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Abstract

Polygraphs are a higher dimensional structure which
serves as a system of generators for higher categories.
They are in particular used in higher dimensional
rewriting, where they are used to present strict ∞-
categories. However, any notion of higher dimen-
sional structure (e.g. weak or strict ∞-categories or
groupoids) comes with its own notion of polygraph.

In this paper, we describe an experimental imple-
mentation of polygraphs using the proof assistant
Coq and prove some of their properties, following
the types-as-∞-groupoids interpretation of homotopy
type theory. We describe in particular a functor
sending any polygraph to the free type it generates
and parts of the adjunction between polygraphs and
types.

Introduction

Polygraphs [4] (first defined by Street under the name
of computads [11] [12]) are systems of generators for
higher dimensional structures.

The implementation of polygraphs is an interest-
ing challenge for three reasons. First, their defini-
tion involves induction-recursion, and the proof of
most of their properties involves mutual induction.
Those concepts are often hard to properly state on
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paper, and a proof assistant could be a valuable tool
to check the validity of the proofs concerning poly-
graphs. For example, multiple papers claim that n-
polygraphs form a presheaf category, which is false
for n ≥ 3, as noticed by Makkai and Zawadowski [8].

Second, the definition of polygraphs fundamentally
relies on the notion of pushouts, which are imple-
mented in proof assistants through higher inductive
types (HITs). HITs are present natively in the vari-
ous cubical provers (such as Cubical Agda, RedPRL,
redtt or cubicaltt), and can be simulated in Coq and
Agda. Polygraphs therefore serve as a good stress
test to assert the usability of HITs in larger projects.

Finally, since they contain higher dimensional in-
formation, polygraphs themselves can be seen as pre-
sentation for HITs. In this sense, polygraphs can
therefore be seen as first-order HITs, on which it is
possible to quantify. This may prove useful in the
development of homotopy type theory.

In this paper we investigate the implementation of
polygraphs in Martin Löf’s type theory with function
extensionality extended with higher inductive types
(HITs) and inductive-recursive (IR) types. In doing
so, we pay close attention to the limitations of proof
assistants in dealing with HITs.

To understand the notion of polygraph, let us con-
sider first 1-categories. A system of generators for a
1-category is simply a given by the data of a graph

E1 E0. The free category generated by such a
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graph is the category whose set of 1-cells is E∗1 , the
set of paths in the graph.

The situation gets more complicated for 2-

categories. Any 2-globular set E2 E1 E0

generates a free 2-category. For example taking E2

to be the singleton set and E1 = E0 = {s, t}, one can
form the walking-2-cell 2-category:

s t.

s

t

However, not all free 2-categories are generated by
a 2-globular set: in a 2-globular set the source and
target of a generator is again a generator, which does
not hold for general free 2-categories. One example is
the triangle 2-category, which consists in three gen-
erating 0-cells x, y, z, three generating 1-cells f, g, h
and one generating 2-cell A:

y

x z.

f g

h

A

2-polygraphs are a generalisation of 2-globular sets
able to encode such a structure: instead of the source
and target of a cell in E2 living in E1, we allow them
to take their value in E∗1 . Denoting by E∗2 the set
of 2-cells generated by this 2-polygraph, we can then
continue this process and define a 3-polygraph to be
given by an additional set E3 taking its source and
target in E∗2 . Putting all that together, a 3-polygraph
can be represented by the following diagram:

E3 E2 E1 E0

E∗2 E∗1 E0

Iterating this construction, one gets an adjunc-
tion between the categories of polygraphs and

ω - categories:

Poln Catω.⊥

Batanin [1] noticed that the only property of
ω - categories needed for the definition of polygraphs
is that they form the Eilenberg-Moore category of a
monad T on the category of globular sets. In other
words, for any monad T on globular sets, there is a
notion of T -polygraphs and an adjunction between
T -polygraphs and T -algebras. This construction was
later simplified by Garner [6].

A careful analysis of Garner’s construction shows
that the notion of polygraph can be extended to
any category C equipped with a family (in : An →
Bn)n∈N of arrow in C, provided that C has pullbacks
and pushouts. In the case where C is the category of
ω - categories, the family in is the family of inclusions
from the (n− 1)-sphere Sn into the n-ball Dn.

S0 = { } S1 = {• •} S2 = • •

D0 = {•} D1 = {• −→ •} D2 = • •

The main difference between the classical theory of
polygraphs and the one we implement is that types
do not form a category in type theory, but rather
an ω - category. In particular, function types are not
hSets. It is unclear whether our failure to prove the
full adjunction is due to this discrepancy or to tech-
nical limitations.

Plan of the paper Section 1 is devoted to the
definition of polygraphs in the setting of strict
ω - categories, using Garner’s construction, which our
implementation closely follows. Section 2 explains
our implementation of pushouts using HITs. Finally
in Section 3 we give an overview of our development
and explain in particular the need for IR types.

1 Polygraphs

In this section, we closely follow Garner’s construc-
tion of polygraphs, since it will be the one we will
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follow in our implementation. Guiraud and Malbos’
survey [7] provides a more elementary approach to
polygraphs.

Definition 1.1. A globular set is the data, for all n ∈
N, of a set Gn, together with maps s, t : Gn+1 → Gn

(respectively called the source and target operations),
satisfying the equations s◦s = s◦t and t◦s = t◦t. The
set Gn is called the set of n-cells of G. Morphisms
of globular sets are level-wise maps that preserve the
source and target operations. We denote by Glob he
category of globular sets.

An ω - category is a globular set G equipped with
strictly unital and associative compositions ◦i defined
on Gn for 0 ≤ i < n, satisfying in addition the ex-
change rule. We denote by Catω the category of
ω - categories, which is monadic over globular sets and
we still denote by Dn (resp Sn) the free ω - category
generated by Dn and Sn.

Definition 1.2. We denote by Dn the globular set
of the n-disk. For k < n, Dn

k = {0, 1}, Dn
n = {d}

and Dn
k is empty for k > n. The source and target

operations are given by s(x) = 0 and t(x) = 1 for all
x.

Similarly, Sn is the globular set of the (n−1)-sphere
and is obtained from Dn by removing the unique n-
cell.

Example 1.3. The category of globular sets is the
presheaf category on the category so-called globe cat-
egory. The objects of the globe category are the nat-
ural numbers, so that Gn is the value of the presheaf
G at n, while Dn is then the representable associ-
ated to n. In particular, the Yoneda Lemma gives
Hom(Dn, G) = Gn.

On the other hand, an element of Hom(Sn, G) cor-
responds to pairs of (n− 1)-cells (f, g) in Gn−1 with
same source and same target. We call such a pair an
(n−1)-sphere in G. The inclusion map in : Sn → Dn

induces a map Hom(Dn, G)→ Hom(Sn, G), sending
any cell A ∈ Gn to the pair (s(A), t(A)).

Definition 1.4. A 0-polygraph is a set. A 1-
polygraph Σ is a graph. We denote by Σ∗ the cate-
gory of paths on Σ.

Example 1.5. Take Σ to be the graph with one ver-
tex and one edge. Then Σ∗ is a category with exactly

one object •. Arrows from • to • are in bijection with
N, with composition given by addition. A functor
S2 → Σ∗ therefore corresponds to a pair of integers
(n,m). For example, (2, 1) and (1, 0) respectively cor-
respond to the following 1-spheres in Σ∗ (where each
arrow denotes the unique arrow of Σ):

•

• •

• •

Remark 1.6. Note that there are two ways to de-
scribe the category Σ∗ on a graph Σ = (E, V ), that
we will respectively call the syntactic and the se-
mantic one. The syntactic one consists in saying
that if a and b are objects of Σ, then arrows from
a to b are lists of composable arrows from a to b in
Σ. This approach can be generalised for polygraphs
generating strict ω - categories (see for example the
work of Métayer [9][Section 4]): the n-cells of the
strict ω - category generated by an n-polygraph will
be well-formed terms on the generators of the poly-
graph, quotiented by suitable relations.

This approach however will not work in our set-
ting, where we do not have a syntactic description of
the terms of a generic type. Instead, we follow Gar-
ner’s semantic approach [6][Definition 5.4], where Σ∗

is described as the following pushout in the category
of categories, where ( · ) denotes the copower, de-
fined as E ·G =

∐
e∈E G:

E · S1 V

E ·D1 Σ∗

d

f2
p

Since S1 is the category with two points, for any ele-
ment e ∈ E the source and target operations induce a
map S1 → V . Assembling those maps together yields
the map d of the previous diagram.

Definition 1.7. A 2-polygraph is a triple (Σ, E, d),
where Σ is a 1-polygraph, E is a set, and d is a map:

d : E · S2 → Σ∗,
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Definition 1.8. The 2-category Γ∗ generated by a 2-
polygraph Γ = (Σ, E, d) is the result of the following
pushout in 2-categories:

E · S2 Σ∗

E ·D2 Γ∗

d

f2
p

More generally, the notion of n-polygraph is de-
fined mutually recursively with the map which forms
the free n-category generated by an n-polygraph. Al-
though the definition can be given in one go, for com-
putational reasons, we first give an intermediate no-
tion of augmentation:

Definition 1.9. An n-augmentation over an
ω - category X is a pair A = (|A|, d), where X is an
ω-category, |A| is a set and d is a map:

d : |A| · Sn → X

Definition 1.10. The free ω - category A∗ generated
by an augmentation A = (|A|, d) over an ω - category
X is the result of the following pushout in the cate-
gory of ω - categories:

|A| · Sn X

|A| ·Dn A∗

d

fn
p

Definition 1.11. We define by mutual induction
the notion of n-polygraph and a map ( )∗ from n-
polygraphs to ω - categories as follows:

• A 0-polygraph is a set.

• If E is a 0-polygraph then E∗ := E, seen as a
discrete ω - category.

• An (n+1)-polygraph is a pair (Σ, A), where Σ is
an n-polygraph and A is an (n+1)-augmentation
over Σ∗.

• If Γ = (Σ, A) is an (n + 1)-polygraph, then we
define Γ∗ as A∗.

The goal of this paper is to present a formalisa-
tion in type theory of the following, due to Garner
[6][Definition 5.4] for this particular construction of
polygraphs.

Proposition 1.12. For all n ∈ N, n-polygraphs form
a category Poln. The map ( )∗ extends to a left ad-
joint functor Poln → Catω, so that we get an ad-
junction:

Poln Catω.

( )∗

U

⊥

2 Pushouts and higher induc-
tive types

Our strategy for implementing polygraphs closely fol-
lows the one outlined above: first we define a type of
augmentations, then the free type they generate, and
finally polygraphs together with the Free map.

The definition of augmentations is straightforward.

Inductive Aug (X : Type) (n : nat) : Type :=
mkAug (E : Type) (d : E × Sphere n → X) : Aug X n.

The first difficulty arises when one tries to define
the map FreeA : Aug X n → Type assigning an augmen-
tation to the free type it generates. Indeed Definition
1.10 involves a pushout, which do not exist in Martin-
Löf type theory. Our solution consists in using HITs
[13]. HITs are a generalisation of inductive types,
where constructors are not only allowed to construct
terms of the type, but also equalities between differ-
ent terms. The HIT corresponding to pushouts would
thus have three constructors:

Inductive Pushout {A B1 B2}
(f1 : A → B1) (f2 : A → B2) : Type :=

inl : B1 → Pushout f1 f2

| inr : B2 → Pushout f1 f2

| incoh : ∀ a : A, inl (f1 a) = inr (f2 a).
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Unfortunately, HITs are currently not available in
the official distribution of the Coq proof assistant.
Following the implementation of HITs in the HoTT
library[2], we use the module mechanism of Coq to
produce a type mimicking most of their properties.
More precisely, inside a module we define a private
inductive type and replace the last constructor of the
HIT by an axiom.

Private Inductive Pushout {A B1 B2}
(f1 : A → B1) (f2: A → B2) : Type :=

inl : B1 → Pushout f1 f2

| inr : B2 → Pushout f1 f2.

Axiom incoh {A B1 B2} (f1 : A → B1) (f2: A → B) :
∀ a : A, inl (f1 a) = inr (f2 a).

The effect of the Private keyword is that the re-
cursor of the Pushout type is not available outside of
the module where it is defined. Instead, we define by
hand a new recursor, thereby forcing maps from the
pushout to respect the desired equality.

Definition Pushout_rect {A B1 B2}
{f1 : A → B1} {f2 : A → B2}
(P : Pushout f1 f2 → Type)
(g1 : ∀ b1 : B1, P (inl b1))
(g2 : ∀ b2 : B2, P (inr b2))
(H : ∀ a, (incoh a) # g1 (f1 a) = g2 (f2 a))
(x : Pushout f1 f2) : P x :=

match x with

| inl b1 ⇒ (fun _ ⇒ g1 b1)
| inr b2 ⇒ (fun _ ⇒ g2 b2)
end H.

The limitation of this technique is that this new
recursor does not compute as expected on incoh a:
while the argument H is supposed to encode the ac-
tion of Pushout_rect P on incoh a, it is actually never
used in the body of Pushout_rect. Instead, we need
an additional axiom.

Axiom Pushout_rect_compute {A B1 B2}
{f1 : A → B1} {f2 : A → B2}
{P : Pushout f1 F2 → Type}
{g1 : ∀ b1 : B1, P (inl b1)}
{g2 : ∀ b2 : B2, P (inr b2)}
{H : ∀ a, (incoh a) # g1 (f1 a) = g2 (f2 a)}
{a : A} :

apd (Pushout_rect P g1 g2 H) (incoh a) = H a.

We use a similar technique to define the spheres Sn

and the balls Dn, although our construction does not
really depend on it: all that is needed is a family of
maps inj n, but the fact that those are the inclusion
of the (n − 1)-sphere into the n-ball does not play a
role.

The definition of the free type on an augmentation
is now straightforward:

Definition FreeA {F n} (aug : Aug F n) : Type :=
match aug with

| mkAug E d ⇒
Pushout d

λ (x : E × Sphere n) ⇒
(fst x, inj n (snd x))
end.

3 Polygraphs and inductive re-
cursive types

As in Definition 1.11, the type Pol n of n-polygraphs
needs to be defined inductively, together with the
free-type map Free n : Pol n → Type. The fact that
Free n P is defined by recursion on P makes Pol n an
inductive-recursive (IR) type [5]. Coq does not na-
tively provide IR types. We therefore use an exper-
imental branch of Coq containing IR types, devel-
oped by Matthieu Sozeau [10]. The definition of n-
polygraphs is then straightforward:

Inductive Pol : nat → Type :=
| Disc : Type → Pol 0
| Ext {n} (P : Pol n) (aug : Aug (Free P) (S n)) : Pol (S n)
with fix Free {n : nat} (P : Pol n) : Type :=

match P with

| Disc A ⇒ A

| Ext _ _ aug ⇒ FreeA aug

end.

The definition of the notion of morphism of poly-
graphs follows the same template. First given aug and
aug’ being n-augmentations respectively over F and
F’ and given f : F → F’, we define an inductive type
MAug f aug aug’ of morphisms from aug to aug’ over f.
Then we define a map FreeMA from Maug f aug aug’ to
FreeA aug → FreeA aug’. Finally we define the type of
morphisms of polygraphs,
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Inductive MPol {n} : (Pol n) → (Pol n) → Type

with fix FreeM {n P P’} (m : MPol P P’) :
(Free P) → (Free P’).

We have now defined the objects and the arrows of
the category of polygraphs, together with the action
on them of the Free functor. Similarly, composition of
morphisms of polygraphs has to be defined together
with the proof that the Free functor preserves com-
position. This is done using a dependent pair:

Fixpoint PolyComposeAndFree {n P Q R}
(G : MPol P Q) (H : MPol Q R) :

∃ Comp : MPol P R, FreeM Comp = (FreeM H) o (FreeM G).

The rest of the development follows much the same
pattern, with operations on polygraphs needing to be
defined together with some of their properties. More
precisely, we define successively:

1. The identity morphism on polygraphs

idPol {n} (P : Pol n) : MPol P P

together with the fact that the free functor pre-
serves the identity:

FreeU {n} (P : Pol n) :
FreeM (idPol P) = (λ x ⇒ x).

2. The forgetful functor on types

Forget (n : nat) (T : Type) : Pol n.

together with the Counit of the adjunction be-
tween Pol n and Type:

Counit (T : Type) : Free (Forget n T) → T.

3. The action of the forgetful functor on arrows

ForgetM {n T T’} (f : T → T’) :
MPol (Forget n T) (Forget n T’)

together with the naturality of the counit:

CounitM {n T T’} (f : T → T’) :
(Counit T’ n) o (FreeM (ForgetM f))
= f o (Counit T n).

4. The unit of the adjunction

Unit {n} (P : Pol n) : MPol P (Forget n (Free P))

together with the first triangular identity

Triangle1 {n} (P : Pol n) :
(Counit (Free P) n) o (FreeM (Unit P))
= (λ x ⇒ x)

Conclusion

Polygraphs form an intricate mathematical struc-
ture, whose implementation calls forth features of
proof checkers rarely used together: IR types and
HITs. Apart from prototype implementations, the
only proof assistants with native IR types are Agda
and Idris. As for HITs, they are natively present in
the various cubical theorem provers (such as Cubi-
cal Agda, RedPRL, redtt or cubicaltt) and in Lean.
They are also implemented through similar tricks as
the ones used here in several libraries, including the
Coq HoTT library [2] and the HoTT-Agda library
[3].

Our takeaway from this implementation is that
HITs that do not naively compute are not well-suited
for the more intricate uses of HITs. The main short-
comings come from the size of the terms encountered.
Indeed, because the eliminator we defined for the
pushout types does not compute on equalities, any
such computation has to be replaced by a transport
along the Pushout_rect_compute axiom. While this is
tractable on the first definitions of our development,
in more complicated proofs the size of the terms con-
sidered quickly becomes too much to handle, both for
the human prover and for the automated checker, as
can be seen from the compilation tymes: around 45s
for less than a thousand lines of code.

Interestingly, a tentative implementation of poly-
graphs in Cubical Agda (where HITs natively com-
pute) did not fare any better: although the terms
considered were smaller, the absence of tactics made
them much harder to manipulate. As a result, we
were not even able to prove that the Free functor
preserves composition.
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