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DETAILS ON THE EXPERIMENTAL SETUP

A detailed sketch of the experimental setup (made of commercially available components) is depicted in Fig. S1. 
Three major challenges were faced to perform these recordings:

(i) Phase locking of all laser sources involved in the experiments to perform relative phase measurements
(ii) Fading phenomenon suppression. This temporal speckle like phenomenon occurs on the backscattered light 

from a quasi-monochromatic wave [1].

(iii) Loss cancellation. Loss in the 7.7 Km long SMF-28, while relatively low (0.2 dB/km) would induce all the 
evolutions to drop on phase-shifted evolution [2], thus hiding the broken symmetry of FPU.

These three points, as well as the experimental setup are detailed below.
Fading suppression technique: In optical time domain reflectometry (OTDR), it is known that a random 

noise in amplitude and phase is superimposed on the backscattered light originating from variations of the state of the 
polarisation of the light and/or from local thermo-mechanical fluctuations of the scattering volume. Many efficient 
ways to avoid this additional source of noise have been developed by means of polarization scrambling techniques, 
integration over a huge number of backscattered signals, or frequency dithering of the light sources [3]. However, 
none of these techniques has been proven to be effective in our system and compatible with accurate distributed 
phase measurements. Thus, we have developed a technique almost immune to this detrimental effect. We make the 
reasonable assumption that the fading phenomenon is a purely linear effect with characteristic time scale greater than 
a few millisecond. Therefore, even if the linear response of the system is highly noisy and complex, it is however 
independent of the incoming power. We remove its contribution as follows. We launch two consecutive 50 ns pulses 
in the fibre. The first one is intense (450 mW) and is responsible for the nonlinear dynamics, whereas the second 
one is weaker, attenuated by 13 dB. The delay between them is set to 102 µs. This delay is long enough to probe a 
fibre length up-to 10 km without overlap between two consecutive backscattered waves, but short enough compared 
to the characteristic response time of thermo-mechanical fluctuations, to ensure that gathered linear fading effect is 
strongly correlated for two consecutive pulses. Before going further, let us mention an important point. Thanks to two 
polarization beam splitters (PBS), we analyse each polarization states independently [4]. This has several advantages; 
there is no need for polarization scrambling which greatly reduce the acquisition time, and since all the contributions 
of both polarization states are known for the same shot, they can be recombined to further reduce the polarization 
fading effect. The principle of the measurement construction can be described as follows. Thanks to the heterodyne 
signals logged with the oscilloscope, the complex responses of each trace AP ow,P ol,Channel (Z) is demodulated (see 
below). Here, Z stands for the position along the fibre, the index Pow can either be Strong (for the nonlinear pulse), 
or Weak for the reference pulse, the index Pol is either 1 or 2 for each polarization sate, and Channel refers to as 
pump or signal. For instance, the pump response is evaluated by the two ratio AStrong,1,P ump(Z) 

and AStrong,2,P ump(Z) 
.

AWeak,1,P ump(Z) AWeak,2,P ump(Z) 
Performing the ratio of these complex responses, cancels the fading effect in both amplitude and phase, revealing the 
non-linear response only. Without entering the full detailed procedure, the leading idea is to extract from these ratio 
the amplitude and phase of each polarization state, and to average them. The same is done for the signal side band.

A side effect of this method is that any linear contribution is lost (by construction). This includes the linear phase 
due to the group velocity dispersion acquired during the propagation. This contribution is linked to the linear phase 
mismatch term of the four-photon process underlying the MI process, and cannot be neglected. Consequently, it is 
included afterwards during the signal post-processing sequence. We add the following phase term 1 β2(2πfm)2Z to the
pump-signal phase difference to finally get ∆φ that is used to represent experimental results in the main text (Figs.
3) and in Figs. S2. This new technique combined with an averaging over 200 shots gives an efficient suppression of
the fading effect without significant impact on phase measurements.
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FIG. S1. Experimental setup. L1: narrow linewidth (100 Hz at FWHM) continuous wave laser of 47 mW; L2: continuous 
distributed feedback laser diode. L1 generates the pulses involved in the nonlinear process, L2 acts as a local oscillator for 
the heterodyne detection system. L2 is phase-locked with respect to L1 following the procedure described in Ref. [5]. Their 
beat-note is mixed with a 800 MHz reference. The resulting intermediate frequency drives the phase of L2 through a PID 
(proportional, integral, derivative) controller. IM(1,2): intensity modulator; PM: phase modulator. PM and IM2 generate 
sidebands at fm = 35 GHz. To insure a fixed phase relation between them, they are driven by the same frequency doubled 
microwave source (Synth. 1). For information, all the instruments of the setup (including the oscilloscope) are referenced to 
the same 10 MHz clock. AWG: Arbitrary waveform generator; EDFA: erbium doped fibre amplifier; ISO: isolator; AO: acousto-
optic modulator; PC: polarization controller; PBS: polarization beam splitter; PD: photo-detector; RF: radio frequency; LNA: 
low noise radio-frequency amplifier (1 dB noise figure); SOA: semi-conductor amplifier; MUX: multiplexer (or de-multiplexer) to 
inject (or remove) the Raman pump. Estimated insertion loss are: PBS: 0.7 dB; Filter A and B, 4.5 dB; Circulator, 0.8 dB; MUX 
0.8 dB.

Raman amplifier: The losses of the SMF-28 are almost perfectly compensated by means of a scheme borrowed by 
telecommunication systems. The SMF fibre is pumped with a Raman laser source located at 1480 nm in the backward 
direction to minimize the relative intensity noise transfer from the pump to the signal [6]. A realistic simulation of this 
distributed Raman amplifier is complex to achieve due to the saturation of the Raman pump, the contra-propagation 
architecture and the relatively broad spectrum. Thus, we adjust the Raman pump power as follows. We choose the 
PM configuration (∆Φ0 = π/2) and increased the Raman pump power until the level of sideband power at the 
second recurrence (z ≈ 7 km, see Fig. 3(d) in the main text) is similar to the first one (z ≈ 2 km, see Fig. 3(d) in the 
main text). From the excellent agreement we obtained with numerical simulations we can infer that fibre losses are 
almost perfectly compensated in our system and that the fibre can be considered as fully transparent. Finally, when 
the Raman pump is off, we are not able to observe more than one period of recurrence or the homoclinic crossing, as 
in previous experiments.

Figures S2 display the phase portraits of the signal for different initial relative phase values ∆φ0 = 0, π/2, π, and 
3π/2. Figures S2(a) to (d) have been obtained from numerical simulations of the NLSE with the parameters listed in 
Fig. 3 of the paper, whereas Figs. S2(e) to (h) reports the experimental measurements (note that Figs. S2(g,h) and 
(c,d) for numerical simulations, correspond to the two specific examples presented in Fig. 3 in the main paper). When
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FIG. S2. Phase portraits of the signal for different relative initial phase values ∆φ0 = 0, π/2, π, 3π/2. (a-d) Numerical
simulations; (e-h) Experiments. The sideband power is normalized to its maximum value.

initial relative phase is ∆φ0 = ±π/2, the phase span the whole phase plane, and leads to a π phase shift of maximum
recompression points in the time domain (see insets, from numerical simulations). Conversely, when ∆φ0 = 0, π
the orbits remains confined in the right or left semi-plane (−π/2 ≤ ∆φ ≤ π/2), leading to in-phase recompression
without temporal shift (see insets, from numerical simulations). In all cases, a good agreement is achieved between
the experimental results (Figs. S2(e) to (h)) and the numerics (Figs. S2(a) to (d)).

Pulse generation: An arbitrary waveform generator (AWG) generates a clock at a 9.8 kHz rate, and another
one at half this rate. The fastest clock triggers a pulse generator that delivers a 50 ns long pulse to drive the intensity
modulator 1 (IM1). Then, the optical pulses pass through: a phase modulator (PM) to generate sideband waves
at 35 GHz, an optical processor to statically control their relative phase (Waveshaper system), an erbium doped
amplifier (EDFA) to reach a 440 mW peak power, and finally through an acousto-optic modulator (AO). This AO
has a two-fold role. First, it increases the extinction ratio of the pulses to mitigate Stimulated Brillouin Scattering
that would certainly be excited by a continuous optical leak between the pulses. Second, thanks to the half rate clock
at 4.9 kHz, it attenuates one pulse over two to generate either the nonlinear pulse, or the reference one. Finally, the
pulses are filtered out (Filter 1, bandwidth 1 nm FWHM) in order to remove the amplified spontaneous emission in
excess.

Signal Processing: Each wave logged by the oscilloscope is demodulated with a short time Fast Fourier Transform
(FFT). The wave is first sliced into segments made of 512 consecutive samples. Each segment has a 50 % overlap
with the previous one to optimize the resolution. After the application of an Hamming window, the power and the
relative phase at 600 MHz of each segment are evaluated with an FFT. Note: the demodulation is performed with a
carrier centred at 600 MHz, and not at ∆F = 800 MHz. This is because one has to take into account the 200 MHz
frequency shift induced by AO. Considering that the pulse width is 50 ns, one could expect a 5 meters resolution
from this OTDR. However, due to the 512 points segment length, and considering the 2500 MHz sampling rate of the
oscilloscope, the resolution is rather around 20 meters (to be compared to the 7.7 km fibre length). Considering some
additional filtering steps described here after, this resolution is however further reduced. Indeed, all demodulated
traces shown in the main paper and in Fig. S2 are obtained by averaging 200 recordings to remove the noise. For
comparison, Fig. S3(a) shows a single shot of the relative phase ∆φ(z) and Fig. S3(c) a collection of 50 recordings
(grey curves). As can be seen on the single shot recording, the relative phase experiences π phase shifts that might
be due to signal processing procedure used to extract the phase from raw data. It leads to significant variations from
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FIG. S3. Single shot recordings of (a) the relative phase ∆φ, (b) the pump (dashed line) and signal (solid line) powers. 
Collection of 50 consecutive recordings (grey) of (c) relative phase, and (c) of the signal power. (c) and (d) averaging (red 
curves) and smoothing with a Savitzky Golay filter (blue curves). It corresponds to φ0 = π/2 depicted in Figs. 3 (d)-(f) and 
Fig. S2 (h).

one recording to another that are suppressed by performing an averaging over a large number of shots (50, see red 
line in Fig. S3(c)). Small and rapid fluctuations are completely suppressed by means of a Savitzky-Golay filter (blue 
curve in Fig. S3(c)). Fig. S3(b) represents a single shot of the power evolution of the pump and sideband waves. 
It is quite remarkable to observe that the dynamics of the FPU recurrence process could be directly deducted from 
these raw data. Indeed, a clear two and half FPU recurrence cycle can unambiguously be seen from these traces 
with minima of the pump trace corresponding to maxima of the signal trace. As for the relative phase measurement, 
averaging and cleaning of the traces by means of a Savitzky-Golay filter (blue curve in Fig. S3(d)) allows to get a 
clean representation of these experimental results in the phase space that facilitate the comparison with numerical 
simulations without losing significant information on the dynamics. All these recording are driven with a computer 
and the typical time for one acquisition (200 recordings) is around 2 minutes.

Experimental procedure: In order to compare the impact of the input phase on phase-space trajectories, a critical 
point is to keep the optical power level launched along the fibre highly stable. For that purpose, at the beginning of each 
new acquisition, the sidebands generation is first shut off. A MI spectrum at the end of the fibre is logged by OSA2 and 
compared with a reference spectrum. If needed, the power is adjusted either by tuning the EDFA power, or for very fine 
adjustment, by tuning the RF level of synthesizer 2 (it has a 0.01 dB resolution and no thermal effect) by looking at the 
level of MI side lobes at the perfect phase matching frequency since it is very sensitive to pump power fluctuations 
(exponential at this frequency shift). The sidebands generation is then switched on and a reference spectrum is recorded. 
The time of flight sequence as described above is then performed. After that, at the end of the recording, two other 
spectra (sidebands on and off) are acquired and compared again to their respective reference spectra acquired at the 
beginning of the sequence. This allows us to check that no measurable power drift occurred during the acquisition. This 
procedure is systematic and highly effective. With no time limitation, we estimate that it allows for a stabilization of the 
launched power with a reproducibility better than 2%.

Brilouin scattering/Noise Limitation: Figure S4 shows the spectrum of the backscattered light when Raman 
pump is on by launching powerful pulses only to get absolute power measurements of waves involved in the FPU 
recurrence process. This measurement is performed just at the output of the circulator. First, one can see Brillouin 
scattering sidebands at 10.9 GHz around each optical component involved in the FPU recurrence process. The level of 
these sidebands is very weak, 16.5 dB below the backscattered pump for instance. This means that their absolute level is 
several orders of magnitude below the pump power, and that stimulated Brillouin scattering is completely negligible in 
this experiment (spontaneous and not stimulated). Second, the fact that the Stokes and anti-Stokes bands shifted from 
±10.92 GHz from each FPU component are symmetric also confirms that this spectrum correspond to spontaneous 
Brillouin scattering. A stimulated spectrum would be strongly asymmetric with a powerful Stokes band due to Brillouin 
gain. Furthermore, there is an important background compared to the noise floor of the OSA that is mostly due to 
Raman amplification used to compensate the loss. While the contra-propagative Raman pump scheme



S5

FIG. S4. Backscattered spectrum recorded at the output of the circulator by launching only strong pulses (no fading correction).

strongly reduces the amount of noise transferred on forward signals, it is quite important on the backscattered one. The 
noise power is around -64 dBm for the 2.5 GHz OSA resolution. The bandwidth of the final detection at 600 MHz is 
around 10 MHz. Within this bandwidth, the Raman noise power is reduced to -88 dBm. Considering that, this noise has 
a random polarization, the Raman noise power received by the optical detector is around -99 dBm. To give a 
comparison, the ultimate signal to noise ratio limitation of the experiment is presently the electrical thermal noise power 
of the detectors, PNyquist. At room temperature PNyquist = -174 +10 log10(∆f). With ∆f=10 MHz, and assuming a 1 
dB amplifier noise figure, the thermal noise is at a -103 dBm level. Thus, Raman noise is above this level and does not 
affect significantly our measurements.

EXACT SOLUTIONS OF THE NLSE

In principle both the phase-unshifted and phase-shifted evolutions can be described by doubly-period solutions of 
the NLSE. Solutions of this kind have been reported originally in Ref. [7, 8] and discussed again in Ref. [2] with 
reference to the interpretation of a hydrodynamic experiment in deep water (note, however, that in Ref. [2], only 
phase-shifted evolutions generated from a weakly modulated carrier are observed due to the fact that the experiment 
is conducted in the regime dominated by the losses). For sake of completeness, we report such solutions also here, 
with reference to the NLSE in normalized units as
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They both depend on a single parameter k, which jointly fixes both the longitudinal period of the evolution and
the temporal period of the modulation Tm or equivalently the frequency ω = 2π/Tm. Figures S5(a,b) show how the
solutions in Eqs. (S2-S3) look like in the evolution. The important point that we emphasize here is that they cannot
describe our experiment for two fundamental reasons: (i) they cannot describe the homoclinic crossing at constant
modulation frequency ω. In fact, as shown in Fig. S5(c), their characteristic temporal frequency ω as a function of
the parameter k is always different except in the limit k → 1 where ω → 1. In this limit, however, the spatial period
of the solutions diverges, and both solutions describe the Akhmediev breather (homoclinic loop or separatrix of the
MI) instead of the recurrent dynamics. In particular note that the unshifted solution is valid for low frequencies that



S6

0 0.2 0.4 0.6 0.8 1

parameter k

0

2

4

6

8

10

fr
e
q
u
e
n
c
y
 

shifted solution

unshifted solution

FIG. S5. Exact doubly-periodic solutions of the NLSE. (a) 3D plot of the recurrent solution that exhibits no shift in time; (b) 
Same for the solution that exhibits shift in time. Here k = 0.8 in both cases. (c) dependence of the normalized modulation 
frequency ω = 2π/Tp (Tp is the temporal period of the solution) as a function of the parameter k, for the two types of solutions.

lie within the MI spectral gain bandwidth, whereas the shifted solution features mostly high frequencies outside the 
MI gain bandwidth, i.e. the stable regime; (ii) in the experiment, by operating at fixed frequency, the longitudinal 
spatial period shows a marked dependence on the initial depth of modulation, a features that cannot be described by 
these solutions.

The homoclinic crossing that leads to switch between an unshifted (inner, Fig. 1(c,f) in the text) orbits and shifted 
(outer, Fig. 1(d,g) in the text) orbits has also been characterized, exploiting the integrability of the NLSE, in terms of 
the periodic inverse scattering [9]. According to this picture the homoclinic loop or separatrix (Akhmediev breather, 
Fig. 1(e,h)) corresponds to an eigenvalue double point lying on the imaginary axis. When moving towards inner or 
outer doubly periodic orbits, this double point splits in the complex plane. In particular, for inner orbits, the split 
occurs on the imaginary axis, thus creating a gap. Conversely, for outer orbits the split occurs in orthogonal direction 
creating a cross state. In spite of this understanding, however, it remains extremely challenging to construct more 
general doubly periodic solutions of the NLSE that describe the homoclinic crossing observed at constant modulation 
frequency under experimental conditions. To the best of our knowledge, they have not been reported in the literature 
yet.

On the other hand, the three-wave truncation provides a simple, accurate, and practical approach that allows for 
capturing the essential physics of the problem, at least when there is only one unstable mode (i.e., 1 ≤ ω ≤ 2). In the 
next section we discuss in more details the topologies of the phase-plane associated with the three-wave truncation 
and the general condition for homoclinic crossing.

PHASE-PLANE STRUCTURE AND GENERAL CONDITIONS FOR HOMOCLINIC CROSSING

We highlight the fact that the homoclinic structure which represents the continuation of the MI into the depleted 
regime and which is responsible for the broken symmetry of the FPU recurrences, appears as soon as the normalized 
modulation frequency ω changes across the onset for MI at ω = 2. The deep qualitative change of the topology of 
phase-space which is associated with this transition can be appreciated by contrasting Fig. S6(a) (modulationally 
stable case ω > 2) and Fig. S6(c) (modulationally unstable case, ω < 2), which reports the level curves of the 
Hamiltonian of the 3WM process in the cartesian phase plane (x, y) = (η1 cos ∆φ, η1 sin ∆φ). For completeness, in 
Fig. S6(b,d) we also show the corresponding topologies in the phase-plane of polar coordinate (∆φ, η1).

Figure S6(a,c) show that the modulationally stable case is characterized by orbits which describe very weak periodic 
conversions, without any interesting phase-plane structure. Conversely, for ω < 2, a separatrix or homoclinic loop 
appears (black solid curve in Fig. S6(b,d)), which divides the phase-plane into different domains corresponding to the 
qualitatively different dynamics discussed in the text. We point out that that we stick to the more common terminology 
of homoclinic structure’ used in the literature, though the separatrix is, strictly speaking, a heteroclinic loop since it 
connects η1 = 0 (i.e., the pump mode) with itself with opposite phases ∆φ = ±∆φc, in a fully consistent way with the 
exact solution known as Akhmediev breather which is the separatrix in the full NLSE [7, 8]. The values ∆φ = −∆φc and 
∆φ = ∆φc constitute the unstable manifold (i.e., characterized by growing modulations) and the stable manifold (i.e., 
characterized by decreasing modulations) of the saddle point η1 = 0 from which the separatrix emanates (see Fig. S6(d), 
where ∆φc = π/4). Equivalently, in the cartesian representation of Fig. S6(b) ∆φ = ±∆φc fix the slopes of the separatrix 
around the origin. The value of phase ∆φc is extremely important because it fixes the
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FIG. S6. Change of topology in the 3WM phase plane when going through the onset of√MI. Left column (a,b): the modulationally 
stable case, ω = 2.5; Right column (c,d): the modulationally unstable case, ω = 2, corresponding to peak MI gain. (a,c) 
phase plane in cartesian coordinates (x, y) = (η1 cos ∆φ, η1 sin ∆φ); (b,d) equivalent phase plane in polar coordinates (∆φ, η1).

boundaries, in the limit of very weak (ideally vanishing) modulation, across which abrupt switching occurs between 
shifted and unshifted orbits, owing to separatrix crossing. In particular unshifted evolutions are obtained for initial 
conditions either in the range −∆φc ≤ ∆φ0 ≤ ∆φc (single loop orbits around ∆φ = 0, e.g. case of Fig. S2(a,e)) or in the 
range π − ∆φc ≤ ∆φ0 ≤ π + ∆φc (single loop orbits around ∆φ = π, e.g. case of Fig. S2(c,g)), whereas phase-shifted 
evolutions correspond either to ∆φc ≤ ∆φ0 ≤ π − ∆φc or ∆φc − π ≤ ∆φ0 ≤ −∆φc (double loop orbits corresponding e.g. 
to the case of Fig. S2(b,f) or Fig. S2(d,h), respectively).
Importantly, the critical value of the phase ∆φc, and hence the above conditions, depend on the modulation frequency. 
This can be seen by searching for the coordinates of the saddle by imposing d∆φ/dz = dη1/dz = 0. The value

e n∆φ = ∆φc which fulfils d∆φ/dz = 0, subject to th conditio η1 = 0 (i.e., the pump, that guarantees dη1/dz = 0),

2

(
ω2/2− 1

)
is easily obtained in closed form as ∆φc = 1 cos−1 . Therefore ∆φc ranges from ∆φc = 0 at the onset of
MI (ω = 2) to ∆φc = π/2 at ω = 0, as illustrated in Fig. S7(a) (we warn, however, about the fact that for ω < 1, higher-
order MI can take place, which involves more complicated separatrices that are not addressed in this work). As an 
important consequence, we emphasize that the cardinal phases ∆φ0 = 0, π/2, π, 3π/2 that we have focused on, play a 
special role, being the most robust and less critical input phases. Indeed the initial conditions ∆φ0 = 0, π and ∆φ0 = π/2, 
3π/2 always lead to unshifted and shifted orbits, respectively, regardless of the specific value of ω and hence of the main 
parameters (modulation frequency and power). Therefore passing from ∆φ0 = 0 (or ∆φ0 = π) to
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FIG. S7. (a) Critical phase ∆φc vs. ω, with superimposed MI gain. The dashed vertical line divides the region of standard MI
(only one unstable sideband pair) of interest here from higher-order MI ruled by more complicated separatrices (higher-order
Akhmediev breathers). (b,c) NLSE simulations showing the power evolutions obtained when the input phase is changed (as
indicated on the panels) across the critical value. All parameters as in Fig. 4 of the paper, except Pp/Ps = 10 dB.
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∆φ0 = π/2 (or equivalently ∆φ0 = 3π/2) always lead to switch via homoclinic crossing.
When the modulation is relatively strong, a critical phase for switching still exist, which need to be determined 
numerically, presenting small deviations from the 3WM value valid in the limit of vanishing modulation. This is shown 
for instance in Fig. S7(b,c) where we change the input phase across the critical value ∆φ = −∆φc ' −0.31π (to be 
compared with the limit value from 3WM ∆φ = −∆φc ' −0.29π).
We have also performed measurements to report evidence for such type of switching around the critical phase. This 
further increase the difficulty of the experiment because, when approaching the separatrix, the spatial period tends to 
diverge. Indeed we have found that the 7.7 km fiber was too short to report such evidence. In this case we have employed 
a longer span (9.2 km) of exactly the same SMF28, at the price of the fact that the Raman compensation scheme is no 
longer optimum for such length. Figure S8 displays the power and phase evolutions as well as the phase-

FIG. S8. Evolution along the fibre length of (a,d) the pump power and the first sideband pair power; (b, e) the relative phase 
∆φ(z). (c,f) Projections of the evolutions in the 3WM phase plane (the insets show the expected evolutions). Numerical 
simulations are depicted in black dashed lines and experiments in solid rainbow lines. (a, b, c) and (d, e, f) differ only for the 
initial relative phase of the modulation ∆φ0 = −0.285π (inner trajectory) and ∆φ0 = −0.335π (outer trajectory), respectively. 
Parameters as in Fig. S2 except for L = 9.2 km and pump-signal power ratio equals to 10.5 dB. All power plots are normalized 
to their respective maxima.

plane projections when the phase is changed by nearly 15% (from ∆φ0 = −0.285π to ∆φ0 = −0.335π). While the power 
evolutions look similar, a clear difference exists in the phase evolutions and the phase-plane projections between the two 
cases. Figure S8 (a, b, c) showcases an inner trajectory while Figure S8 (d, e, f) an outer one. The initial phase has been 
changed by the smallest amount (∆φ0 = 0.05π) that allows to observe this behavior experimentally in a reproducible 
way. It is important to point out that the switching dynamics of the system, characterized by inner or outer trajectories 
is extremely sensitive to any parameter variations when working close to the separatrix. Finally, though we have chosen 
to evidence the switching process by changing the initial phase value, in principle, it might be possible to achieve 
switching also by tuning the perturbation amplitude only (i.e. the sideband amplitude). However, this requires to 
operate very close to the critical phase and to have a large excursion in amplitude (the variation of the initial condition 
occurs in the vertical direction in the phase plane shown in Fig. S6(d), nearly parallel to the separatrix). In particular, 
this excursion is too large concerning what can be performed with our present experimental setup. Further 
investigations with a modified setup are required to report it experimentally in an unambiguous way.
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