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Behavioral/Cognitive

Reward Activates Stimulus-Specific and Task-Dependent
Representations in Visual Association Cortices
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1Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom, 2Université Paris Descartes, Sorbonne Paris Cité, 75270
Paris, France, and 3CNRS Laboratoire Psychologie de la Perception, Unité Mixte de Recherche 8242, 75006 Paris, France

Humans reliably learn which actions lead to rewards. One prominent question is how credit is assigned to environmental stimuli that are
acted upon. Recent functional magnetic resonance imaging (fMRI) studies have provided evidence that representations of rewarded
stimuli are activated upon reward delivery, providing possible eligibility traces for credit assignment. Our study sought evidence of
postreward activation in sensory cortices satisfying two conditions of instrumental learning: postreward activity should reflect the
stimulus category that preceded reward (stimulus specificity), and should occur only if the stimulus was acted on to obtain reward (task
dependency). Our experiment implemented two tasks in the fMRI scanner. The first was a perceptual decision-making task on degraded
face and house stimuli. Stimulus specificity was evident as rewards activated the sensory cortices associated with face versus house
perception more strongly after face versus house decisions, respectively, particularly in the fusiform face area. Stimulus specificity was
further evident in a psychophysiological interaction analysis wherein face-sensitive areas correlated with nucleus accumbens activity
after face-decision rewards, whereas house-sensitive areas correlated with nucleus accumbens activity after house-decision rewards. The
second task required participants to make an instructed response. The criterion of task dependency was fulfilled as rewards after face
versus house responses activated the respective association cortices to a larger degree when faces and houses were relevant to the
performed task. Our study is the first to show that postreward sensory cortex activity meets these two key criteria of credit assignment,
and does so independently from bottom-up perceptual processing.
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Introduction
Humans learn how to act on stimuli to gain reward. Substantial
effort has been devoted to understanding how reward delivery
fosters associative learning (Rescorla and Wagner, 1972; Schultz,
2007). This research has revealed that reward-driven learning
depends on midbrain dopamine neurons, which display a firing
pattern resembling reward prediction error signals in models of
reinforcement learning (Schultz et al., 1997; Waelti et al., 2001).
However, whereas computational approaches provide solutions
to the critical problem of credit assignment— determining which
features are predictive of positive outcomes—little is known
about how such eligibility traces (Sutton and Barto, 1990) are
represented in the brain. In this study, we aimed to identify neu-

ral signatures of potential eligibility traces, i.e., stimulus repre-
sentations that have two crucial properties. To guarantee
precision of ensuing reward predictions, activated representa-
tions should be stimulus specific and task dependent. Stimulus
specificity ensures that the precise environmental conditions that
preceded reward will trigger its prediction. Task dependency
warrants that environmental conditions are only associated with
reward if they were used to perform the rewarded action.

Some recent studies have investigated related questions, fo-
cusing on the hypothesis that learning should depend on activa-
tion of stimulus representations at the time of reward delivery
(Pleger et al., 2008, 2009; Weil et al., 2010; FitzGerald et al., 2012;
Arsenault et al., 2013). However, whereas functional magnetic
resonance imaging (fMRI) in animals has demonstrated
stimulus-specific reward-related activity (Arsenault et al., 2013),
corresponding evidence in human studies has not been consis-
tently observed (Weil et al., 2010; FitzGerald et al., 2012). It there-
fore remains unclear whether reward-based activity in human
sensory cortex is stimulus specific.

To investigate this question, we conceived a novel paradigm in
which subjects performed a perceptual discrimination task, de-
ciding whether degraded stimuli contained images of faces or
houses. The analysis focused on trials in which, unbeknownst to
participants, the stimulus was pure noise. This renders activation
by reward independent of initial bottom-up activation as well as
of potential category-specific reward expectations, while mini-
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mizing the possible effects of neural adaptation (Grill-Spector et
al., 2006; FitzGerald et al., 2012).

We sought evidence of reward-dependent, stimulus-specific
cortical activity; that is, activity in our regions of interest (ROIs),
the fusiform face area (FFA) and the parahippocampal place area
(PPA), at the time of reward delivery. This was our first criterion
for a neural signature that could serve as an eligibility trace. Our
second criterion was task dependency. Postreward activation
should be stronger for stimuli that were used to gain reward. We
therefore compared postreward activation in the perceptual de-
cision task with activation in a second, instructed response task,
hypothesizing that stimulus activity for reward outcomes would
be restricted to trials in which outcomes were experienced as a
consequence of a perceptual decision.

In summary, we predicted that activity in the ROIs would
show a positive correlation with reward size for associated deci-
sions (stimulus specificity), and would be more influenced by
reward following a perceptual decision than following an in-
structed response (task dependency).

Materials and Methods
Eighteen right-handed, healthy participants (10 women; ages 20 –32
years mean age 24 years) took part in the study. The participants reported
no psychiatric or neurological past or present condition. All procedures
were approved by the local ethics committee of the University of Oxford
and all participants gave written informed consent.

Stimulus material
Grayscale photographs of faces and front views of houses (Fig. 1) served
as stimulus material. In a first step, all images were adjusted in luminance
and spatial frequency to the mean of the stimulus pool using the SHINE
(Spectrum, Histology and Intensity Normalization and Equalization)
Matlab tool (Willenbockel et al., 2010). This measure was taken to pre-
vent categorization based on surface similarities (Schyns and Oliva, 1994;
Rajimehr et al., 2011). Images were Fourier transformed and a variable
percentage of all phases in each Fourier transformed image was scram-
bled. Images were then back-transformed into native space. Three de-
grees of phase scrambling were applied per category to yield stimuli
producing easy, medium, or hard levels of difficulty in perceptual dis-
crimination. Face images were phase scrambled to 70, 75, and 85%.
House images were phase scrambled to 50, 65, or 75%. These degrees of
scrambling were chosen based on pilot testing to produce comparable
performance for house and face stimuli across the three levels of degra-
dation. In addition to the three difficulty levels, half of the images were
pure noise images with 100% of all phases scrambled.

Task
In each trial, participants were first presented with a stimulus image for
2 s. Stimulus presentation was followed by a task cue, displayed on the
screen for 1.5 s; the task cue was either a question mark or an exclamation
mark. Question marks instructed participants to press the left or right
button to indicate whether they had seen a face or a house (perceptual
decision task). Participants were unaware that half of the images were
noise images and instructed to always decide and respond. Images of
exclamation marks contained a darkened box on the left or right side
underneath the exclamation mark (Fig. 1A). In these trials, participants
had to press the button on the side corresponding to the darkened box
(instructed response task). Importantly, since participants did not know
the trial type at the time of stimulus presentation, they had to make a
perceptual decision in all trials. Participants had 1.5 s to respond, after
which the task image stayed on the screen for the remaining response–
stimulus interval (RSI). A cross in a box to the left or right of the task
image was displayed during this interval, indicating their previous re-
sponse. The length of this RSI was randomly drawn from a Poisson
distribution with lambda 4 s, minimum 2 s, maximum 6 s, and jittered in
steps of 500 ms. This interval was followed by feedback, which could be
rewarding, neutral, or penalizing.

Rewards consisted of images showing either one or two moneybags,
indicating gains of 10 or 20 points, respectively. Penalties were shown as
one or two bombs, indicating loss of either 10 or 20 points. Participants
were told that rewards and penalties were contingent on the correctness
of their previous response, but were in fact randomly assigned in noise
trials. Participants received feedback on their accumulated score every 50
trials. Their final score was converted into a monetary bonus of �£5 after
the scan, which was added to their usual remuneration of £20. The ex-
perimental sequence in the scanner consisted of 275 trials, 138 of which
were noise trials. Thirty-five noise trials and 33 signal trials were instruc-
tion trials; 24 –26 noise question trials were followed by a neutral out-
come, the remaining noise trials were followed in equal numbers by large
rewards, small rewards, small penalties, and large penalties. Outcomes in
the signal trials were contingent on performance, but outcome size was
randomly determined. Just before the scanning session, participants per-
formed 16 practice trials of the experimental paradigm.

The experimental task was followed by a functional localizer task to
determine the ROIs for all planned contrasts. Participants performed a
one-back task while they were presented with two sequences of six blocks
of 18 images that appeared on the screen for 150 ms each, followed by an
interstimulus interval of 400 ms. Participants had a short break after the
first six blocks. They had to switch from making responses with one hand
to the other after the break. Each block contained images of only one
category; these categories were as follows: unscrambled face images; un-
scrambled house images; easy, medium, and hard face images; easy, me-
dium, and hard house images; pure noise images; and unscrambled
object images.

Behavioral analysis
Behavior in the task was recorded to establish that participants showed
the expected performance modulation by the degree of phase scrambling
of the signal stimuli, as well as to assess changes in performance over time
and win–stay/lose–shift behavior as markers of learning. We also tested
whether participants made both face and house judgments in trials with
pure noise stimuli.

fMRI procedure
The functional imaging session took place in a 3T Siemens Magnetom
Trio scanner (Siemens). During the scan, participants lay supine on the
scanner bed with their left and right index fingers resting on two buttons
of a centrally placed response box. Participants wore sound-attenuating
headphones that allowed communication with the experimenter. They
viewed the stimuli on the screen via a mirror built into the head coil.
Stimuli were displayed at 5° of visual angle to prevent head and eye
movements. The functional session engaged a single-shot gradient echo-
planar imaging (EPI) sequence sensitive to blood oxygen level-
dependent (BOLD) contrast (32 slices, 192 mm field of view, 4 mm slice
thickness, 3 � 3 � 4 in-plane resolution, orientation parallel to the
bicommisural plane, 30 ms TE, 90° flip angle, 2000 ms TR, interleaved,
descending recording). After the functional session was completed, high-
resolution 3D T1-weighted whole-brain modified driven equilibrium
Fourier transformation (MDEFT) sequences were recorded for every
participant (128 slices, 256 mm field of view, 256 � 256 pixel matrix, 1
mm slice thickness, 0.25 mm spacing).

fMRI data analysis
fMRI data analysis was conducted with the LIPSIA (Leipzig Image Pro-
cessing and Statistical Inference Algorithms) processing tool (Lohmann
et al., 2001). For spatial registration, EPI data and 3D MDEFT data were
first oriented along the ac–pc axis. The matching parameters (six degrees
of freedom, three rotational, three translational) of the functional data
onto the individual 3D MDEFT reference set were used to calculate the
transformation matrices for linear registration. These matrices were sub-
sequently normalized to Talairach brain size (x � 135 mm, y � 175 mm,
z � 120 mm; Talairach and Tournoux, 1988) by linear scaling. The
normalized transformation matrices were then applied to the functional
slices, to transform them using trilinear interpolation and align them
with the 3D reference set in the stereotactic coordinate system. The gen-
erated output had a spatial resolution of 3 � 3 � 3 mm. Cubic-spline
interpolation was used to correct for the temporal offset between the
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slices acquired in one scan. To remove low-frequency signal changes and
baseline drifts, a high-pass filter of 1/75 Hz was applied for event-related
analysis and a high-pass filter of 1/125 Hz was applied to the analysis of
the localizer blocks. Filter lengths were chosen based on the optimal filter
length for a specific design file as suggested by LIPSIA. Statistical evalu-
ation was based on a least-square estimation using the general linear
model (GLM) for serially autocorrelated observations (Worsley and Fris-
ton, 1995). Temporal Gaussian smoothing (4 s FWHM) was applied to
deal with temporal autocorrelation and determine the degrees of free-

dom (Worsley and Friston, 1995). A spatial Gaussian filter of 5.65 mm
FWHM was applied. Unless otherwise stated, the design matrix was gen-
erated by hemodynamic modeling using a �-function in all contrasts.
The onset vectors were modeled with a duration of 1 s in a time-locked
event-related fashion unless otherwise stated. No derivatives were in-
cluded in the models.

For group analyses, t tests and repeated-measures ANOVAs were per-
formed on � values from the contrast of regressors in the respective
GLMs. Acquired t values were transformed to z scores. For whole-brain
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Figure 1. A, The main task was a perceptual decision task in which participants were first presented with a stimulus that they had to classify as either face or house. When the question mark
appeared, participants indicated their decision with a left or right button press. They then received positive (as shown), negative, or neutral feedback. The second task made up 25% of all trials. Here,
the initial stimulus was followed by an exclamation mark on top of two boxes, one of which was darkened; participants had to press the button corresponding to the side of the darkened box.
Feedback was again delivered in the same format as for the perceptual decision task and contingent on response accuracy. B, Luminance-adjusted grayscale images of faces and houses were Fourier
transformed and phase scrambled for use as stimuli. Within the experiment, three levels of degradation and noise trials were included, yielding graded performance levels (the displayed levels of
phase scrambling for signal stimuli are for illustrative purposes only and deviate from the actual levels in the main experiment; see Materials and Methods). Noise stimuli were 100% phase
scrambled. Participants were unaware of the existence of noise stimuli. C, Participants experienced five levels of outcome valence, two levels of reward, two levels of penalty, and a neutral outcome.
Large and small rewards or penalties resulted in the gain or loss of 20 or 10 points, respectively. Outcome valence (reward or penalty) was performance contingent on signal trials and in the instructed
response task, but randomly assigned for perceptual decisions in noise trials. A quarter of all trials were followed by neutral outcomes instead independent of performance.
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analyses, an initial z threshold of 2.56 ( p � 0.01, one tailed) was then
applied to the activation map. All voxels showing a positive activation
above this threshold entered the second step of the correction. Here, a
Monte Carlo simulation was used to define thresholds for cluster size and
cluster value at a significance level of p � 0.05 (one tailed). The combi-
nation of cluster size and cluster value decreases the risk of neglecting
true activations in small structures. Thus, all reported activations were
significant at p � 0.05, corrected for multiple comparisons at the cluster
level.

ROI definition. Functional ROIs were determined in a two-step ap-
proach. As a first step, all blocks from the functional localizer that con-
tained house images, all blocks that contained face images, and the object
image blocks were entered separately as regressors into a GLM (GLM1).
Events were modeled with a box-car function and event length set to
block length. House blocks were contrasted with face blocks (Houselo-
calizerBlock � FacelocalizerBlock) and vice versa (FacelocalizerBlock �
HouselocalizerBlock) on the single-subject level and averaged into t map
contrast images. In a separate analysis, the face and house signal trials
from the main experiment were entered separately into another GLM
(GLM2). A parametric increase for event amplitudes was determined by
signal strength, with amplitude increasing from 1 to 3 for hard to easy
trials. The regressor accounting for house trials was then contrasted with
the face-trial regressor (HouseSignalStrength � FaceSignalStrength) and
vice versa (FaceSignalStrength � HouseSignalStrength). The resulting
contrast images were masked with the contrast images generated based
on the functional localizer task. The masked images then entered second-
level random-effects analysis. One-sample t tests were used for the group
analyses across the contrast images of all subjects to test whether ob-
served differences between conditions were significantly different from
zero. The bilateral peak voxels of activity in the parahippocampal gyri
were used as centers for the PPA ROI. ROIs were established as 2 � 2 �
2 voxel cubes centered on the bilateral peak coordinates. Peak voxels for
the FFA ROI were generated in a parallel approach, locating peak voxels
in the fusiform gyrus; the bilateral ROI was set as a cube of 2 � 2 � 2
voxels around these centers.

Decision-specific activation at noise stimulus presentation. To establish
whether noise stimuli were treated as if they contained signal, a first
contrast tested whether the ROIs would show significant activation in
line with the perceptual decision on noise trials. Two regressors were
entered into one GLM (GLM3), one accounting for the presentation of
noise stimuli that were followed by a house decision and the correspond-
ing regressor for noise stimuli that were followed by a face decision.
Events were time-locked to noise stimulus presentation, modeled with an
event length of 1 s and event amplitude of 1. We estimated the main effect
of each regressor separately and contrasted face noise trials with house
noise trials (FaceDecision � HouseDecision). The mean � scores ex-
tracted from the FFA and PPA ROIs entered a repeated-measures
ANOVA to estimate main effects and interactions of decision (face or
house) and ROI (FFA or PPA).

Reward network response. The second contrast aimed to show that
reward after noise trials would result in the network response associated
with learning from rewards. We parametrically modeled BOLD increase
from neutral to large reward trials after both face and house decisions to
noise stimuli. Events were time-locked to reward presentation and mod-
eled with an event length of 1 s and an event amplitude ranging from 1
(neutral) to 3 (large reward).

Stimulus-specific activation at reward outcome. The most critical fea-
tures for postreward activation to be qualified as a signature of reward-
driven learning were stimulus specificity and task dependency. Analyses
for both effects were conducted in the same GLM (GLM5), which con-
tained the following eight regressors. The four main regressors of interest
implemented a parametric modulation of BOLD by reward size: (1) after
house responses in noise decision trials, (2) after face responses in noise
decision trials, (3) after instructed “house” responses, and (4) after in-
structed “face” responses. Large rewards were modeled with an ampli-
tude of 2 and small rewards were modeled with an amplitude of 1.
Further, this GLM contained separate regressors of no interest for pen-
alty outcomes modeled by size after face decisions and house decisions
and separate regressors for neutral outcomes after each type of decision.

Events were modeled with a 1 s duration, time-locked to reward presen-
tation. The main parametric contrasts to estimate stimulus specificity
were FaceDecisionReward and HouseDecisionReward. The estimated �
values for postreward activity scaling with reward size in the FFA and
PPA for face versus house decisions respectively were entered into a 2 �
2 repeated measures ANOVA to test for stimulus-specific postreward
activation. Because these analyses were calculated on noise trials, with
pseudorandomized response–reward contingencies, there was no signif-
icant correlation between reward size and stimulus-specific regressors
related to the earlier perceptual decision (r � 0.034).

Task-dependent activation at reward outcome. The second parametric
contrast calculated from this GLM (GLM5) tested for the assumption
that reactivation should be task dependent, i.e., depend on a perceptual
decision, as opposed to an instructed response. To test this hypothesis,
we performed a repeated-measures ANOVA on the � values from the
four regressors of interest: FaceDecisionReward, FaceInstructionRe-
ward, HouseDecisionReward, and HouseInstructionReward. Further,
we directly contrasted FaceDecisionReward � FaceInstructionReward in
the FFA ROI. Events were modeled time-locked to reward presentation
with an event duration of 1 s. Reward size for instructed responses was
modeled parametrically with the same amplitude vector as in the
stimulus-specificity analysis.

Reward-driven activation of stimulus-specific areas: psychophysiological
interaction analysis. To investigate whether proposed effects of stimulus-
specific BOLD increase with reward size were linked to activity in regions
associated with reward processing, we conducted a psychophysiological
interaction analysis (PPI) to complement the interaction analysis out-
lined above. The PPI procedure aimed to establish whether activity in
areas coding for reward magnitude would correlate with activity in areas
showing stimulus-specific activation. This analysis was implemented in
three steps. First, we established the peak voxel of activity in the left and
right nucleus accumbens in the contrast measuring the reward-network
response (above). We then conducted two PPI analyses for each hemi-
sphere. One of these correlated the seed voxel with whole-brain activa-
tion in a contrast of house reward after noise trials versus face reward
after noise trials, while the second correlated the same seed voxel with the
reverse contrast. PPI analyses used an unconvolved regressor and mod-
eled event lengths of 3 TRs (O’Reilly et al., 2012). These four PPI analyses
(two hemispheres � two contrasts) were then combined in two conjunc-
tion analyses. The first conjunction combined the left nucleus
accumbens-seed PPI in house reward after noise trials versus face reward
after noise trials with the corresponding right nucleus accumbens-seed
PPI (house-vs-face PPI, hereafter). The second conjunction analogously
combined the face reward after noise trials versus house reward after
noise trials PPIs from both hemispheres (face-vs-house PPI, hereafter).
LIPSIA controls for the inflated �-error in conjunction analyses (Lohm-
ann et al., 2001). The second step was to determine areas within the
vicinity of the PPA ROI that were significantly activated in the house-vs-
face PPI analysis and determining areas within the vicinity of the FFA
ROI that were significantly activated in the face-vs-house PPI analysis.
Selection of these ROIs was performed on not cluster-corrected data, as
the search radius was limited based on previous ROIs and anatomy. Last,
the areas identified in step two were used as ROIs (masks of a 2 � 2 � 2
cube in each hemisphere) in the localizer contrast of face blocks versus
house blocks and house blocks versus face blocks (GLM1). This ensured
that these ROIs not only correlated with nucleus accumbens activity after
rewards corresponding to the perceptual decision in favor of one specific
type of stimulus, but were also globally more sensitive to one stimulus
category than the other. For example, areas that correlated with the nu-
cleus accumbens more after face decisions on noise trials than house
decisions on noise trials were required also to be more active during
blocks of face images than blocks of house images in the functional
localizer, thus supporting the argument that reward-related activity is
stimulus specific.

Trial-type sensitivity. The last contrast tested whether noise stimuli
would deliver a more sensitive context for post-reward activation effects
than signal stimuli. We therefore defined a final GLM (GLM6), which
included the following four main regressors to assess stimulus specificity
and task dependency. These modeled reward magnitude parametrically
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for house responses in noise decision trials,
face responses in noise decision trials, in-
structed “house” responses in noise trials, and
instructed “face” responses in noise trials. To
allow comparison, the GLM further included
the corresponding regressors for signal trials.
Mean �s from all parametric contrasts were
entered into a 2 � 2 � 2 � 2 repeated-
measures ANOVA for further analysis.

Results
Behavioral analysis
Analysis of participants’ performance in-
dicated that they engaged with the task,
and confirmed that the paradigm effec-
tively created three different levels of dif-
ficulty, with performance in the hardest
level of difficulty being close to the fixed
chance performance in noise trials. Partic-
ipants made on average 75.8% correct re-
sponses (SD, 12.9%) on signal trials. One
dataset was excluded from the analysis be-
cause performance was �2 SDs from the
mean. The remaining 17 participants achieved on average 88.9,
79.9, and 63.3% correct on easy, medium, and hard face signal
trials, respectively, and 92.1, 79.4, and 58.4% correct on the cor-
responding house signal trials. In instructed response trials, par-
ticipants reached on average 89.27% correct responses (SD,
9.67%). According to postexperiment reports, errors on these
instructed trials typically occurred when participants failed to
suppress a prepared response to the stimulus. To test that signal
trials created a plausible context for noise trials, but were at the
same time not clearly distinguishable from noise trials, we as-
sessed how many levels of degradation participants thought they
had encountered. Of 17 participants, 9 indicated that the ex-
periment implemented three levels of difficulties, while 4 par-
ticipants believed that there had been “3– 4” levels of
difficulty. Only 2 participants correctly estimated that there
had been four levels of difficulty, while the remaining partic-
ipants indicated five, and 50 levels of degradation, respec-
tively. It thus appears as if for most subjects, noise trials were
not clearly distinguishable from signal trials. Incidentally,
only one participant reported noticing that a few trials did not
contain any signal, but nevertheless did not realize that fully
half of all trials were noise trials.

In a next step, we assessed whether participants made use of
feedback to adapt their behavior. We therefore assessed par-
ticipants’ performance changes over the course of the experi-
ment. As expected, performance improved, as revealed in a
2 � 3 repeated-measures ANOVA with the factors TIME
(level: first half of experiment/second half of experiment) and
DEGRADATION (level: easy/medium/hard). This analysis re-
vealed a marginally significant main effect of time (F(1,15) � 4.41,
p � 0.051), a significant main effect of degradation (F(1,16) �
42.85, p � 0.000), and a significant interaction between the two
main factors (F(1,16) � 4.23, p � 0.032). Descriptively, partici-
pants’ performance improved particularly on hard trials (Fig.
2A). It thus seemed that participants learned from feedback inte-
grating this information to modify their behavior.

Because feedback was assigned randomly in noise trials (for
which learning was impossible), performance modification by
feedback for these trials was assessed on a trial-by-trial basis in-
stead. To this end, we assessed for successive noise trials how
likely participants were to repeat a rewarded response or switch

away from a penalized one. Such a win–stay/lose–shift behavior
would indicate pseudolearning from positive feedback. A
one-sample t test revealed significant difference in stay probabil-
ities for rewarded compared with penalized noise trials
(t(16) � 2.99, p � 0.004), with participants being more likely to
repeat a rewarded response. While this trial-by-trial analysis was
primarily aimed at uncovering correlates of feedback integration
in noise trials, which do not allow assessment of true learning, we
also performed the same analysis on signal trials. We expected the
effect in signal trials to be weaker, because use of feedback to
guide behavior seems more plausible if the rewarded or penalized
trial is visually similar to the current trial. Seven of 17 subjects
made no errors on easy, or easy and medium trials, preventing us
from comparing effects of noise trials separately for each level of
degradation. We therefore averaged win–stay probability, win–
shift probability, lose–stay probability, and lose–shift probability
across all levels of degradation, including noise trials. To test
whether win–stay/lose–shift behavior was influenced by signal
strength, we calculated a repeated-measures ANOVA with the
two-level factor DEGRADATION on trial N � 1 (signal/noise),
VALENCE on trial N � 1 (reward/penalty), and BEHAVIOR on
trial N (stay/shift). This analysis revealed no reliable main
effects, a marginally significant interaction VALENCE on N � 1 �
BEHAVIOR (F(1,16) � 4.251, p � 0.056) and no three-way interac-
tion. Thus, although win–tay/lose–shift behavior was numerically
smaller after signal trials than noise trials, the difference was not
significant.

As a final assessment of the credibility of the manipulation,
and also to establish the comparability of BOLD effects across
face versus house decisions, we compared the distribution of per-
ceptual judgments on noise trials. Participants showed balanced
judgments, with no strong preferences on the group level. Face
decisions were on average made on 49% of all trials (SD, 7.8
standardized percentage; range, 31– 61%).

fMRI analysis
The FFA ROI for all analyses except the PPI was derived by mask-
ing the FaceSignalStrength � HouseSignalStrength contrast with
the FacelocalizerBlock � HouselocalizerBlock contrast, and was
centered on the peak coordinates x � �38, y � �51, z � �15,
and x � 34, y � �60, z � �15. The PPA ROI for all analyses
except the PPI was derived by masking the HouseSignal-

Learning in signal trialsA

win stay lose shift
1st half 2nd  half

Easy Medium Hard

P
ro

po
rt

io
n 

co
rr

ec
t

P
ro

ba
bi

lit
y 0.6

0.5

0.4

Win stay - lose shiftB

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0.8

Figure 2. A, Feedback integration for signal stimuli was apparent in the performance improvement from the first half (dark gray
bars) of the experiment to the second half (light gray bars) on perceptual decision trials. B, Feedback integration for noise trials was
evident in win–stay/lose–shift behavior. Participants were significantly more likely to stay with a response than to shift response
when the response was rewarded and more likely to shift than to stay when a response was penalized.

15614 • J. Neurosci., November 19, 2014 • 34(47):15610 –15620 Schiffer et al. • Stimulus-Specific Task-Dependent Reward Activation



Strength � FaceSignalStrength contrast with the Houselocalizer-
Block � FacelocalizerBlock contrast, and was centered on the
peak coordinates in x � �26, y � �41, z � �6, and x � 25, y �
�44, z � �6 (Fig. 3).

To determine whether participants treated noise stimuli as if
they contained signal, we estimated the BOLD activity in the
ROIs at the time when noise stimuli were presented in relation to
the subsequent perceptual judgment. Activity in these stimulus-
specific ROIs provided clear evidence that noise stimuli were
treated as if they contained some (albeit weak) signal. Partici-
pants’ individual � values for the two conditions—viewing noise
stimuli that were then judged to be faces (FaceDecision) and
viewing noise stimuli that were judged to be houses (HouseDeci-
sion)—were estimated in the two ROIs (Fig. 3A).

These individual � values were then entered into a repeated-
measures ANOVA with the factors DECISION (face/house) and
ROI (FFA/PPA). This yielded no significant effect of decision, but
a significant main effect of ROI (F(1,16) � 5.93, p � 0.027) and a
significant interaction between DECISION and ROI (F(1,16) �
38.33, p � 0.001). The significant interaction is further illustrated
by the direct contrasts of conditions within the ROIs. These con-
trasts showed significantly more activity in the FFA for pending
face versus house judgments (t(16) � 2.25, p � 0.019) and signif-
icantly more activity in the PPA preceding house versus face judg-
ments (t(16) � 3.39, p � 0.002; Fig. 3B).

We further established that positive outcomes to noise trials
would activate the network of brain regions associated with
learning from reward (O’Doherty et al., 2003; O’Doherty, 2004).
After correction for multiple comparisons at the whole-brain

level, a positive correlation of BOLD sig-
nal with reward magnitude was estab-
lished in the hypothesized network of
areas, classically associated with reward
processing, including the right nucleus ac-
cumbens and right subgenual anterior cin-
gulate gyrus/ventromedial PFC (vmPFC).
The network further included bilateral hip-
pocampal activation (see Fig. 5A).

Stimulus-specific activation at
reward outcome
The primary aim of the present study was
to identify neural correlates of reward-
driven learning, reflected in postreward
activation in ROIs that represent stimulus
categories. This stimulus specificity was
defined as the first criterion to make
postreward activation a plausible corre-
late of credit assignment. The stimulus-
specificity effect was assessed in two
separate contrasts that modeled the para-
metric effect of reward size. The two
parameters modeled BOLD activity in-
crease in the ROIs separately for reward
after face and house decisions, respec-
tively. A repeated-measures ANOVA on
the mean � values from the parametric
contrasts with the factors ROI (PPA/FFA)
and RESPONSE (house/face) yielded a
significant main effect of ROI (F(1,16) �
5.104, p � 0.038), no significant main ef-
fect of RESPONSE (F(1,16) � 1.59, p �
0.22), and a statistically significant inter-
action (F(1,16) � 8.98, p � 0.009), in line

with the hypothesis of stimulus-specific postreward ROI activity
(Fig. 4). In a follow-up analysis, we investigated the degree to
which both areas contributed to this overall effect. To this end, we
assessed � weights within both ROIs separately for the following
two parametric contrasts: (1) parametric increase in BOLD re-
sponse with reward size after face decisions (FaceDecisionRe-
ward) and (2) parametric increase in BOLD response with reward
size after house decisions (HouseDecisionReward). The FaceDe-
cisionReward parameter yielded a significant result in the FFA
ROI (t(16) � 2.45, p � 0.013), but no significant result in the PPA
ROI. No significant parametric BOLD increase could be estab-
lished in either ROI for HouseDecisionReward. Thus, visually
identical reward images (pictures of money bags) activated stim-
ulus representations differentially in a decision-contingent man-
ner, an effect mostly carried by an increase in FFA activity
following reward stimuli to face decisions compared with reward
stimuli following house decisions (Fig. 4).

Task-dependent activation at reward outcome
Our second criterion for postreward activation to be a marker of
credit assignment was task dependency. Task dependency re-
quires postreward activation to be specific to perceptual decision
tasks. We modeled four separate parametric contrasts: reward
size for face decisions, house decisions, instructed “face” re-
sponses, and instructed “house” responses. Entering the � values
from the RESPONSE (face/house), ROI (FFA/PPA), and TASK
(decision/instructed) conditions of the parametric analysis into a
2 � 2 � 2 repeated-measures ANOVA revealed no significant
main effects, but a marginally significant interaction for RE-
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SPONSE � TASK (F(1,16) � 3.125, p � 0.096) and the predicted
significant interaction of ROI � TASK � RESPONSE (F(1,16) �
10.84, p � 0.005). This significant three-way interaction is indic-
ative of a stronger positive relationship between reward size and
response-specific ROI activity in the perceptual decision task
than in the instructed response task (Fig. 4), satisfying the task-

dependency criterion. Because activity in the FFA ROI was mod-
ulated to a higher degree by stimulus specificity, we assessed
within the FFA whether this stimulus-specific activity was also
task dependent. Therefore, face decisions were contrasted with
trials in which participants made an instructed response with the
same key. This contrast (FaceDecisionReward � FaceInstruc-
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tionReward) yielded a significant result in the FFA ROI (t(16) �
2.02 p � 0.03), showing that the significant effect of stimulus
specificity in the FFA was task dependent (Fig. 4b).

Reward-driven activation of stimulus-specific areas: PPI analyses
As a parallel to the preceding ROI analysis, which assessed
whether stimulus-selective regions in sensory cortex would show
activity at the time of reward presentation, our PPI analyses
aimed to identify whether regions showing reward-related mod-
ulation would simultaneously exhibit evidence of stimulus spec-
ificity. Consistent with this notion, the face-vs-house PPI analysis
yielded significant activation (z � 2.3, p � 0.01) in an area of the
posterior fusiform gyrus centered on x � 34, y � �78, z � �15
(Talairach coordinates). As a complementary left-hemisphere
ROI, we chose the closest peak of activation to the mirrored co-
ordinates in the left hemisphere (x � �34), which identified a
peak voxel at x � �38, y � �78, z � �6 that was marginally
significant (z � 1.63; p � 0.053). A mask consisting of two cubes
of 2 � 2 � 2 voxels around these centers was then applied to the
face block versus house block functional localizer and yielded a
significant result (z � 2.09, p � 0.018). Thus, these bilateral ROIs
in the fusiform gyrus (1) correlated more positively with the nu-
cleus accumbens after reward delivery for face than house deci-
sions on noise trials, and (2) were more involved in face than
house processing in a separate task. These ROIs were somewhat
posterior to the FFA ROIs discussed above. PPI activation peaks
were evident close to these FFA ROIs in the right hemisphere (x �
31, y � �60, z � �15) and left hemisphere (x � �35, y � �48,
z � �12), but these activations were only marginally reliable in
the PPI analysis (right hemisphere: z � 1.39, p � 0.082; left hemi-
sphere: z � 1.506, p � 0.066), while of course exhibiting evidence
of stimulus specificity (z � 1.66, p � 0.047).

The corresponding house-vs-face PPI analysis yielded signif-
icant activation (z � 2.14, p � 0.016) in an area in the hippocam-
pal gyrus centered on x � 16, y � �48, z � 3 (Talairach
coordinates). As a complementary left-hemisphere ROI, we
chose the closest peak of activation to the mirrored coordinates in
the left hemisphere (x � �16), yielding a peak voxel at x � �17,
y � �45, z � �9 that was significantly activated (z � 1.72; p �
0.041). A mask consisting of two cubes of 2 � 2 � 2 voxels
around these centers was then applied to the house block ver-
sus face block functional localizer and yielded a significant
result (z � 2.507, p � 0.006). Thus, we identified two ROIs in
the parahippocampal region which correlated more positively
with the nucleus accumbens after reward delivery for house
than face decisions on noise trials, and these ROIs were more
involved in house than face processing in a separate (localizer)
task (Fig. 5).

Trial-type sensitivity
The present paradigm aimed to establish stimulus specificity and
task dependency by focusing on trials with noise stimuli, using
stimuli with true (house or face) signal primarily to create a cred-
ible context for those critical noise trials within our perceptual
judgment task. It is nevertheless instructive to analyze reward-
induced activity following the signal trials for comparison with
other recent studies of reward-related activation in sensory cor-
tex (Pleger et al., 2008; Weil et al., 2010; FitzGerald et al., 2012).
Signal trials differ from noise trials for several notable reasons.
They differ, for example, because these perceptual decisions
would involve more reliance on bottom-up features and because
reward probability and neural adaptation effects are confounded
with signal strength.

To compare the two types of trials, we modeled reward pa-
rameters for noise as well as signal trials in each task, implement-
ing eight separate regressors for the factorial combination of
TRIAL-TYPE (noise/signal), RESPONSE (house/face), and
TASK (decision/instructed). As a first pass, we established
whether the documented stimulus-specificity and task-
dependency effects were again reliable in noise trials in a 2 � 2 �
2 (ROI � RESPONSE � TASK) repeated-measures ANOVA.
This yielded a marginally significant interaction of ROI and
TASK (F(1,16) � 3.09, p � 0.098) and a significant three-way
interaction between ROI, RESPONSE, and TASK (F(1,16) �
10.19, p � 0.006), with ROI activity being greater for the associ-
ated response in decision tasks. Thus, we find support for the
result from the original stimulus-specificity and task-dependency
analyses in this alternative GLM.

Given this confirmation, we next compared postreward
BOLD responses for the two different trial types in a 2 � 2 � 2 �
2 repeated-measures ANOVA, including the factor ROI (FFA/
PPA) crossed with RESPONSE, TASK, and TRIAL-TYPE. This
analysis replicated the stimulus-specificity effect in a marginally
significant interaction of ROI � RESPONSE (F(1,16) � 3.47 p �
0.081). Further, it showed a significant four-way interaction
(F(1,16) � 18.11, p � 0.001). The significant four-way interaction
indicates trial-type sensitivity of the established effects, expressed
as a difference between noise and signal trials with regard to task
dependency. Because the differential activation of the ROIs was
repeatedly shown to be decision dependent, and not pronounced
for instruction trials, we focused our further comparison of noise
and signal trials on decision trials only. We therefore investigated
the effect of trial-type sensitivity for decision trials in a 2 � 2 � 2
repeated-measures ANOVA with the factors ROI (FFA/PPA),
RESPONSE (face/house), and TRIAL-TYPE (noise/signal) and
found a significant interaction of ROI and RESPONSE (F(1,16) �
7.32, p � 0.016), indicating stimulus specificity in decision tasks,
a significant interaction of ROI and TRIAL-TYPE (F(1,16) �
10.13, p � 0.006), and a significant three-way interaction be-
tween ROI, RESPONSE, and TRIAL-TYPE (F(1,16) � 7.45, p �
0.015), with more stimulus-specific, reward-modulated ROI ac-
tivity after perceptual decisions on noise trials than on signal
trials. Thus, we find confirmation of the stimulus-specificity and
task-dependency effect, but a difference between noise and signal
trials.

Discussion
Humans learn how to acquire rewarding outcomes and the neu-
ral basis of reward processing has been studied extensively. How-
ever, we know very little about how reward-yielding tasks are
represented in the brain. Machine learning describes how
reward-driven learning depends on eligibility traces that signal
which events are predictors of reward (Weil et al., 2010; cf. credit
assignment, FitzGerald et al., 2012). It has been proposed that
these learning processes are evident at the neural level as activa-
tion of the sensory cortices that represent components of the
rewarded task. We investigated the neural correlates of
postreward task representations in visual association cortices in a
perceptual decision task. We defined two criteria for potential
neural correlates of eligibility traces: postreward activation in a
sensory association cortex should be stimulus specific (i.e., reflect
the stimulus category of the rewarded response) and task depen-
dent (i.e., should only occur if the stimulus was relevant to the
task). We indeed found the representation of a stimulus to be
activated postreward, especially if it was relevant for the correct
response. This effect was established in a significant interaction of
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response category (face or house decision) and BOLD activity in
the FFA or PPA. Moreover, the effect was specific to trials in
which the stimulus was task relevant, fulfilling the criterion of
task dependency. The effects of stimulus-specific postreward ac-
tivation received further support from a PPI analysis. This anal-
ysis identified an area in the parahippocampal region that
correlated with nucleus accumbens activity after rewarded house
responses and that was sensitive to house processing in the sepa-
rate localizer task, whereas an area in the fusiform gyrus that
correlated with nucleus accumbens activity after rewarded face
responses was sensitive to face processing in the separate localizer
task.

Credit assignment
Reinforcement learning theory explains how reward-predicting
events are assigned a higher value and become targets of behavior
(Sutton, 1988; Sutton and Barto, 1990; Daw and Doya, 2006;
Dayan and Niv, 2008). However, the neural underpinnings of this
credit assignment mechanism are unclear. In particular, it is
known that reward prediction and prediction errors elicit neural
activity in the basal ganglia and vmPFC and result in increased
firing of dopamine neurons in the midbrain, but it is yet to be
established how this reward response fosters the representations
of rewarded tasks. One proposal is that reward signals increase
synaptic plasticity in sensory areas (Jay, 2003; Lisman et al., 2011;
Pennartz et al., 2011). Supporting evidence comes from studies
showing modulation of neural activity by anticipated reward
(Serences, 2008; Brosch et al., 2011). These findings indicate that
pairing with reward changes the neuronal representation of an
event’s value in sensory cortices; this may explain why associa-
tions between stimuli and reward can prime behavior (Hickey et
al., 2010; Hickey and van Zoest, 2012; Wimmer and Shohamy,
2012). However, while these studies show that credit assignment
takes place, and may be linked to dopamine release, they do not
reveal how neural activity representing relevant stimuli is linked
to neural correlates of reward during learning. The present study
sheds light on this question by demonstrating stimulus specificity
and task dependency of postreward activation.

Stimulus specificity
If postreward activation of the task underlies learning, an exact
representation of the previous stimulus should be traceable after
reward delivery. Although tested in a number of studies (Pleger et
al., 2008, 2009; Weil et al., 2010; FitzGerald et al., 2012), results of
paradigms studying reward-related activation in visual associa-
tion areas have been ambiguous. Using fMRI in monkeys, Ar-
senault and colleagues (2013) successfully showed postreward
activation in sensory cortices, but only in trials that did not entail
the visual stimulus itself. Conversely, several human fMRI studies
have found no evidence for stimulus-specific activity in sensory
cortex following reward delivery (Weil et al., 2010; FitzGerald et
al., 2012).

In the present study, we measured effects following decisions
on pure noise stimuli. This may have rendered the design espe-
cially sensitive to stimulus-specific activation for a number of
reasons. First, adaptation to individual stimuli has been sug-
gested to explain the observation of nonspecific activation effects
(FitzGerald et al., 2012). In contrast, we analyzed postreward
activation following perceptual decisions on noise. Activity in the
respective ROIs was thus dependent on the judged category rep-
resentations, not on low-level features of the individual stimuli.
Category representations might be less prone to sensory adapta-
tion than low-level features. Second, activation in noise trials and

top-down-driven postreward activation rely both on feedback
projections, which differ from feedforward projections convey-
ing sensory input. They might therefore activate the same level in
the cortical hierarchy of stimulus representation (Markov et al.,
2013). This could increase the overlap of the locus of BOLD
response measured for decisions under noise and top-down-
driven activation, increasing positive correlation between
decision-specific activity and postreward stimulus-specific activ-
ity. Third, in studies with true “signal” stimuli, strong anticipa-
tion of reward may modulate activity in the sensory cortices
before reward delivery (Serences, 2008; Brosch et al., 2011). Thus,
reward delivery may have had little effect on activity given that it
was delivered in a performance-dependent manner in tasks
where participants performed above chance (Pleger et al., 2008;
Weil et al., 2010; FitzGerald et al., 2012). Here, however, rewards
in noise trials could not be anticipated, as feedback was assigned
randomly, limiting a positive correlation between signal strength,
reward anticipation, and reward. Collectively, these features of
noise stimuli in our design may have made our study very sensi-
tive to stimulus-specific postreward effects.

The stimulus-specific effects we identified in terms of interac-
tions between decisions and ROIs were reliable only within the
FFA. A possible explanation for this finding is that we chose
the ROIs based on a localizer that correlated BOLD increase with
the increase in signal strength in the stimulus. We thus biased our
analysis toward ROIs that responded more strongly if more
category-specific bottom-up input was present. However,
whether, for example, subregions of the PPA are differentially
involved in top-down-driven versus bottom-up-driven scene
processing has yet to be empirically tested (cf. Park et al., 2010).

Task dependency
Most objects require a specific manipulation to yield desired out-
comes. However, at any given moment, many objects are present
in our environment, and any given object may afford different
actions, depending on the task. Hence, reward needs to activate
the specific representations of only those objects that were in-
volved in the current task. Global postreward activation, includ-
ing irrelevant stimulus representations, would yield a new credit
assignment problem (Roelfsema and van Ooyen, 2005). In fact,
stimulus specificity and task dependency relate to the difference
between Pavlovian and instrumental conditioning. Pavlovian
conditioning on the one hand requires a stimulus-specific asso-
ciation between the conditional stimulus and the unconditional
stimulus to be formed; this association needs to be stimulus spe-
cific, but is not necessarily related to a specific action. On the
other hand, instrumental conditioning requires the association of
a stimulus, an appropriate response, and the eventual reinforcer.
Thus, instrumental conditioning should crucially incorporate
task dependency.

This reasoning implies that if postreward activation observed
in the current study was a marker of a credit assignment, we
would expect it to reflect whether the preceding stimulus was
relevant to the rewarded task. Previously, postreward activation
has been tested using designs in which stimuli that preceded re-
ward were always task relevant, rendering it difficult to interpret
the established effects as correlates of either credit assignment or
less specific reward-driven activation. In the present study, only
one of two tasks required a response that was stimulus specific.
We showed that stimulus-specific postreward activation was de-
pendent on the relevance of the stimulus for the reward-yielding
task. Thus, our study shows that reward selectively increases ac-
tivity in sensory areas representing objects that have been used to
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perform a task, and not globally in sensory areas representing any
object present in the current context.

Conclusion
The present study has established stimulus-specific and task-
dependent activation following reward delivery in a perceptual
decision task. The established features of stimulus specificity and
task dependency suggest that postreward activation may be a
cortical signature of eligibility traces for credit assignment. This
finding is a substantial step toward closing the gap between well
defined computational concepts in reward-based learning and
their neural implementation. The next important step will be to
clarify how information is maintained during the intervals be-
tween the stimulus, the response, and the ensuing feedback. Rep-
resentations could be maintained as persistent activation in
sensory cortices, which would be modulated by the eventual feed-
back. Alternatively, increased activation of representations might
only persist in PFC during the delay and be reinstated in sensory
cortices by reward. Further, an important task for future research
will be to test the suggested functional relationship between
postreward activation and the dopaminergic modulation of syn-
aptic plasticity directly. Establishing such a link would open the
field to further exciting questions regarding the mechanisms of
maintaining relevant representations until reward delivery, the
nature of dopaminergic circuits that mediate this form of learn-
ing, and the degree to which this learning depends on the avail-
ability of dopamine, or the interplay between dopamine and
other neurotransmitters that influence behavior.
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