71N - - S| 98.48Y
Local-feature-based || WLBPC [61] - 96.50% | 97.17% | 97.61% - - - -|| 95.01%
CVLBC [63] 98.50% | 99.00% | 99.20% | 99.02~ || 98.86 - - -|| 91.31%
MMDPrp y of {(8,1),(16,2), (24.3)}™ 100  99.50| 98.90| 98.15| 99.43| 98.33| 97.53| 92.42| 95.58
MMDPrp ¢ of {(8,1),(16,2) 100| 99.50| 98.35| 98.59| 99.43| 98.33| 97.53| 92.42| 95.70
MMDPp_/c of {(8, 1), (16 100 100 | 98.70| 98.70 99.43 1 98.33| 96.91 92.05 95.86
MEMDPp _vy/c of {(8.1),(16,2), (24, 3)}”“‘ 100 100 | 98.90| 98.70| 99.71| 96.67| 96.91| 93.94| 96.03
MMDP-B of {(8,1), (16,2), (24,3)}"* 9950 98.50| 98.05| 97.61| 98.86| 96.67| 88.27| 93.18| 95.82
MLDP-TOP of {(8,1),(16,2),(24,3)}""** 97.00| 97.00| 96.50| 96.09| 98.86| 96.67| 88.89| 92.80| 94.02
DL-PEGASOS [59] - 97.50 | 95.60 - - - - - 63.70
PI-LBP+super hist [39] - 100™ | 98.20™ - - - - - -
PD-LBP+super hist [39] -| 100~ | 98.10" - - - - - -
PCA-cLBP/PI-LBP/PD-LBP [39] - - - - - - - - 92.40
Orthogonal Tensor DL [25] - 99.80 | 98.20| 99.50 -| 87.80| 76.70 74.80 94.70
Learning-based Equiangular Kernel DL [26] - - - -| 88.80| 77.40 75.60 93.40
st-TCoF [21] - - - -] 100°| 100"| 98.11° -
PCANet-TOP [23] 99.50 - - - -1 96.67" | 90.747 | 89.39" -
D3 [24] - - - -| 100" | 100"| 98.11° -
DT-CNN-AlexNet [22] - 99.50" | 98.05 1007 | 99.38° | 99.62" 98.18"
DT-CNN-GoogleNet [22] -| 99.50" | 98.35" 100" | 100" | 99.62° | 98.58"

Note: “” means “not available”. Superscript “*” indic

on 50-class breakdown using leave-one-out and four cr

old validation res,

sults using deep learning algorithms. “N” indi

ssifier. 50-LOO and 50-4fold denote results

ctively. Dyn35 and Dyn++ are abbreviated for DynTex35 and DynTex+- datasets respectively.
Evaluations of VLBP and LBP-TOP operators are referred to the evaluations of implementations in [35, 21].
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Table 7: Recognition (%) on DynTex++ using MDP, MDP-B descriptors
and their multi-scale settings with mappings of riu2/u2.

Dataset DynTex++

{(P,R)}"* DM |D_M_C|D_M/C|/MDP-B
{(8,1)}" 93.93| 94.28] 9452 92.71
{(16,2)}"" 95.27| 94.70| 95.18|| 94.25
{(24,3)}™ 93.92| 94.09| 93.71| 92.16
{(8,1),(16,2)} "™ 95.47| 95.59| 95.56| 95.38
{(8,1),(24,3)}™ 94.92| 95.10( 94.88| 94.92
{(16,2), (24,3)}™ 95.37| 94.85| 95.11| 95.07
{(8,1),(16,2), (24,3)} ™| 95.58| 95.70| 95.86| 95.82
{(8,1)}" 95.97| 96.51| 96.18| 96.51
{(16,2)}" 96.37| 96.28| 95.92| 96.39
{(24,3)}" 95.72| 95.68 S| 9479

Note: DM, D-M_C, and D_-M/C are different integrations of com-
plemented components of the extended operator xLDP to form the
corresponding MDP descriptors. “-” denotes that the corresponding
MDP is not implemented due to the problem of large dimension.
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Figure 18: Specific recognition of MMDP p »//c on each class of DynTex++-.

89.60% 86.60% 81.40% 76.40% 86.00%

Figure 19: Challenging categories of DynTex++ for MMDPp /¢
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Table 8: Classification rates (%) of LDP-TOP descriptor and its multi-scale
settings with mappings of riu2/u2 on DT datasets without applying the
proposed moment volume model.

Dataset UCLA DynTex

{(p, R)}mﬂ/u2 50-LOO0O|50-4fold|9-class|8-class| Dyn35|Alpha| Beta|Gamma|Dyn++
{8,1)}™ 93.00] 96.00 96.30| 96.09|| 96.00/98.33| 87.04| 87.12| 89.82
{(16,2)}" 96.50|  98.00| 96.55|96.74| 97.14| 96.67/90.74| 89.39 91.02
{(24,3)}" 86.00| 92.50| 93.40| 93.48| 97.43| 96.67| 86.42| 88.26| 87.01
{(8,1),(16,2)} " 97.50] 97.00| 96.75 95.98| 97.71| 96.67| 89.51| 92.05|| 93.61
{(8,1),(24,3 }”“2 95.50|  96.00| 96.85| 92.72| 97.71| 96.67| 88.27| 90.53| 92.84
{(16,2), (24,3)} """ 95.00|  96.50| 96.25| 95.33| 98.57| 96.67| 87.65/ 92.05|| 92.52
{(8,1),(16,2),(24,3)} ™| 97.00| 97.00] 96.50| 96.09| 98.86| 96.67| 88.89| 92.80| 94.02
{(8,1)}" 97.00] 97.50| 96.40| 95.54| 97.71| 95.00/90.74| 91.29| 95.31
{(16,2)}* 99.00| 99.50|96.90| 96.41|| 98.86 96.67| 88.27| 90.91| 95.86
{(24,3)}" 92.00] 95.50| 92.65/ 95.00|99.43| 93.33 90.12| 90.53| 93.26

Note: 50-LOO and 50-4fold mean rates on 50-class breakdown using leave-one-out and four cross-fold validation
respectively. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ datasets.

Table 9: Recognition rates (%) of EMDP p_j;/c descriptor and its multi-scale
settings with mapping of riu2 on DT datasets.

Dataset UCLA DynTex

{(P,R)} 50-LOO0|50-4fold|9-class|8-class|[ Dyn35|Alpha| Beta|Gamma|Dyn+-+
{8, )} 99.50| 98.50| 98.40| 97.07| 97.71| 95.00| 95.68| 92.80| 95.17
{(16,2)} 100| 100 97.15] 97.07| 99.14/98.33| 96.91| 93.18| 95.27
{(24,3 } 99.50] 99.50| 98.25| 98.04| 99.71| 95.00 96.91| 93.56/ 94.67
{(8,1),(16,2)} 100|  100| 97.90| 97.61| 99.43| 96.67| 96.91| 93.18|  95.90
{(8,1 24 3)} 100|  100| 98.55| 98.26|| 99.43| 96.67) 96.91| 93.56| 95.66
{(16,2 (24,3)} 100| 99.50| 97.05| 97.17|[99.71| 96.67/97.53| 93.18|| 95.68
{(8,1),(16,2), (24.3)} 100, 100/ 98.90|98.70|| 99.71| 96.67| 96.91| 93.94| 96.03

Note: 50-LOO and 50-4fold denote rates on 50-class breakdown using leave-one-out and four cross-fold
validation respectively. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ datasets.
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Table 10: Contribution of max-pooling features for the performance (%) of

descriptors using settings of p ¢, and {(P,R)} =

with riu2 mapping.

{(8,1),(16,2), (24,3)}

Descriptors DynTex35|Gamma|DynTex++
MMDP 99.43  92.05 95.86
MMDP + “deep” features 99.71]  91.30 95.85
MMDP + global features 99.14| 93.94 95.34
MMDP + “deep” and global features (e.g., MEMDP) 99.71| 93.94 96.03

Table 11: Recognition rates (%) of MDP descriptors encoded on filtered
videos with supporting elements of Q2 = {(14,1), (14,2)}.

Dataset Beta (DynTex) DynTex++

{(P, R} D_M|D_M_C|D_M/C|| D-M|D_M_C|D_M/C
{(8,1 )}”“2 93.21| 93.21| 93.83| 92.74| 93.44| 93.76
{(16,2)}™" 92.59| 92.59| 95.06| 93.88| 94.24| 93.92
{(24,3 }”“2 95.06| 94.44| 93.21| 94.04| 93.96| 93.07
{(8,1),(16,2)} " 93.21| 93.21| 94.44| 94.61| 94.60| 94.82
{(8, 24 3)} 93.83| 93.83| 94.44| 94.27| 94.54| 94.58
{(16,2), (24,3)}™ 94.44| 95.06| 94.44| 94.49| 94.36| 94.62
{(8,1), ( 12),(24,3)}| 94.44| 93.83| 94.44|95.27| 94.85| 94.70

Note: D_M, D,M,C, and D_M/C are different integrations of complemented components
to form the corresponding MDP descriptors.
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