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Abstract 
 

Object: Magnetic Resonance Elastography (MRE) requires substantial data processing based on phase 

image reconstruction, wave enhancement and inverse problem solving. The objective of this study is 

to propose a new, fast MRE method based on MR raw data processing, particularly adapted to 

applications requiring fast MRE measurement or high elastogram update rate.   

Material and Methods: The proposed method allows measuring tissue elasticity directly from raw 

data without prior phase image reconstruction and without phase unwrapping. Experimental 

feasibility is assessed both in a gelatin phantom and in the liver of a porcine model in vivo. Elastograms 

are reconstructed with the raw MRE method and compared to those obtained using conventional 

MRE. In a third experiment, changes in elasticity are monitored in real-time in a gelatin phantom 

during its solidification by using both conventional MRE and raw MRE.  

Results: The raw MRE method shows promising results by providing similar elasticity values to the 

ones obtained with conventional MRE methods while decreasing the number of processing steps and 

circumventing the delicate step of phase unwrapping. Limitations of the proposed method are the 

influence of the magnitude on the elastogram and the requirement for a minimum number of phase 

offsets. 

Conclusion: This study demonstrates the feasibility of directly reconstructing elastograms from raw 

data. 

 

Keywords: Elasticity Imaging Techniques; Magnetic Resonance Imaging; Radiology, Interventional 
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Introduction 
 

Magnetic Resonance Elastography (MRE) is a non-invasive technique for measuring the mechanical 

properties of soft tissues. MRE allows to detect elasticity changes resulting from the presence of a 

pathology. For example, hepatic fibrosis [1, 2] has been shown to be associated with increased values 

of shear modulus. Higher modulus values may also reflect the presence of cancerous tissue as it has 

been shown in liver and breast [3–5]. On the contrary, neurodegenerative disorders may be related 

to lower stiffness values  [6–8]. MRE requires a mechanical exciter that generates a wave propagating 

through the tissue. The displacement resulting from the propagation of the shear wave is encoded on 

phase images by using a specific MR-pulse sequence. An inverse problem solver allows reconstructing 

an elastogram based on the fact that the shear wave velocity is directly related to the underlying 

mechanical properties [9].  

The duration of the overall MRE exam is highly variable as it depends on the nature of the information 

that is searched for. Highly quantitative MRE methods aiming at measuring advanced mechanical 

properties such as viscoelasticity or poroelasticity [5, 10–14] may require highly resolved images, 3D 

motion encoding in several slices, advanced post-processing and inverse problem solving techniques, 

that will make the whole process last from several minutes up to one hour. On the other extreme, 

MRE for interventional radiology [15, 16] aims at providing the physician with an updated elastogram 

as fast as possible. The whole acquisition and online reconstruction process has been shown to be 

achievable down to a couple of seconds in interventional MRE [16]. Such fast methods cannot be 

considered as quantitative as biomechanically-oriented MRE methods in terms of tissue mechanical 

properties that are calculated. However, they allow to provide the user with a stiffness parameter at 

a very high refresh rate, which is highly important in specific applications such as interventional 

radiology. As an example of how elastography may help to interventional procedures, tissue elasticity 
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has been reported as a valuable biomarker for the monitoring of thermal ablations in real-time [17, 

18]. 

Fast MRE usually relies on the use of fractional encoding [19], i.e. the frequency of the motion-

sensitizing gradient is higher than the MRE excitation frequency, and on the use of fast MR pulse 

sequences such as echo-planar imaging, fast gradient echo sequence or optimal k-space filling  

strategies [20–22]. Despite these acceleration strategies, such methods are based on classical MRE 

protocol, namely, the encoding of shear wave on phase images, the reconstruction of the phase 

images, filtering and processing of such phase images typically with temporal Fourier transform and 

phase unwrapping, and the resolution of the inverse problem on the resulting data. In this paper, we 

propose an alternative to this process aiming at accelerating and simplifying the reconstruction of the 

elastogram, for applications that require fast MRE information. The key feature of the proposed 

method is that spatial frequencies, and hence wavelengths, are estimated directly from the raw MR 

data, without any need for phase image reconstruction. This allows circumventing several steps such 

as spatial inverse and forward Fourier transforms and unwrapping algorithms.  

 

Material and Methods 

 

Theoretical background 
 

As mentioned above, conventional MRE uses MR phase data for wave image and elastogram 

reconstruction. The proposed method uses directly the raw complex MRI data. A schematized 

comparison between the two methods is provided in Fig. 1. This section introduces the theoretical 

background of the proposed method. 
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Fig. 1 Schematic description of the conventional MRE method and the proposed, raw data-based method 

Conventional MRE 

MRE relies on the encoding of tissue motion in the phase Φ of the complex MRI signal. Let us consider 

a harmonic oscillation of one isochromat with maximum amplitude 𝑢0 at a given temporal frequency 

𝑓𝑒 , where 𝑢⃗  is the position vector:  

 𝑢⃗  (𝑡) =  𝑢𝑚⃗⃗ ⃗⃗  ⃗ + 𝑢0⃗⃗⃗⃗  𝑠𝑖𝑛(2 𝜋 𝑓𝑒 𝑡 − 𝑘⃗ . 𝑢⃗  + 𝛼) 

 

[1] 

 

 

where 𝑘⃗  is the wave number, 𝑢𝑚⃗⃗ ⃗⃗  ⃗ is the mean position and 𝛼 is the initial phase offset.  

A number 𝑁𝑝 of periods of a sinusoidal motion encoding gradient (MEG), called G with maximum 

amplitude 𝐺0 is implemented in the MR-pulse sequence and its polarity is switched with respect to 

the mechanical excitation frequency  𝑓𝑒 . 
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𝐺(𝑡) =   {

 𝐺0𝑠𝑖𝑛(2 𝜋 𝑓𝑒 𝑡) 𝑡 ∈ [0,𝑁𝑝/𝑓𝑒]

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[2] 

 

 

The observed MRI phase shift Φ𝑠 acquired with a gradient echo sequence including the described MEG 

is proportional to the scalar product of the position vector and the gradient vector [9]: 

 
Φ𝑠 = 𝛾

𝑁𝑝(𝐺0
⃗⃗⃗⃗ . 𝑢0⃗⃗⃗⃗ )

2𝑓𝑒
𝑐𝑜𝑠(𝑘⃗ . 𝑢⃗ − 𝛼) 

 

[3] 

 

 

A similar equation can be written when the MEG frequency 𝑓𝑔 and the mechanical excitation 

frequency 𝑓𝑒 are not equal [19]: 

 
Φ𝑠 = 𝛾

 𝑓𝑔𝐺0
⃗⃗⃗⃗ . 𝑢0⃗⃗⃗⃗ 

𝜋(𝑓𝑔
2 − 𝑓𝑒

2)
𝑠𝑖𝑛 (

𝜋 𝑓𝑒
𝑓𝑔

) 𝑐𝑜𝑠 (
𝜋 𝑓𝑒
𝑓𝑔

 − 𝑘⃗ . 𝑢⃗   + 𝛼) 

 

[4] 

 

 

More generally, the observed MRE phase shift can simply be written as: 

 Φ𝑠 = 𝐶1𝑐𝑜𝑠(−𝑘⃗ . 𝑢⃗  + 𝐶2) 

 

[5] 

 

 

The same expression can be obtained for spin echo sequences with different expressions for 𝐶1 and 

𝐶2. MRE relies on estimating the wavenumber k from the phase of the acquired MRI signal. The 

conventional protocol involves the reconstruction of the phase image within the range [−𝜋 , 𝜋 ], the 

use of a phase unwrapping algorithm, the harmonic analysis on a set of images with different initial 

phase offsets 𝛼, and finally, the resolution of the inverse problem. 

The objective of this study is to propose a new approach that circumvents several of the 

aforementioned steps while being more adapted to fast MRE protocols.  
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MRE using raw data 

The proposed theoretical framework will be developed in 1D for clarity. It can be easily extended to 

2D images. The raw MRI signal S acquired in the k-space can be defined with respect to the transverse 

magnetization I(x) as: 

 

𝑆(𝜈𝑥) = ∑ 𝐼(𝑥)𝑒
−𝑗2𝜋

𝜈𝑥𝑥
𝑁𝑥    

𝑁𝑥−1

𝑥=0

 

 

[6] 

 

 

where  x  is the arbitrary discrete spatial dimension considered in this example,  𝑁𝑥   is the total number 

of points,  𝜈𝑥 is the discrete spatial frequency and I(x) is the transverse magnetization 𝐼(𝑥) =

𝑀(𝑥)𝑒𝑗Φ(𝑥) , M being its magnitude and Φ being its phase. In the specific case of MRE, Φ is given by: 

 Φ(𝑥) = Φ0(𝑥) + Φ𝑠(𝑥) [7] 

 

 

where Φ0  is the background phase, i.e. the constant phase obtained without motion encoding, and 

Φ𝑠 is the phase shift related to the encoded displacement as described in Eq.[5].  

The k-space acquired in MRE experiments can therefore be written as follows: 

 

𝑆(𝜈𝑥) = ∑ 𝑀(𝑥)𝑒
𝑗Φ0(𝑥)+𝑗𝐶1(𝑥)𝑐𝑜𝑠(−

𝑘𝑥 𝑥
𝑁𝑥

+𝐶2)  𝑒
−
𝑗2𝜋𝜈𝑥 𝑥

𝑁𝑥

𝑁𝑥−1

𝑥=0

 

[8] 

 

 

where  
𝑘𝑥

𝑁𝑥
  corresponds to the normalized discrete wave number. 

Eq.8 includes an exponential of a cosine function that can be rewritten using the Jacobi-Anger 

expansion [23] 

 

𝑆(𝜈𝑥) = ∑ 𝑀(𝑥)𝑒𝑗Φ0(𝑥) 𝑒
−
𝑗2𝜋𝜈𝑥𝑥

𝑁𝑥
 
 ∑  𝑗𝑛 𝐽𝑛(𝐶1(𝑥))𝑒

−
𝑛𝑘𝑥𝑥 
𝑁𝑥

+𝑛 𝐶2

∞

𝑛=−∞

   

𝑁𝑥−1 

𝑥=0 

 

[9]  
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where  𝐽𝑛  is the nth  Bessel function. This equation highlights the presence of an infinite number of 

harmonics of the spatial frequency of interest in the k-space due to the presence of a cosine pattern 

in the phase signal. A similar characteristic has already been described in the framework of motion 

compensation in MRI [24].  

In order to illustrate this phenomenon, a simulated 1D MRE signal is represented in Fig. 2 showing the 

simulated spectrum of the resulting MRE 1D-signal. In this figure and the following, only the modulus 

of complex signals are represented in the frequency domain. 

 

 

Fig. 2 a) Simulated 1D MR signal with heterogeneous magnitude and sinusoidal phase. b) Raw data 

corresponding to the simulated 1D MR signal. c) Plot of the temporal Fourier transform of a simulated data set 
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with 4 varying delays between excitation and MEG. Selection of the component of interest of the spatial 

frequency in blue. d) Wave signal obtained from the phase signal in red (conventional process) and wave signal 

obtained from the complex signal in blue (new proposed method). All ordinates are in arbitrary units 

The spectrum is composed of an infinite number of harmonics as predicted by Eq.[9]. In order to 

remove all harmonics and select only the component of interest, a simple low pass filter could be 

used. However, the intrinsic heterogeneity of real tissue results in the presence of several spatial 

frequencies of interest (Fig. 3). Hence, distinguishing the component of interest of one frequency from 

the harmonic of another one is impossible.   

 

Fig. 3 a) Simulated 1D MR signal with heterogeneous magnitude and a signal composed of two frequencies. b) 

Raw data corresponding to the simulated 1D MR signal. c) Plot of the temporal Fourier transform of a simulated 

data set with 4 varying delays between excitation and MEG. Selection of the component of interest of the spatial 
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frequency in blue. d) Local frequencies returned by the LFE-algorithm performed on the filtered k-space (blue) 

compared to the conventional result obtained with the same filters (red) applied to phase signal 

The proposed solution is inspired from the harmonic analysis used in conventional MRE.  As previously 

mentioned, several images are acquired with varying phase shifts between mechanical excitation and 

motion encoding gradients. A temporal Fourier transform is subsequently performed on phase images 

in order to select only the displacement induced by the generated mechanical wave at a specific 

excitation frequency. The following paragraph aims at demonstrating that a similar analysis directly 

performed on the raw data allows identifying and extracting the components of interest.  

Let us consider 𝑁𝑡 acquisitions with varying phase offsets evenly spaced around the mechanical 

excitation cycle (i.e. sampling frequency  𝑓𝑠  equal to 𝑁𝑡  𝑓𝑒). The temporal discrete Fourier transform 

of the series, including the Jacobi-Anger expansion yields: 

 𝑆(𝜈𝑥 , 𝜈𝑡)

= ∑ 𝑀(𝑥)𝑒𝑗Φ0(𝑥) 𝑒
−

𝑗2𝜋(𝜈𝑥 𝑥)
𝑁𝑥

𝑁𝑥−1 

𝑥=0 

 ∑ 𝑗𝑛 𝐽𝑛 (𝐶1(𝑥))𝑒
−𝑗𝑛

(𝑘𝑥 𝑥)
𝑁𝑥

 +𝑗𝑛 𝐶2 ∑ 𝑒
−
𝑗2𝜋(𝜈𝑡 𝑡)

𝑁𝑡 𝑒
𝑗𝑛(2𝜋𝑡)

𝑁𝑡

𝑁𝑡 −1

𝑡=0

∞

𝑛=−∞

 

 

[10] 

 

 

Figure 2.c illustrates the effects of the temporal Fourier transform on the previously simulated signal 

with 4 varying phase-offsets evenly spaced around the mechanical excitation. Spatial harmonics are 

thus separated over the temporal frequency range. The spatial component of interest is now 

distinguishable since it is associated to the temporal frequency of interest.  

Let us consider the previous expression Eq.[10] at the temporal excitation frequency 𝑓𝑒 (with 𝑓𝑒 =
𝑓𝑠

𝑁𝑡
  

which corresponds to 𝜈𝑡=1): 
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 𝑆(𝜈𝑥 , 1 )

= ∑ 𝑀(𝑥)𝑒𝑗Φ0(𝑥) 𝑒
−

𝑗2𝜋(𝜈𝑥 𝑥)
𝑁𝑥

𝑁𝑥−1 

𝑥=0 

 ∑ 𝑗𝑛 𝐽𝑛 (𝐶1(𝑥))𝑒
−𝑗𝑛

(𝑘𝑥 𝑥)
𝑁𝑥

 +𝑗𝑛 𝐶2

∞

𝑛=−∞

∑ 𝑒
−𝑗2𝜋

𝑡
𝑁𝑡

𝑁𝑡−1

𝑡=0 

 𝑒
𝑗𝑛2𝜋

 𝑡 
𝑁𝑡  

 

[11] 

 

 

The sum over 𝑁𝑡 is non null and equal to 𝑁𝑡 only if 𝑛 = 1 + 𝑘𝑁𝑡  (𝑘 ∈ 𝑍∗), therefore the Eq.[11] 

reduces to: 

 

𝑆(𝜈𝑥  ,1 ) =  ∑ ∑ 𝑀(𝑥)𝑒𝑗𝜙0 (𝑥) 𝑒
−
𝑗2𝜋(𝜈𝑥𝑥)

𝑁𝑥  𝑗𝑛𝑁𝑡 𝐽𝑛 (𝐶1(𝑥))𝑒
𝑗𝑛(−

(𝑘𝑥 𝑥)
𝑁𝑥

 +𝐶2)

𝑁𝑥−1

𝑥=0

   

𝑛∈𝑈

 

[12] 

 

 

𝑈 = {𝑛 |𝑛 = 𝑘𝑁𝑡 + 1, 𝑘 ∈ 𝑍∗} 

Let us assume that the number of phase-offsets is sufficient to satisfy the following condition:  

 
log (

|𝐽1(𝐶1(𝑥))|

|𝐽𝑘𝑁+1(𝐶1(𝑥))|
) > 1 , 𝑘 ∈  𝑍∗ 

[13] 

 

 

Details of this condition are discussed in Appendix A. Eq.[12] then simplifies to: 

 

𝑆(𝜈𝑥 , 1) = ∑ 𝑀(𝑥)𝑒𝑗𝜙0(𝑥) 𝑒
−
𝑗2𝜋(𝜈𝑥 𝑥)

𝑁𝑥  𝑗 𝑁𝑡  𝐽1 (𝐶1(𝑥))𝑒
𝑗(−

𝑘𝑥 𝑥
𝑁𝑥

+𝐶2)

𝑁𝑥−1

𝑥=0

 

[14] 

 

 

The component of interest is separated from the harmonics and selected (blue line in Fig. 2). The data 

associated to Eq.[14] will be referred to as the filtered k-space raw data, since only the spatial 

frequencies associated to the temporal frequency of interest are selected.  

At this point, one of the interesting features of the proposed method is that it offers the possibility of 

estimating the wavelength distribution using the Local Frequency Estimation (LFE) algorithm. The LFE 

algorithm is a commonly used method for the resolution of the inverse problem in MRE. In 

conventional MRE with LFE processing, post-processed phase images are spatially Fourier transformed 

and filtered in order to find spatial distribution of spatial frequencies [25]. With our method, the LFE 
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calculations can be directly performed on the filtered k-space data (Eq. [14]), circumventing the need 

for an additional spatial Fourier transform step. For this purpose, classic image filters of the LFE 

algorithm [26] conventionally used in the frequency domain of the phase signal, are applied to the 

filtered k-space raw data. The local frequency of a real signal is defined as the derivative of the phase 

of its analytic signal. A pair of two lognormal quadrature filters 𝑅1 and 𝑅2 are classically applied in the 

frequency domain of the enhanced wave image and the local frequency 𝑓𝑙 is given by: 

 
𝑓𝑙 = √𝑓1𝑓2Re(

F−1(R1S)

F−1(R2S)
) 

 

[15] 

 

 

where 𝑓1 and 𝑓2 are the central frequencies of 𝑅1 and 𝑅2, respectively. F-1 is the inverse Fourier 

transform. Usually, S is the signal in the spatial frequency domain of the enhanced wave image 

resulting from phase reconstruction, phase unwrapping, temporal frequency filtering and finally 

spatial Fourier transform. In this work, it is proposed to apply the same algorithm on k-space data 

obtained after temporal frequency filtering. In this case, S is described by Eq.[16]. This complete 

process is illustrated in Fig. 3 on a 1D simulated MRI signal, yielding the local frequency for each 

sample. This method allows to reconstruct LFE-derived elastograms without phase image 

reconstruction and without spatial Fourier transform since LFE filtering is directly performed in the k-

space. It is important to note that this method circumvents the problem of the phase wrapping, since 

the k-space of a signal with a phase wrapped in the range [-π; π] and the same theoretical signal with 

a continuous phase out of the range [-π; π] are exactly the same. The proposed method processes 

directly data in the k-space (Eq. [14]) and is therefore not affected by phase wrapping as would 

conventional phase images be. It must be noticed that the filtered k-space raw data is not the same 

as the k-space of the phase signal alone. Firstly, the filtered k-space raw data does not include high 

spatial frequencies related to the steep variations occurring in a wrapped phase. Secondly, the filtered 

k-space is convolved by the magnitude spectrum. 



13 
 

A qualitative visualization of the shear wave pattern is possible by performing an inverse spatial 

Fourier transform of the filtered k-space data, yielding the following equation: 

 
𝑠(𝑥) =

𝑁𝑡

𝑁𝑥
 𝑀(𝑥)𝑒𝑗𝜙0𝑗𝐽1(𝐶1(x))e

j(−
kxx
Nx

+C2) 

 

[16] 

 

 

The imaginary part of Eq. [16] is equal to: 

 
𝐼𝑚(𝑠(𝑥)) =  

𝑁𝑡

𝑁𝑥
 𝑀(𝑥) 𝐽1(𝐶1(x)) cos(−

kxx

Nx
+ C2 + Φ0)) 

 

[17] 

 

 

It must be highlighted that the wave pattern described by Eq.[17] is weighted by the magnitude 𝑀(𝑥) 

and Bessel coefficients that depend on the encoded wave amplitude 𝐶1(x). Besides, a phase shift 

related to the background phase is introduced. The relationship between this signal and the actual 

displacement is therefore highly complex. This signal cannot be directly compared to the displacement 

image usually obtained in conventional MRE, and it is not directly exploitable for further processing. 

However, Eq. [17] allows obtaining a qualitative visualisation of the shear wave propagation without 

any need for phase image reconstruction.  

Experimental Methods 

Phantom experiments 

The proposed method was evaluated on a gelatin phantom (17 cm in diameter) made of two parts 

with different concentrations (4% and 8%). A commercial pneumatic surface exciter (Resoundant, 

Rochester, MN) was placed on the top of the phantom in order to generate shear waves. The 

experiment was performed in a 1.5 T MRI scanner (MAGNETOM Aera, Siemens, Germany) and bipolar 

motion encoding gradients were implemented in a spoiled gradient echo sequence. The body antenna 

was used to obtain a single channel data set. The excitation and the encoding frequencies were set to 

120 Hz and 220 Hz, respectively. The motion encoding direction was set through slice and the slice 



14 
 

was parallel to the surface of the pneumatic exciter. 4 phase-offsets evenly spaced across a mechanical 

period were acquired. Main imaging parameters are the following: FOV 340 mm x 340 mm, acquisition 

matrix 128 x 128, slice thickness 10 mm, MEG amplitude 20 mT/m, TE/TR 6.13/8.33 ms, flip angle 15° 

and bandwidth frequency 795 Hz/pixel. The proposed raw MRE method is used to reconstruct the 

wave pattern image and the elastogram, both directly from the raw data without reconstructing nor 

the phase nor the amplitude image. These results are compared to those obtained with conventional 

MRE involving phase image reconstruction, followed by the use of an unwrapping algorithm [27] and 

temporal Fourier transform.  For this experiment and the two following ones, the LFE algorithm is 

applied with 10 pairs of filters in 4 orthogonal directions. The smaller central frequency of the filters 

is 0.07 cycle/sample. 

In vivo experiments 

In vivo experiments were performed on swine liver and were approved by the local ethics committee 

(ICOMETH C2EA - 38). The animal was anesthetized (propofol 3 mg kg-1, pancuronium 0.2 mg kg-1 and 

isoflurane 2 %) and placed in the large bore 1.5 T scanner. The body antenna was used. A surface 

pneumatic exciter was strapped around the chest and one slice perpendicular to the surface exciter 

was acquired. Relevant parameters of acquisition include: excitation/encoding frequencies 40/90 Hz, 

encoding direction: through slice, slice thickness 10 mm, FOV 320 mm x 320 mm , acquisition matrix 

128 x 128, MEG amplitude 20 mT/m, TE/TR 12.7/25 ms, flip angle 15° and bandwidth frequency 795 

Hz/pixel. 4 images with different phase-offsets evenly spaced across a mechanical period were 

acquired. The raw MRE method was compared to the conventional MRE in the same manner as in the 

phantom experiment. Images were acquired in a single end expiration breath-hold.  

Real-time monitoring of elasticity changes in phantom 

A third experiment was performed on a phantom in order to evaluate the possibility of monitoring 

elasticity changes without reconstructing any phase image. This experiment is similar to the 

experiment described in [16]. Shortly, a hollow gelatine phantom (10 %) was filled with freshly 
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prepared (still liquid) gelatine (15%) (Fig. 4). The elasticity changes occurring during the solidification 

of the gelatine were observed over time thanks to continuous acquisition of MRE data. MRE 

experiments were performed during the first 50 minutes of the cross-liking process of gelatin. During 

these first 50 minutes, the inclusion is still softer than the matrix even though its concentration in 

gelatin is higher.  

A needle MRE driver was used to generate the mechanical wave. Relevant parameters of MRE 

acquisition include: excitation/encoding frequency: 120/290 Hz, MEG amplitude 20 mT/m, encoding 

direction: through slice, one slice orthogonal to the needle, slice thickness 10 mm, FOV 300 mm × 300 

mm, acquisition matrix 128 × 128, TR/TE 8.34/5.62 ms, flip angle 15° and bandwidth frequency 780 

Hz/pixel. 3 phase offsets were acquired. The 12 cm loop coil was placed around the needle MRE driver 

and used for data acquisition. 

The proposed method and the conventional method were compared for estimating the variation of 

elasticity in the region of interest. In the conventional MRE method, phase images are reconstructed, 

unwrapped, and submitted to a temporal Fourier transform. Finally, only one frequency is selected 

and the LFE is applied to the resulting images (Fig. 4.b). In the proposed method, elastograms are 

reconstructed as described in the theoretical part, without reconstructing any phase image. The 

temporal Fourier transform is directly applied on the k-space raw data (Fig. 4.c). The LFE is applied on 

the resulting filtered data (Fig. 4.d). The elasticity in the same region of interest is calculated as a 

function of time.  
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Fig. 4 a) The needle MRE driver is inserted in a stable gelatine phantom (10 %). A small part of the phantom is 

composed of gelatine (15 %) still under solidification process.  b) Conventional phase image after phase 

unwrapping and temporal filtering on resulting phase images. c) Magnitude of the k-space raw data. d) 

Magnitude of the filtered k-space raw data at t = 1280 s.  The ring corresponds to the frequency of the wave 

propagating in the stable gelatin, the small region indicated by the arrow corresponds to the wave propagating 

in the hardening gelatin. 

 

Results 
 

Fig. 5 illustrates the results obtained from a conventional MRE processing including phase unwrapping 

(left column) and the proposed method without phase image reconstruction (right column). A 

qualitative shear wave pattern obtained using Eq. [17] is displayed (Fig. 5.b) for visual comparison with 

a displacement image obtained by conventional MRE (Fig. 5.a). LFE-derived elastograms obtained by 

both methods are very similar (Fig. 5.c-d). Mean values and standard deviations of the local 

wavelength estimation obtained with the raw MRE method and the conventional method are 
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respectively 20.9 ± 10.9 mm and 19.81 ± 10.7 mm  in the left softer half, and 30.7 ± 4.8 mm and 32.7 

± 3.8 mm in the right stiffer half. 

 

Fig. 5 (At the top) (a) Wave image obtained by unwrapping the phase image (conventional method) compared 

to the wave pattern image returned by the raw MRE method (b). (At the bottom) (c) Elastogram reconstructed 

by the conventional method  compared to the one returned by the raw MRE method (d). A median filter (kernel 

4x4) was applied on the 2 resulting elastograms 

Wave pattern images and LFE-derived elastograms obtained in vivo by the two methods are displayed 

in Fig. 6. The local wavelength obtained by the raw MRE method and conventional MRE in the liver is equal 

to 28.45 ± 5.44mm and 30.50± 7.9 mm, respectively. In both phantom and in vivo experiments, mean 

values and standard deviations of the local wavelength obtained with the proposed method were 

found to be very close to those obtained with the conventional one. 



18 
 

 

Fig. 6 (At the top) (a) Wave image obtained by unwrapping the phase image (conventional method) compared 

to the wave pattern image returned by the raw MRE method (b). (At the bottom) (c) Elastogram reconstructed 

by the conventional method compared to elastogram returned by the raw MRE method (d). A median filter 

(kernel 4x4) was applied on the two resulting elastograms 

The variation of elasticity observed during the solidification of the gelatin is plotted in Fig. 7. Elasticity 

is estimated in real-time without phase image reconstruction and compared to the elasticity measured 

by the conventional MRE method. The evolution of the shear modulus over time obtained with the 

proposed method (red curve) is very similar to the one obtained with the conventional MRE method 

(blue curve).   
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Fig. 7 Evolution of shear elastic modulus of the gelatin during its solidification measured on elastograms 

reconstructed by the  conventional MRE (red), and the proposed raw data-based method (blue) 

Discussion 
 

This study introduces an alternative to the conventional processing protocol used in MRE. Elastograms 

can be reconstructed using directly raw MRI data, without phase reconstruction, phase unwrapping 

and spatial 2D transforms, as summarized in Fig. 1. This simplified and accelerated process is 

particularly interesting for applications that require very fast elastogram reconstruction or those 

requiring high elastogram update rate, such as in interventional radiology. The raw data obtained 

during an MRE acquisition is not easily readable because of the infinite number of harmonics induced 

by the presence of one sinusoidal pattern in the phase signal. The solution proposed here to overcome 

this difficulty is to perform the harmonic analysis directly on raw data. The method was assessed 

experimentally in gelatin phantoms and in vivo, and results were found to be very similar to those 

obtained with the conventional MRE process with phase unwrapping. The potential of the proposed 



20 
 

method for providing elasticity changes at high temporal sampling rate was demonstrated in a third 

experiment where elasticity changes were monitored in gelatin during its solidification.   

Fundamental aspects of the proposed method need to be discussed. As previously highlighted, this 

method is sensitive to the choice of the number of phase-offsets. This number must be high enough 

to allow the selection of only one frequency component. However, this method is intended to applications 

requiring fast MRE information, which assumes the use of particularly fast MRE sequences. In most of the 

cases, such sequences involve lower amplitude encoding than conventional MRE sequences due to 

acceleration strategies such as fractional encoding. This makes the condition outlined in Appendix A easier 

to reach.  The second point that deserves to be mentioned is the assumption concerning the phase φ0 

accumulated without the motion encoding gradient. The present theory relies on the assumption that 

φ0 is locally uniform. Should this assumption not be valid, the phase offset could be removed similarly 

to what is commonly done in conventional MRE, i.e. by performing a difference between two images 

acquired with opposite MEG polarities. However, in this case, the phase difference could then be 

performed through a direct product in the spatial complex domain or a convolution in the frequency 

complex domain, the former avoiding the need for an additional direct/inverse spatial Fourier 

transform. One of the main advantages of the proposed method is that it is inherently immune to 

phase wrapping, a known challenge in MRE [28, 29] because its framework remains in the complex 

domain. Indeed, a complex signal with a theoretical phase signal out of the range [−𝜋; 𝜋] and the 

same signal with a phase wrapped in the range [−𝜋; 𝜋] have exactly the same spectrum.  

The major limitation of the reconstruction of elastograms without phase images is that it is limited to 

the use of a unique inverse problem solving approach, namely, the LFE method. This algorithm is 

particularly well adapted for the proposed method, as it operates on k-space data usually obtained 

through spatial Fourier transform of filtered phase images. With the proposed method, the LFE can 

be directly applied on the filtered k-space raw data, without any need for phase image reconstruction 

and subsequent spatial Fourier transform. One must also remain aware that the filtered k-space is 

convolved by the magnitude spectrum,as seen in Eq. [14]. Although this influence is deemed to be 
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negligible in most cases, high frequencies corresponding to strong magnitude variations may add noise 

to the filtered k-space and influence the elastogram. Further work is needed to investigate such artifacts 

on the resulting elastogram. This may be particularly important in situations with significant physiological 

motion, resulting in residual, potentially periodic patterns that are not due to MRE shear wave motion. In such 

cases, motion correction methods may be necessary.   

As we have already mentioned, a qualitative wave pattern image can be obtained without prior phase 

image reconstruction (Eq. [17]). However, the wave pattern image returned by the proposed method 

is weighted by different parameters, such as the magnitude image, the mechanical wave amplitude 

and the parameters of motion encoding. Therefore, such signal is not directly exploitable at this point 

beyond the sole qualitative visualization of the wave field, and it cannot be compared to the usual 

displacement image in conventional MRE used for further processing and other inverse solving 

methods. The relationship between the signal described by Eq. [17] and the actual displacement, as 

well as its sensitivity to noise compared to the one in conventional MRE need to be thoroughly studied 

to evaluate whether this method could be coupled with other inverse problem solving methods and 

post-processing techniques.  

Substantial developments are still needed to make this method compatible with multi-channel arrays 

and undersampled k-space raw data. However, this approach could lead to new applications and 

alternative ways of estimating biomechanical properties in the future. Ongoing work is focused on in 

vivo monitoring of thermal ablations using this method for elastogram reconstruction in real time. 

Conclusion 
 

An alternative method for MRE data processing is proposed here. Elastograms can be independently 

computed without prior phase image reconstruction. Despite its limitations regarding the minimum 

number of phase offsets and the influence of the magnitude on the elastogram, this method is 

particularly well suited for applications requiring fast update rate of MRE information and it provides 

an interesting alternative to the conventional MRE process.  
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Appendix 
 

A temporal Fourier transform is applied on a set of k-space raw data acquired with varying delays 

between mechanical excitation and motion encoding gradients. By selecting only the temporal 

frequency of interest, most of the harmonics of the spatial frequency are removed. 

The result is described by Eq. [12]: 
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 𝑆(𝜈𝑥  ,1 )

=  ∑ ∑ 𝑀(𝑥)𝑒𝑗𝜙0 (𝑥) 𝑒
−
𝑗2𝜋(𝜈𝑥𝑥)

𝑁𝑥  𝑗𝑛𝑁𝑡  𝐽𝑛 (𝐶1(𝑥))𝑒
𝑗𝑛(−

(𝑘𝑥 𝑥)
𝑁𝑥

 +𝐶2)

𝑁𝑥−1

𝑥=0

   

𝑛∈𝑈

   

 

  

𝑈 = {𝑛 |𝑛 = 𝑘𝑁𝑡 + 1, 𝑘 ∈ 𝑍} 

As described by the set 𝑈, the component of interest (n = 1) is not the only one component selected 

by the filtering because of aliasing. In most cases, the other components are negligible compared to 

the first one (blue signal in Fig. 8.b), nevertheless the selection of other non–negligible components 

remains possible when the number of phase-offsets is poorly chosen as illustrated in Fig. 8.c-d (red 

signal). It is therefore relevant to assess conditions that favor an optimal ratio between the amplitude 

of the 1st and the (𝑘𝑁𝑡 + 1)th, k ∈ 𝑍∗ components of the spectrum that are susceptible to being 

associated to the same temporal frequency. The ratio 𝑅 is deduced from the previous equation: 

 

𝑅 = log (
𝐽1(𝐶1)

𝐽𝑘𝑁+1(𝐶1)
) 

 

Let us consider that a component is negligible compared to the first one when its amplitude is at 

least 10 times inferior, i.e. when 𝑅 > 1. The number of phase-offsets 𝑁𝑡  required to satisfy this 

condition is plotted in Fig. 9 with respect to the 𝐶1 parameter. Under the assumption that 𝑅 > 1, 

Eq.[12] simplifies to Eq.[14] 

 

𝑆(𝜈𝑥 , 1) = ∑ 𝑀(𝑥)𝑒𝑗𝜙0(𝑥) 𝑒
−
𝑗2𝜋(𝜈𝑥 𝑥)

𝑁𝑥  𝑗 𝑁𝑡 𝐽1 (𝐶1(𝑥))𝑒
𝑗(−

𝑘𝑥 𝑥
𝑁𝑥

+𝐶2)

𝑁𝑥−1

𝑥=0
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Fig. 8 a) Simulated 1D MR signal with heterogeneous magnitude and sinusoidal phase. b) Plot of the temporal 

Fourier transform of the previous k-space performed from the data set simulating 6 varying delays between 

motion encoding gradients and mechanical excitation. c) Plot of the temporal Fourier transform performed from 

the data set simulating 3 varying delays between motion encoding gradients and mechanical excitation. d) Plot 

of the filtering at the temporal frequency of interest in blue for the case with 6 phase-offsets and in red for the 

case with 3 phase-offsets 
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Fig. 9 Assessment of the minimal number of phase-offsets 𝑁𝑡 required to satisfy the condition R>1 with respect 

to the amplitude of the encoded wave 𝐶1 
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