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Abstract: We report an experimental observation of the collision between a linear wave
propagating in the anomalous dispersion region of an optical fiber and a dark soliton located
in the normal dispersion region. This interaction results in the emission of a new frequency
component whose wavelength can be predicted using phase-matching arguments. The measured
efficiency of this process shows a strong dependency with the soliton grayness and the linear
wave wavelength, and is in a good agreement with theory and numerical simulations.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

When a bright soliton and a linear wave co-propagate in an optical fiber, four-wave mixing
(FWM) interactions can occur and give rise to new frequency components [1–4]. This nonlinear
interaction can be physically seen as a frequency shift of the linear "probe" wave which reflects
partially from the bright soliton. To study this interaction, the linear wave can be launched into
the fiber directly with the soliton, as in the case of [5, 6]. The linear wave can also be emitted
directly by the soliton itself and is interpreted as dispersive Cherenkov radiation [7]. In this case,
the dispersive wave is emitted by the bright soliton under the action of higher-order dispersion
when its spectrum leaks across the zero-dispersion wavelength (ZDW) [8,9]. The soliton then
decelerates due to the Raman effect which allows the collision between the emitted dispersive
wave and the soliton [4]. Due to its crucial importance in the supercontinuum generation process,
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this interaction has been the subject of intense research over the last decade [4]. These studies have
shown that the FWM process results in the generation of new components at shorter wavelengths,
thus explaining the spectral broadening of the supercontinuum towards the blue/UV region [4,10].
This FWM process can also be interpreted in terms of an event horizon in analogy with black
holes [7, 11, 12, 17].
The interaction of bright solitons with linear waves has also been studied in the case of

high-order solitons [13], orthogonally polarized solitons [14], or in cavities made by solitons
in which multiple collisions can be observed [5,15,16,18]. The collision of linear waves with
dark solitons has been also investigated theoretically and numerically in [17,19]. In this work,
it has been demonstrated that a linear wave propagating on top of a black soliton background
may undergo the reflection process described above leading to the frequency shift of the probe
wave and to a change of the dark soliton grayness. However, this process has not been observed
experimentally yet with any dark solitons.
In this work, we report the experimental observation of the collision between a dark soliton

(black or gray) with a weak linear wave. In agreement with theoretical analysis and numerical
simulations, we show that this interaction leads to the generation of a new frequency component
whose conversion efficiency varies with the dark soliton grayness as well as the linear wave
frequency.

2. Theory

2.1. Dark soliton

The evolution of the field with a slowly varying envelope A(z, t) propagating in an optical fiber
can be described by the following generalized nonlinear Schrödinger equation (NLSE):

i∂z A + D(i∂t )A + γ |A|2 A = 0 (1)

where D(i∂t ) =
∑

n≥2
βn
n! (i∂t )n is the dispersion operator expanded around ω0, the carrier

frequency. t is the retarded time in the frame travelling at the group velocity V0 = V0(ω0) = β−1
1

of the soliton carrier frequency and γ is the nonlinear parameter. We checked through numerical
simulations that Raman and self-steepening effects do not play any significant role with the
parameters used in the present study, thus they will be neglected.

If we only consider normal second-order dispersion (n = 2 and β2 > 0), Eq. (1) admits a dark
soliton solution ADS(z, t) of the form [20]

ADS(z, t) =
√

P0

(
cos ϕ tanh

(
t −
√
γβ2P0 sin (ϕ)z

T0
cos ϕ

)
− i sin ϕ

)
eiγP0z (2)

where T0 and P0 are respectively the duration and peak power of the dark soliton. ϕ ∈ [−π/2, π/2]
is the grayness parameter of the soliton, ϕ = 0 corresponds to the so-called black soliton and
ϕ , 0 to gray solitons. Dark solitons are also associated with a phase jump localized at the center
of the dip. A black soliton has an abrupt π phase jump while gray solitons have smaller and
smoother phase jumps. Furthermore, it has to be noted that when ϕ < 0 (resp. ϕ > 0) the soliton
travels faster (resp. slower) than the carrier frequency.
In presence of higher-order dispersion (n > 2), dark solitons are perturbed and are known to

emit radiations [21–23] similarly to bright solitons. The dispersive wave emission from dark
solitons was unambiguously observed very recently [24, 25]. Here, we focus on the interaction
occurring when a dark soliton and a linear (dispersive) wave collide in the presence of significant
higher-order dispersion. In the following, we limit our investigations to third-order dispersion
term β3 (n = 3) and we neglect higher-order terms.
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2.2. Phase-matching

The interactions between linear waves and bright solitons has been theoretically studied in [1–4,26].
In these works, it has been shown that the FWM interaction between linear waves and bright
solitons leads to the generation of new spectral components. This process follows a phase matching
relation, involving soliton and linear wave properties, that can be derived by a perturbative
approach [9]. In a similar way, Oresnikov et al. [19] used this perturbative method to derive the
phase matching condition in the specific case of a linear wave interacting with a black soliton.
In the present study, we generalize this approach to take into account the grayness of the dark
soliton interacting with a linear wave. A similar phase matching condition has been obtained
for the radiation emitted by shock waves [27–29]. In the following, the linear wave is externally
launched at the fiber input and therefore acts as a probe. It will therefore be termed probe wave,
following the terminology used in the literature.

The dispersion relation of linear waves propagating over a background is (see Appendix A.1)

k(Ω) = −β1solΩ +
β2
2
Ω

2 +
β3
6
Ω

3 + kNL (3)

where Ω = ω − ω0 and ω is the frequency of the linear wave. Three main contributions are
involved in this relation : the dark soliton (first term), in which β1sol =

√
γβ2P0 sin(ϕ) is the

soliton group velocity, the dispersion of linear waves (second and third terms) and a nonlinear
contribution kNL = γP0 due to the background of the dark soliton (last term). The resonance
condition leading to the new frequency generation is verified when the wave vectors of the probe
and generated waves are equal, which leads to the following equation

− β1solΩ +
β2
2
Ω

2 +
β3
6
Ω

3 + kNL = k(Ωp) (4)

whereΩp = ωp −ω0 and ωp is the absolute frequency of the probe wave. The real solution of Eq.
(4) gives the frequency of the generated wave. Note that in the case of a black soliton (ϕ = 0 and
therefore β1sol = 0), the expression is the same than for a bright soliton [2]. However, when ϕ , 0,
the soliton carries an extra momentum whose effect is to change the frequency of the generated
wave. Equation (4) also shows that the collision process depends on the fiber properties (β2, β3
and γ) as well as the probe wave frequency (ωp). In the following, the frequencies predicted by
Eq. (4) will be compared with the experimental and simulation results.

2.3. Conversion efficiency

In order to fully describe the collision process, we focus now on the amplitude of the generated
wave. If we refer to the case of bright solitons [7, 26], this amplitude can be calculated by
considering the soliton as a potential. In this case, the probe and generated signal waves are the
transmitted and reflected waves, respectively. However, in the case of quasi-continuous linear
wave, only a small part of the probe interacts with the soliton. The duration of this interaction can
be approximated as Tin = L f iber/(∆Vsp), where ∆Vsp is the group velocity mismatch between
the dark soliton and probe wave. The energy of the probe interacting with the soliton can be
expressed in the time domain as Ein = Pp × Tin, where Pp is the probe wave peak power.
Consequently, the energy of the generated wave is taken from the reflected part of the probe

wave interacting with the soliton : Eg = R×Ein, where R is the reflection coefficient corresponding
to the soliton potential (see appendix A.2). However, the experimental peak power of the probe
wave is generally not exactly known. Therefore, we express the energy of the generated wave in
the normalized form [26]:

Eg ∝ R|v−1
sp | = R|β2Ωp +

β3
2
Ω

2
p −

√
γβ2P0 sin(ϕ)| (5)
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As expected, when the group velocity mismatch between the soliton and the probe wave becomes
large, the energy of the generated wave tends to zero. However, as we can see, the generated wave
energy mainly depends on the soliton grayness and the probe wave frequency. Therefore, the
impact of those parameters will be studied experimentally in what follows.

3. Simulation

To illustrate the collision process between a dark soliton and a probe wave, we performed
numerical simulations based on Eq. (1). Thus, we take the example of a gray soliton of grayness
ϕ = π/8, duration T0 = 600 fs and peak power P0 = 0.94 W colliding with a weak Gaussian
probe wave Ap(t) of the following form:

AP(t) =
√

Pp exp
[
−

(
t − τ
√

2TP

)2 ]
e−i(ωp−ω0)t (6)

where Pp = 0.02 × P0 = 18.9 mW. The full-width at half maximum (FWHM) duration of the
probe pulse (TFWHM = 1.665 Tp) is equal to 2 ps. The delay between the probe wave and the
soliton is set to τ = 3 ps. Figures 1(a) and (b) represents respectively the temporal and spectral
evolution of the collision process in a 3.15 km long dispersion shifted fiber (DSF) whose ZDW is
located at 1549.5 nm. The soliton and probe wavelengths are respectively λ0 = 1542 nm and
λp = 1554 nm, corresponding to β2 = 0.68 ps2/km and β2 = −0.405 ps2/km, respectively. The
nonlinear parameter γ is equal to 2 W−1.km−1 and the third order dispersion β3 is equal to 0.115
ps3/km. Note that the temporal dynamics in Fig. 1 (a) represents the field intensity minus the
soliton background power | |A(z, t)|2 − P0 |, for the sake of clarity.
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Fig. 1. Numerical simulation of the collision between a gray soliton and a weak probe wave.
(a) temporal evolution during the propagation in the DSF. The field shown is | |A(z, t)|2 − P0 |.
(b) spectral evolution versus fiber length. The black vertical line represents the ZDW of the
fiber and the dashed red line represents the theoretical wavelength of the wave produced by
the collision [solution of Eq. (4)].

As can be seen in Fig. 1(a), the probe wave and the soliton collide around 1 km of propagation.
After the collision, a part of the probe is transmitted and the other one is reflected. In the spectral
domain, one can see that the probe and the transmitted wave wavelengths are equal. Around 2 km
of propagation a new spectral component associated to the reflected wave is emitted at 1561 nm.
This generated wave can be attributed to the FWM interaction between the dark soliton and the
probe wave occurring at their collision and resulting in the frequency shift of the reflected wave.
The theoretical wavelength of the generated wave can be calculated from the phase matching
condition given by Eq. (4) and is drawn in red dotted line in Fig. 1(b). It corresponds to 1561 nm,

                                                                                               Vol. 26, No. 18 | 3 Sep 2018 | OPTICS EXPRESS 23484 



which is in very good agreement with the simulation and therefore confirms the validity of the
previous analysis.

4. Experimental setup

In order to experimentally study the collision process, we need to generate both a dark pulse
(required to excite a dark soliton in the fiber) and a probe pulse, but we also need tp control the
soliton grayness as well as the time delay between the two pulses. Several methods have been
proposed to generate dark solitons [31–40]. However, none of them allows an accurate control
of the soliton grayness. To do that, we implemented a technique based on phase and spectral
shaping using commercial waveshapers (Finishar wavesapher 4000S), inspired of [25]. The
corresponding experimental setup, shown in Fig. 2(a), will be used to generate simultaneously
a dark pulse ADS(0, t) located on a super-Gaussian background pulse ABG(t) and a Gaussian
pulse Ap(t) which will act as the probe wave. The total field launched in the fiber can be written
A(t) = ADS(0, t) × ABG(t) + AP(t) with

ABG(t) = exp
[
−

(
t

TBG

)n ]
(7)

where TBG is the duration of the super-Gaussian background pulse and n its order.
In order to synthesize this field, we use an optical parametric oscillator (OPO) pumped by a

Ti:Sa laser. It delivers Gaussian pulses of 220 fs FWHM duration and tunable around 1550 nm
at 80 MHz. The pulses pass though a variable attenuator consisting of half-wave plates and a
polarizer and reaches the first waveshaper WS1. Here, the initial pulse is shaped in amplitude
(without shaping the phase jump characteristics of dark solitons and delay between the two
pulses). This step is represented in Fig. 2(b) and (c) in which the large OPO spectrum [red curve]
is shaped into a dark pulse of duration T0 on a wide super-Gaussian background of duration
TBG and a probe wave of power and duration Pp, Tp [blue curve]. After WS1, this field is
amplified with an erbium doped fiber amplifier (EDFA) and reaches the second waveshaper WS2.
At this stage, the odd-symmetry phase profile of the dark pulse is applied and the time delay
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Fig. 2. (a) Experimental setup. P: Polarizer; WS: waveshaper; λ/2: half-wave plate; EDFA:
erbium-doped fiber amplifier; OSA: optical spectrum analyzer. (b) Schematic spectrum and
(c) time profile of the total field launched into the fiber.
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between the dark pulse and the probe pulse is fixed thanks to a linear phase variation of the probe.
Additionally, the use of this second waveshaper allows to filter out the amplified spontaneous
emission added during the amplification and to correct spectral distortions due to amplification.
For all simulations and experiments below, we use the DSF described in the previous section.
The parameters of the dark pulse are set to: λ0 = 1542 nm (β2 = 0.6795 ps2/km), P0 = 0.94 W,
T0 = 600 fs, TBG = 40 × T0 = 24 ps, n = 16.

To summarize, with the experimental setup presented in Fig. 2(a), it is possible to generate
a dark pulse located onto a super-Gaussian background pulse with a controlled grayness and
wavelength, co-propagating with a linear probe pulse with a controlled delay, duration, wavelength
and peak power.

5. Impact of the dark soliton grayness

In this section, we study the impact of dark soliton grayness on the collision process. Figure
3(a) represents the simulated fiber output spectrum against the soliton grayness changed from
ϕ = −π/3 to ϕ = π/3. The probe wavelength is fixed to a constant value of λp = 1559
nm (β2p = −0.852 ps2/km) with a FWHM duration of 5.9 ps. Its peak power is fixed to
Pp = 0.0035 × P0 = 3.3 mW and the time delay to τ = 6.5 ps. The black solid line represents
the fiber ZDW. As can be seen, the generation of the new spectral component in the anomalous
dispersion region occurs for grayness values from −π/6 to π/4. Its wavelength increases with
the grayness because the carrier wavelength of the dark solitons shifts with grayness. As in the
previous section, the theoretical wavelength of the reflected wave can be found from the solution
of Eq. (4) for each grayness value. The theoretical evolution of this wavelength is represented in
black dashed line in Fig. 3. The agreement between theoretical results and numerical simulation
is very good.
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Fig. 3. (a) Simulated and (b) experimental fiber output spectrum against the grayness of
the dark soliton. The black vertical line represents the ZDW of the fiber. The dashed black
lines stand for the theoretical wavelength of the generated wave produced by the collision
[obtained from Eq. (4)].

To observe this dynamics experimentally, the method shown in Fig. 2 is used with the same
parameters. The corresponding results are reported in Fig. 3(b) which represents the evolution of
the fiber output spectrum as a function of the grayness. In agreement with the simulations results,
the generated wave wavelength increases for grayness values from ϕ = −π/8 to ϕ = +π/3,
following the same tendency as the theoretical prevision [black dashed line]. However, when the
grayness is below ϕ = −π/6, one can notice the absence of emission. The small discrepancy
between simulations and experiments can be attributed to experimental uncertainties. Figure 3
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also shows that the generated wave observed experimentally is efficiently emitted for a specific
range of grayness values. Hereafter, we will focus on the efficiency of the collision process.
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Fig. 4. Energy of the generated wave versus the soliton grayness. The red and green curves
correspond respectively to the theoretical prediction [Eq. (5)] and numerical results. Black
circles are experimental measurements. The black line is a guide for the eye.

Figure 4 presents the evolution of the generated wave energy as a function of the soliton
grayness. The theoretical result, obtained from Eq. (5), is represented in red. The simulation
and experimental results (respectively shown in green and black) are calculated by integrating
the power spectral density over the emission spectral range and dividing by the repetition rate
of the laser. Theoretical predictions, simulations and experiments are in good agreement and
show that the efficiency of the collision process presents a maximum for grayness value around
−π/8. When the grayness tends to −π/3, the generated wave energy decreases rapidly to become
almost zero before −π/4. The same happens for increasing grayness values, i.e. the generated
wave energy decreases and almost vanishes for grayness values larger than π/3.

6. Impact of the probe wavelength

To study the impact of probe frequency on the collision process, the soliton grayness is now fixed
to a constant value of ϕ = 0 (black soliton case). The wavelength of the probe is varied from
1552 nm to 1564 nm with the waveshapers, corresponding to β2 values varying between -1.297
and -0.225 ps2/km. Starting with numerical simulations, the peak power of the probe wave is set
to Pp = 0.005 × P0 = 4.7 mW and the FWHM duration of the probe to 16 ps with a zero time
delay between the soliton and the probe. Figure 5(a) represents the evolution of the simulated
output spectrum as a function of the probe frequency. It can be seen that the generated wave
wavelength decreases from 1561 nm to 1550 nm when the probe wavelength increases from 1551
nm to 1562 nm. This results is in very good agreement with the solution of the phase matching
condition [black dashed line in Fig. 5], obtained from Eq. (4). One can also note the presence of
a spectral component on the left of the spectrum which varies from 1532 nm to 1521.4 nm with
the probe frequency. This peak follows the red dashed line that corresponds to the FWM process
between the soliton background and the probe wave at 2ω0 −ωp (the second peak located at long
wavelength 2ωp − ω0 being too weak to be seen experimentally).

Figure 5(b) shows the experimental results obtained using the same parameters as in the
simulation. One can see that the generated wave wavelength follows the same evolution as in
the simulation. Therefore, this result is in very good agreement with both the experimental and
theoretical results and confirms the previous analysis.
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Fig. 5. (a) Simulated and (b) experimental fiber output spectrum versus the probe wave
wavelength. The black vertical line represents the ZDW of the fiber. The dashed black lines
represent the theoretical wavelength of the wave produced by the collision between a black
soliton (ϕ = 0) and the probe wave [obtained from Eq. (4)]. The red lines correspond to the
FWM interaction between the probe and the soliton background (see text).

Figure 6 shows the theoretical evolution of the energy of the generated wave (red curve), based
on Eq. (5). We can see two local maxima, the first one being at 1560.5 nm and the second one at
1553.8 nm. The generated wave energy falls rapidly to zero for values less than 1551 nm and
greater than 1563 nm. Furthermore, when the probe wavelength tends to 1557 nm, the group
velocity of the probe and the soliton are almost equal, implying a vanishing theoretical energy of
the generated wave, as it is evident from Eq. (5). To analyze the evolution of the generated wave
energy, we followed the same integration method as before. Figure 6 shows the experimental
and numerical energy of the generated wave, in black and green respectively. The agreement
with theory is qualitatively good, i.e. two local maxima can also be found. One can note that the
energy does not fall to zero around 1557 nm as theoretically predicted. This discrepancy with
the theoretical curve can be attributed to the fact that the probe wave is not a continuous wave
and therefore has a relatively broad linewidth. Indeed, the spectral width of the probe directly
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Fig. 6. Energy of the generated wave versus the probe wavelength. The red and green curves
correspond respectively to the theoretical prediction [Eq. (5)] and numerical results. Black
circles are experimental measurements. the black line is a guide for the eye.
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impacts the resolution of the energy measurement. In addition, the spectral width may increase
during propagation due to cross-phase modulation with the soliton background. Thus, the zero of
the theoretical curve, seen around 1557 nm, cannot be found in this case. However, when the
probe wave wavelength increases (> 1562 nm), its group velocity mismatch with the soliton
increases too, which strongly reduces the conversion efficiency, as in the theoretical evolution.
The same arguments apply for decreasing wavelengths (< 1551 nm), showing that the group
velocity mismatch between the dark soliton and the probe wave is the control parameter of the
new frequency generation and of its efficiency. Despite the quantitative discrepancies, these
results confirm that the collision between a black soliton and a linear wave follows the same
phase matching rule as in the previous case where the soliton grayness was changed during the
experiments.

7. Conclusion

To conclude, in this work we made the first experimental observation of the collision between
a dark soliton (gray and/or black) and a weak linear wave. By generating both the dark soliton
and the linear wave with available commercial waveshapers, it has been possible to control all
the parameters of both the dark soliton and the linear wave. It has been demonstrated that the
collision process leads to the generation of a new frequency components whose conversion
efficiency varies with the dark soliton grayness as well as the linear wave frequency, which are
all in good agreement with theoretical and numerical predictions.

A. Appendix

A.1. Derivation of phase-matching relation

In this appendix, we present the detailed calculation of the phase-matching condition correspond-
ing to the four wave mixing process occurring at a collision between a dark soliton and a linear
wave. Starting from Eq. (1):

i∂z A + D(i∂t )A + γ |A|2 A = 0 (8)

we write the field envelope A(z, t) as a superposition of a dark soliton, (uDS(z, t)eiγP0z) given by
Eq. (2), and a weak wave (g(z, t)) [2]:

A(z, t) = (uDS(t, z) + g(z, t))eiγP0z . (9)

By substituting A(z, t) in (8) and linearizing g(z, t), we find the equation describing the evolution
of g(z, t):

i∂zg + D(i∂t )g + γ(2|uDS(z, t)|2 − P0)g + uDS(z, t)2g∗) = 0 (10)

By moving to a reference frame where the soliton is at rest (τ = t−
√
γβ2P0 sin (ϕ)z) this equation

can be written :

i∂zg+D̄(i∂τ)g+γ((2|uDS(τ)|2−P0)g+uDS(τ)2g∗) = 0 , D̄(i∂τ) = −i
√
γβ2P0 sin (ϕ)∂τ+D(i∂τ)

(11)
Now, we consider g(z, τ) to be the sum of the probe and a wave ψ generated elsewhere:

g(z, τ) = wei(k(Ωp )z−Ωpτ) + ψ(z)ei(k(Ω)z−Ωτ) (12)

where k(Ωp) is the dispersion relation of the probe wave. The wave ψ can be efficiently amplified
if one of the following conditions is satisfied [2, 19, 28, 29]:

k(Ω) = ±k(Ωp) (13)
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In the experiments and simulations, only the case where k(Ω) = k(Ωp) is observed. The dispersion
relation of linear waves propagating over a continuous background on the reference frame of the
soliton is given by:

k(Ω) = −
√
γβ2P0 sin(ϕ)Ω + β3

6
Ω

3 +
Ω

2

√
β2(β2Ω2 + 4γP0) (14)

In the low power regime (|β2Ω
2 | >> |γP0 |), this expression can be simplified to [Eq. (3)]) :

k(Ω) = −
√
γβ2P0 sin(ϕ)Ω + β2

2
Ω

2 +
β3
6
Ω

3 + γP0 (15)

A.2. Calculation of generated wave amplitude

Phase-matching arguments do not provide any information about the process efficiency. To find
out this, we consider the interaction between the probe and the dark soliton as a scattering
problem [26]. In this picture, the generated wave (probe) plays the role of reflected (transmitted)
wave and the soliton is seen as the scattering potential. Taking advantage of the phase-matching
condition, the perturbation can be expressed as g = Ψ(τ)eikz and substituted in equation 11.
Dropping non-phase matched terms and making the approximation k ≈ D̄(Ω) + γP0, Eq. (11)
becomes :

D̄(i∂τ)Ψ − (2q cos2(ϕ)sech2(τ cos(ϕ)/t0)g + D̄(Ω))Ψ = 0 (16)

The studied interaction takes place in the neighbourhood of the frequency which is group-velocity
matched (ΩGVM ) with the soliton. For this reason, the problem can be simplified by performing
a phase-rotation such as Ψ̃ = ΨeiΩGVMτ :(

− |β2(ΩGVM )|
2

d2

dτ2 + (2q cos2(ϕ)sech2(τ cos(ϕ)/t0) − ∆D)
)
Ψ = 0, (17)

where ∆D = −D̄(Ω) + D̄(ΩGVM ), β2(ΩGVM ) = β2 + β3ΩGVM and ΩGVM can be expressed as:

ΩGVM =
−β2 −

√
β2

2 + 2 sin(ϕ)β3
√
γβ2P0

β3
. (18)

Note that higher-order dispersion terms have been neglected. This approximation can be safely
performed because near ΩGVM , the dispersion can be considered as parabolic. The reflection of
the potential in Eq. (17) is [41]:

R =
cosh2

(
π
2

√
16 |β2(ΩG ) |

β2
− 1

)
cosh2

(
π
2

√
16 |β2(ΩG ) |

β2
− 1

)
+ sinh2

(
πt0∆Ω
cos(ϕ)

) (19)

where ∆Ω = Ωp − ΩGVM . Note that this expression is very close to the one obtained with a
bright soliton [7], except that we found here an additional factor cos(ϕ) which takes into account
the grayness of the dark soliton.

It is important to note that when ϕ = 0 (black soliton case), Eq. (19) is the same as in the case
of a bright fundamental soliton colliding with a linear wave [7]. Thus the reflection coefficient R
does not depend on β2. However, when ϕ , 0 (gray soliton), the reflection coefficient R depends
on β2. Equation (19) also shows that the total conversion efficiency (R = 1) is found when the
probe and the dark soliton are group velocity matched (∆Ω = 0).
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