
HAL Id: hal-02385019
https://hal.science/hal-02385019

Submitted on 3 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain’s fame reaches the execution of personalized
touristic itineraries

Amina Brahem, Nizar Messai, Yacine Sam, Sami Bhiri, Thomas Devogele,
Walid Gaaloul

To cite this version:
Amina Brahem, Nizar Messai, Yacine Sam, Sami Bhiri, Thomas Devogele, et al.. Blockchain’s fame
reaches the execution of personalized touristic itineraries. WETICE 2019 : IEEE 28th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Jun 2019, Naples,
Italy. pp.186-191, �10.1109/WETICE.2019.00047�. �hal-02385019�

https://hal.science/hal-02385019
https://hal.archives-ouvertes.fr

Blockchain’s fame reaches the execution of
personalized touristic itineraries

Amina Brahem∗1,2, Nizar Messai†1, Yacine Sam‡1, Sami Bhiri§2, Thomas Devogele¶1, Walid Gaaloul‖3

Email: ∗ brahem.amina@gmail.com, †‡¶firstname.lastname@univ-tours.fr, §sami.bhiri@gmail.com, ‖ walid.gaaloul@telecom-sudparis.eu
1LIFAT, University of Tours, Tours, France

2OASIS, National Engineering School of Tunis, University Tunis El Manar, Tunis, Tunisia
3Telecom SudParis, UMR 5157 Samovar, University Paris-Saclay, Paris, France

Abstract—Blockchain trends cover more and more tech do-
mains making it one of the most used technologies in the last
few years. This is due to two essential aspects. First, it is a
distributed peer-to-peer network where there is no need for third
part to execute operations between peers. Second, blockchain im-
plements mechanisms to make the most data sensitive operations
executed in a trusted way. Regarding these attractive aspects,
we intend in this work to use the blockchain technology for the
implementation of touristic itineraries. We consider the latter
as process choreographies involving different participants. We
intend to model and execute the touristic itineraries generated
from a personalized trip planner called CART in raw XML
format in a way that respects this collaborative aspect and
resolves the problem of trust. We will propose a pattern and its
transformation rules to reconstruct the itineraries presented in
declarative annotations such as XML to smart contracts written
in some smart contract-specific programming language called
Solidity. Experimental results show promising perspectives of the
deployment of the proposed solution to execute touristic plans.

Index Terms—Process choreography, touristic itinerary,
blockchain, smart contract, declarative programming.

I. INTRODUCTION

In a digital and interconnected world where exchanges occur
in distributed networks, a need for mechanisms to ensure trust
between different involved parts becomes primary. Touristic
trip planning systems take in multiple participants like the
service providers which compete and/or cooperate to fulfill a
given request. The latter has as parameters the tourist con-
straints such as time and budget limitation, maximum number
of parking spots, etc. The response is naturally the touristic trip
plan. Due to customization aspect and increasing interaction
with connected devices, the composition of touristic itineraries
process is difficult to structure as user requirements change
and so does the data services selected to construct them.
CART (Configured mAshup Recommender application for
personalized Trip planning) [1], [3], as an itinerary planning
system, overcomes this problem by using a data mashup
based approach [1] to aggregate data collected from different
web resources in order to offer a set of personalized trip
plans. Logically, the deployment and execution of touristic
itineraries, which represent one of the main contributions in
this work, will not be based on an orchestration where a
single entity has full control and knowledge about all involved
participants and tasks. We will soundly model a trip plan

as a process choreography taking into consideration concur-
rence/collaboration between different engaged partners who do
not know neither trust each other. Basically, for the case of
touristic plans monetary exchanges like buying museum passes
or paying for parking may be executed which raises concern
about trust.

The emerging blockchain technology [7], [9], [12], [13]
and especially the second generation of blockchain and its
first class citizens the smart contracts, comes as a promising
solution to execute collaborations of business processes and
to overcome the problem of trust. Solutions like Caterpillar
[11] and Lorikeet [15] already exist. However, they force
the collaborative process to be modeled in Business Process
Model Notation (BPMN), as structured business processes. In
the present work, we intend to: (i) model touristic itineraries
shaped from a data-mashup approach in the CART system
as process choreograpahies – itineraries are generated from
CART in raw XML format ; then (ii) deploy and execute
the choreographies in the blockchain. To do so, we will
propose a pattern and its transformation rules to reconstruct
the itineraries presented in declarative annotations such as
XML to smart contracts written in some smart contract-
specific programming language called Solidity [6]. Solidity
smart contracts are programmable contracts that execute on
top of the Ethereum [6] blockchain one of the most famous
blockchain platforms.

The reminder of this paper is structured as follows: back-
ground is presented in Section 2. Section 3 gives an overview
of the related work. In Section 4, we present our pattern and
transformation rules of touristic itinerary viewed as a business
process choreography from XML to Solidity smart contracts.
Section 5 includes a running example and some implementa-
tion details to execute the generated smart contracts. Section 6
concludes the paper and highlights future research directions.

II. BACKGROUND

A. Touristic itinerary planning

Consulting sites like TripAdvisor, Yahoo Travel or Lonely
Planet is a very common behavior of a tourist who wants to
discover the more interesting Points of Interest (PoIs) to visit
(museum, restaurant, hotel, etc) and plan for his trip. In this
regard, PoI recommending systems also called trip or itinerary

planning systems offer an interesting solution for the automatic
construction of a tourist’s itinerary. The tourist has to only
give his preferences and constraints like the total duration
of the visit, the budget’s limit or the maximum number of
parking lots. The existing solutions compete to offer the most
”personalized” itinerary like CART. CART models the trip
planning problem as configuration of composite services [3].
Authors adopt an interactive and incremental data mashup
process applied on data extracted from multiple web services
to deliver a set of itineraries that respond the best to the user’s
preferences. CART generates touristic plans or itineraries that
we will take as input in our work.

B. Blockchain and smart contracts

A blockchain [4] is one type of a distributed ledger where
data is not only distributed but organized in sequence of
blocks. The integrity of the data is ensured by cryptographic
techniques. A block is a container data structure. It is com-
posed of a header and a list of transactions. The blocks
are chained in an append way where each block’s header
includes a hash of the block’s transactions, as well as a
copy of the hash of the prior block’s header. The blockchain
network, maintained by independent computers referred to as
nodes or peers to record, share and synchronize transactions
in their respective electronic ledgers. Peers do not know or
trust each other but can connect and cooperate to validate
operations executed on the blockchain. A transaction is a
signed and identifiable piece of data that authorizes the sending
of funds from one account to another, stores parameters such
as monetary value in case of Bitcoin where only monetary
operations (sending and receiving bitcoins) are allowed. We
can trust the entire system of the blockchain because, first,
everyone in the blockchain keeps a (partial or full) copy of
the chain and can check what is exactly happening in the
blockchain. Furthermore, transactions on the blockchain are
agreed i.e., a transaction is accepted when the majority of the
network have a concensus on its validity. Finally, transactions
are immutable, they cannot be revoked and state changes
cannot be undone.
In Ethereum blockchain, a transaction allows in addition the
creation of a smart contract and stores the results of function
calls in smart contracts. Nick Szabo [5] explained that a smart
contract is a computerized protocol that executes the terms
of a contract. The smart contract enforces the terms of the
agreement between untrusted parties about a valid care sale
or a loan assessment or voting or health care tracking, etc.
Any user can create a smart contract by posting a transaction
in the Blockchain (the creation of a smart contract is a type
of transaction). Once created, the contract is assigned to a
unique address used to interact with that particular contract.
An address is a secure identifier, a result of a mathematical
operations and the application of encryption algorithms [6].
One could consider a contract as a class in object oriented con-
cepts and each deployment of the contract could be considered
as an instance of the object. In other words, a contract may
be deployed to a network multiple times, and each instance

would have a distinct address. A Smart contract is written in
a smart contract-specific programming languages like Solidity
for Ethereum. It is then compiled into ’bytecode’ that is read
and run on the ’ethereum virtual machine’ (EVM). A contract
can define multiple entry points of execution. In Ethereum’s
Solidity language, each entry point is defined as a function.
A transaction’s content will specify the entry point at which
the contract’s code will be invoked. Therefore, transactions act
like function calls in ordinary programming languages. After a
contract finishes processing a message it receives, it can pass
a return value back to the sender. The contract’s state will then
be updated accordingly.
Trust in the correct execution of smart contracts extends
directly from regular transactions since their creation and
execution result from blockchain transactions. Thus, they are
immutable. What is more, all their inputs and outputs are
through transactions.

C. Blockchain and process choreographies

Business process management (BPM) [8] includes methods,
techniques, and tools to support the design, enactment, man-
agement, and analysis of operational business processes. BPM
is ensured and automated by Business process management
systems (BPMSs) especially at the intra-organizational level
(enacted by one single organization). Choreographies are a
distributed way for the composition and control of business
processes in an inter-organizational level where the control is
not enacted by one single entity and where many parties that
generally do not know neither trust each other conduct each a
certain piece of work and maintain an internal state. The global
state of the choreography is obtained through the interactions
and message exchanges between the different parties involved
in the choreography.

In this context, emerging Blockchain technology comes as a
promising solution to execute business process choreographies.
To begin, the blockchain is a tamper-proof data structure that
captures the history and the current state of the network and
transactions move the system to a new state. This a very
important notion that is essential for business processes. What
is more, smart contracts can be used to implement business
collaborations in general and inter-organizational business
processes in particular. They define the terms of choreography
between different entities. Simply put, it describes the roles of
all participants and the rules applying to process choreography
execution. In addition, the ”consensus” applied among nodes
in the blockchain has to be reached also in choreographies.
Lastly, trust is a major issue when we deal with business
process execution. As a positive fact, the mechanisms imple-
mented within the blockchain technology, as demonstrated in
previous section II-B, can offer a solution at this level.

III. RELATED WORK

Authors in [9] draw a spectrum of different challenges to en-
counter and opportunities to have in order to execute business
processes on the blockchain in a model-driven way along the
different phases of the BPM lifecycle: design, implementation,

execution, monitoring, adaptation and evolution. They present
as well future research directions to deal with the challenges.
In [7], a runtime verification mechanism is developed on top of
the Bitcoin blockchain to verify the correct execution of pro-
cess choreography instances. The approach is augmented with
flexibility to make the proposed runtime verification system
deal with the dynamic nature of decentralized choreographies
and allow runtime adaptation of processes like the selection of
partners during process runtime. In contrast, they make some
assumptions. A particular participant called the process owner
who initiates the business process execution hands over the
control to a first suitable partner to have a specific process
activity executed. Then, the selected partner pass the execution
to another choreography participant to perform the next task
and so on.

Smart contracts have been considered as a more suitable
solution for the monitoring and execution of choreographies.
A smart contract can define the terms of collaboration between
different entities i.e., it describes the roles of all participants
and the rules applying to process execution. Authors in [12]
present an approach to enable the monitoring and execu-
tion of collaborative processes specified as choreographies
on smart contracts blockchain. The approach is based on a
main component named translator taking as input the business
process model in BPMN and generates the corresponding
“factory” contract according to specific BPMN- Solidity code
transformation rules. In fact, as the smart contracts are written
to be used to support multiple instances of collaborations
where each instance involves a different set of participants, the
“factory” paradigm is of a common use when dealing with the
smart contracts. The process execution status and exchanges
between all involved participants are stored on-chain in the
smart contract instance. [13] developed an optimized method
of [12] translating a BPMN model to a minimized Petri-net and
compiling the latter to a smart contract. The optimizations are
done in order to minimize the execution cost (in gas) of smart
contracts on the blockchain through minimizing the frequency
of data writes on-chain and the number of variables required
to capture the process state on-chain.

Some potential benefits of blockchain technology related to
process design are for example tools that model business pro-
cesses in standard BPMN notation and link them to blockchain
like Caterpillar [11]. Caterpillar’s implementation is based on
[12] and [13]. It is an open-source Blockchain-based BPM sys-
tem that translates the business processes modelled in BPMN
into smart contracts written in Solidity language. Caterpillar
supports also the execution of collaborative processes of one
pool with multiple lanes. However, exchanges between process
participants are not performed via message exchanges but
through the blockchain. The tool is now available in 3 versions:
version 1.0 which is a first demonstrating prototype, version
2.0 [11], a complete implementation of the approach presented
in [13] and version 2.1 [14] released lately in which they
defined a binding policy of actors to roles to overcome the
limitations of the one pool representation. Actors are simply
blockchain accounts that are permitted to execute transactions

in the blockchain. Roles are the functions performed by the
participants in the collaboration. The binding of actors to roles
or “nomination” follows a set of rules defined in a textual
specification of the binding policy given as input before the
deployment of the process model on the blockchain. However,
the same presumption as in [7] is made as the “case creator” or
the “process owner” as it is called in [7] nominates itself at the
moment of the process instance creation and starts nominating
a first suitable participant to have some defined task executed.

Regarding the existing works that contain real implementa-
tion of complete business process execution engine of collab-
orative business processes running on top of blockchain we
find Caterpillar. However, the latter forces the representation
of the input business process to be in imperative language
like BPMN. For example, rule-based artifact lifecycle models
as demonstrated by [10] can support such interactions in an
intuitive and succinct manner. Yet, no implementation of the
defended idea exists. Above all, Caterpillar does not support
business process choreography notations where the execution
of a task requires multiple participants to intervene. Such tasks
are represented in the tool as an external subprocess or as it
is called in BPMN a call activity. The call activity is then
expanded as a normal sequence flow where the actor-to-role
binding is applied to each task of the process. Thus, the root
process is modeled as a process of processes.

In the following, we will detail the rules that starting from
a declarative description such as XML of the logic of our
business case, leading to the process choreography model
and then the implementation of that logic in Solidity smart
contracts.

IV. FROM XML TO SOLIDITY SMART CONTRACTS

In the current section, a descritption of the XML schema of
the touristic itineraries is presented in IV-A. The transforma-
tion rules are then enumerated in IV-B.

A. Description of the itinerary XML schema

Touristic itineraries to be transformed to Solidity smart
contracts are taken from the touristic itinerary planning system
CART. All the tours are sequences of attractions in the cities
of Loire Valley like Tours, Amboise, etc. They follow the
XML schema presented in Fig. 1 and are restricted by user
(eventually the tourist) constraints: (i) a period which presents
the start and the end of the overall itinerary. (ii) a budget that
cannot be exceeded.

The itinerary is viewed as a sequence of steps where each
step has a unique identifier and contains or not a Point Of
Interest (referred as PoI). A step is also described by two
attributes: the start and end time of the step. A PoI has a type
(restaurant, hotel, transport or monument like a château), a
geographical position (latitude and longitude), prices (fees),
opening and closure hours and other related information: a
rating, contact and textual description. Some elements are
subject to certain conditions like the fees which depend on
the age of the user, existence of an handicap situation or the
season in which the tourist visits the PoI.

Fig. 1. A touristic itinerary XML schema

To illustrate our case study let’s consider the following
scenario inspired from [3]: Alice, who lives in Tours, will
welcome soon her English friend Gina and she would like to
organize a Loire Valley tour to get her friend acquainted with
her region and its historic monuments. Alice uses the itinerary
recommending system CART1 to design her personalized tour
(see Fig. 2). Then comes the execution of the personalized tour.
This is where our work is situated. First, the touristic tour is
modeled as a process choreography: Alice will interact with
other peers such as the data services instances corresponding
to the filtered PoIs given as an output of CART. Alice might
also use some public transport application to move between
PoIs. The process choreography model elements are then
transformed to their respective Solidity code similarly to the
rules presented straight after.

Fig. 2. CART user interface

B. Proposed pattern and transformation rules

Here is presented our main contribution: the transformation
rules, first, from XML to process choreography model, then
to Solidity code. A summarizing table of the transformation
rules is presented in Table. I.

As we mentioned above, the tour is our process choreogra-
phy model named “Touristic Visit choreography model” will
be transformed to a smart contract baptized “Touristic Visit
smart contract”(rule (a)). The tour is a sequence of steps,
where each step containing a PoI is a task in the choreography
and will be executed as an external function in the smart
contract (rule (b)). When a function is coded as external

1CART:https://smartloire.firebaseapp.com/cart.html

in Solidity, this means it can be called only externally by
other smart contracts. In other terms, when it includes in-
teractions with other contracts. Here interactions are between
the main smart contract “Touristic Visit smart contract” and
the “Touristic Visit oracle contract” that will be detailed just
below.

Alice (and her friend) will visit the different PoIs already
scheduled. The moving time between the places will be
executed internally in the smart contracts (rule (d)). In the
available scenarios, no payments are carried out. If it is
the case, payments will be represented as choreography task
interacting with the payment application (rule (c)).

Other data will be dealt with in the smart contract. Con-
straints like total visit duration and maximum budget are
global variables of the contract (rule(e)).

TABLE I
XML TO SOLIDITY CODE TRANSFORMATION RULES

Rule’s
identifier XML element Choreography element Solidity code

(a) Root element :
Touristic Visit

Touristic Visit
choreography model

Touristic Visit
smart contract

(b) Step containing PoI choreography task External function
(c) Step containing payment choreography task External function
(d) Step with no PoI choreography task Internal function

(e)
User’s constraints
(budget, total visit

duration, etc)

embedded in model
documentation Global variable

(f) PoI attributes
(string, numeric, etc) data perspective

Result of the callback
performed by

Touristic Visit oracle
contract

Tasks standing for steps with PoIs in the process choreog-
raphy model interact with external resources. Thus, regarding
the data perspective we find:

1) data received from external user (eventually the tourist)
and to be passed to the smart contract, e.g. Alice
will give information about her age, special situation,
presence in a group, etc., that will be needed to proceed
with the execution of the process choreography model.

2) data received from external applications and services to
pass similarly to the smart contract, e.g., data related to
a payment task or transport modes.

3) data read from the smart contract. This data is already
stored in the blockchain.

To deal with external data, special contracts called oracles will
be used. Oracles are real-time data feeds that act as mediator
between smart contracts and external world due to the fact
that smart contracts cannot call external programs directly.
Oracles are designed to be used in smart contracts. References
[12], [13] called these special programs triggers regarding the
fact that they provide external data and trigger smart contract
executions. In more details, oracles forward a request from
external application to the smart contract via a Solidity event
and receive corresponding response via a contract function
call. Consequently for each generated choreography smart
contract, an oracle is also generated to deal with external
data. Attributes linked to a PoI like fees, duration of the visit
and opening hours will be part of the result of the callback

CART : https://smartloire.firebaseapp.com/cart.html

performed by the oracle contract named “Touristic Visit oracle
contract”(rule (f)).

V. RUNNING EXAMPLE AND IMPLEMENTATION DETAILS

The XML file corresponding to the touristic itinerary gen-
erated by CART in Fig. 2 is our starting point. Transformation
rules {XML =⇒ choreography} in Table. I are first applied to
produce the process choreography model in Fig. 3 where we
can see that Alice decides to explore first the oldest district
of Tours by visiting the château of Tours. Then, she chooses
the east of Tours to visit châteaux of Amboise and Clo-Lucé
in Amboise city. At the end of the day, Alice prefers to go to
a local restaurant, “Le36 restaurant” in “Le Choiseul hotel”.
Alice chooses to use public transport to move from the château
of Tours to the château of Amboise. For the rest of the places
of interest, Alice will not use any mean of transport given the
fact that the places are in the same zone (see Fig. 2).

Fig. 3. Process choreography model of a touristic visit

The process choreography model of a touristic visit is a
sequence of tasks where participants are the tourist (in our
case Alice), PoIs’ data services instances and public transport
application. A choreography task is either the visit to a PoI or
a moving task.

The second part of the transformation rules
{choreography =⇒ Solidity smart contract} in Table. I
are solicited to move from process choreography model to
smart contract in Solidity as explained below.

For demonstration purpose, we deployed and implemented
our “TouristicVisit contract” in Caterpillar. We used the last
version of the tool [14] that requests the application of an
actor-to-role binding policy along with the process instance.
Actors in our case are the end-user and the service providers
of the different services. Roles are in number of five: tourist,
and four other roles relative to the four PoIs data services
instances.

An extract of the generated smart contract in given in
Listing. 1. Our smart contract named “TouristicVisit contract”
contains, according to the transformation rules, four external
Solidity functions to start the execution of the tasks containing
PoI and one internal function for the moving task. Line 35 in
Listing. 1 stands for the execution of the first task “Visit Tours
château TCh”. Here the moving task is considered as a task
with no PoI. But for a more realistic implementation, it should
be implemented as a task interacting with external application.

1 c o n t r a c t T o u r i s t i c V i s i t O r a c l e A b s t r a c t c o n t r a c t {
2 f u n c t i o n V i s i t T C h q u e r y s e r v i c e (uint , uint , bytes32

) e x t e r n a l r e t u r n s (u i n t)) ;
3 . . . }
4

5 c o n t r a c t T o u r i s t i c V i s i t c o n t r a c t {
6 //gloabal variables
7 u i n t p u b l i c marking = u i n t (4) ;
8 u i n t p u b l i c s t a r t e d A c t i v i t i e s = 0 ;
9 address i n t e r n a l o r a c l e A d d r e s s ;

10 mapping (u i n t => address) o r a c l e A d d r e s s e s ;
11 u i n t cumula t edFee = 0 ;
12 u i n t c u m u l a t e d V i s i t D u r a t i o n = 0 ;
13 u i n t age = 0 ;
14 bytes32 p a r t i c u l a r S i t u a t i o n ;
15
16 f u n c t i o n T o u r i s t i c V i s i t c o n t r a c t () {
17 //TouristicVisit_Oracle_contract instance

address
18 o r a c l e A d d r e s s e s [2] = 0

x 9 8 c 9 c 1 8 f 0 e 3 e 7 c 8 d e e c 7 b 2 d c 9 a c 5 5 0 0 e 2 f 1 f b 6 2 c ;
19 o r a c l e A d d r e s s = o r a c l e A d d r e s s e s [2] ;
20 }
21 f u n c t i o n V i s i t T C h c a l l b a c k (u i n t s e r v i c e I n d e x , u i n t

fee , u i n t v i s i t D u r a t i o n , u i n t openingHour ,
u i n t c l o s u r e H o u r) e x t e r n a l r e t u r n s (bool){

22 var (tmpMarking , t m p S t a r t e d A c t i v i t i e s) = (marking ,
s t a r t e d A c t i v i t i e s) ;

23 i f (s e r v i c e I n d e x == u i n t (1)){
24 //TouristicVisit_Oracle_contract instance

performs the callback to the
corresponding service

25 r e q u i r e (msg . sender == o r a c l e A d d r e s s &&
t m p S t a r t e d A c t i v i t i e s & u i n t (2) != 0) ;

26 {//code to execute like updating
cumulatedFee and cumulatedVisitDuration

27 }
28 s t e p (tmpMarking | u i n t (8) ,

t m p S t a r t e d A c t i v i t i e s & u i n t (˜ 2)) ;
29 . . . } }
30 f u n c t i o n s t e p (u i n t tmpMarking , u i n t

t m p S t a r t e d A c t i v i t i e s) i n t e r n a l{
31 whi le (t rue){
32 i f (tmpMarking & u i n t (4) != 0){
33 u i n t r e q I d = V i s i t T C h q u e r y s e r v i c e (1 ,

age , p a r t i c u l a r S i t u a t i o n) ;
34 tmpMarking &= u i n t (4) ;
35 t m p S t a r t e d A c t i v i t i e s |= u i n t (2) ;
36 } } }
37 }

Listing 1. TouristicVisit contract

Another special smart contract named “Touris-
ticVisit Oracle” is implemented to handle the data exchanges
and interactions between the “TouristicVisit contract” and the
off-chain world, here, the data services instances of the PoIs.
We applied the rule related to the external data perspective
(rule (f) in Table. I) and used the recommendations proposed
in [11]. The TouristicVisit Oracle contract is completely
coded and deployed to the blockchain before the main
contract i.e., TouristicVisit contract. Then the address of the
oracle along with its Application Binary Interface (ABI)
should be provided to the main contract. The ABI is a JSON
file that describes the functions of a deployed contract (their
inputs, outputs, state mutability: read-only or write access,
etc.). It allows to contextualize the contract and call its
functions. Listing. 2 shows an extract of the oracle contract’s
code related to the first task “Visit Tours château TCh” (line
9 in Listing. 2). The data to bring to the blockchain via the
callback are information like fees, duration of the visit and
opening hours (line 22 in Listing. 1).

The “Oracle Abstract contract” presented in top of the

“TouristicVisit contract” is an abstract contract containing
specially headers of functions in the oracles contracts. In
Solidity, abstract contract are close-similar to abstract classes
in object-oriented programming language.

Global variables (lines 7 to 14 in Listing. 1) and data related
to the process state are stored on-chain. The user could proceed
with the execution of the process at any time by refreshing
its instance. This could be very advantageous in the case of
itineraries lasting more than one day. Scenarios of two days
or more are also implemented but not presented in this paper.

1 c o n t r a c t T o u r i s t i c V i s i t O r a c l e {
2 s t r u c t Reques t{
3 u i n t s e r v i c e I n d e x ;
4 address o r a c l e I n s t a n c e A d d r e s s ;
5 }
6 Reques t [] r e q u e s t s ;
7 event V is i t T Ch R eq ue s t ed (uint , uint , bytes32) ;
8 . . .
9 f u n c t i o n V i s i t T C h q u e r y s e r v i c e (u i n t s e r v i c e I d ,

u i n t age , bytes32 p a r t i c u l a r S i t u a t i o n) e x t e r n a l
r e t u r n s (u i n t){

10 u i n t i n d e x = r e q u e s t s [s e r v i c e I d] . s e r v i c e I n d e x ;
11 msg . sender = r e q u e s t s [s e r v i c e I d] .

o r a c l e I n s t a n c e A d d r e s s ;
12 r e q u e s t s . push (Reques t (index , msg . sender)) ;
13
14 }
15 }

Listing 2. TouristicVisit oracle contract

VI. DISCUSSION AND CONCLUSION

This research work is aimed at proposing a pattern or a set of
transformation rules to transform touristic itinerary generated
in declarative language such as raw XML to blockchain smart
contract in Solidity programming language.

Our choice of blockchain technology is due to its oppor-
tunities for BPM in general and process choreographies in
particular. First, as a tamper-proof data structure, blockchain
captures the history and the current state of the network and
transactions move the system to a new state. This could be
used to execute touristic itineraries of more than one day. The
execution state of the process instance is maintained on-chain
and the process execution is carried on at any time just by
refreshing the instance. Additionally, the consensus applied
among nodes in the blockchain which is the same as nego-
tiation between collaborating partners has to be reached also
in choreographies. Then, smart contracts technology was used
to implement the business logic of our touristic itineraries.
Smart contracts, as they are designed, can define and describe
the terms of a choreography between different entities by
describing the roles of all participants and the rules applying
to process choreography execution. Moreover, the blockchain
is considered trustworthy not only as an infrastructure but
also as a coordination mechanism. This is especially due
to the consensus mechanism and the immutable nature of
transactions, including amongst others smart contracts as all
their inputs and outputs are through transactions.

At the same time, blockchain technologies are under active
development and many challenges are revealed regarding its
use for the deployment and execution of process choreography.
Primary, blockchain transactions are not cost-free. This is

a very import issue to consider in our case regarding the
fact that the execution of touristic itineraries may include
payments and use of transport applications. Although the latter
are external to the blockchain, interactions between them and
the process choreography are on-chain as they extend from
blockchain transactions. Trust insurance in the blockchain has
also been criticized. Trust is essential in our case. Process
choreographies are of open and untrusted nature where trust
relations change dynamically.

To conclude, we are currently working on the development
of a complete template to transform touristic itinerary to
Solidity smart contract language. More diversified choreogra-
phy tasks like moving between PoIs using an urban mobility
application or carrying out payments are in the scope of future
work. We will intend in the same way to examine the (scalable)
performance cost due to the execution of smart contracts on the
blockchain. Semantic verification of the transformation outputs
(first process choreography models and then smart contracts)
are two other work perspectives.

ACKNOWLEDGMENT

The present work is developed in the context of the Smart
Loire project [2].

REFERENCES

[1] Boulakbech, M., Messai, N., Sam, Y., Devogele, T., & Etienne, L. (2016,
June). SmartLoire: A Web Mashup Based Tool for Personalized Touristic
Plans Construction. WETICE 2016 (pp. 259-260). IEEE.

[2] Smart Loire project, https://intelligencedespatrimoines.fr/smart-loire-
apr-ir-2017/ - last accessed April 2018.

[3] Boulakbech, M., Messai, N., Sam, Y., & Devogele, T. (2017, June).
Visual configuration for restful mobile web mashups. ICWS 2017 (pp.
870-873). IEEE.

[4] Yermack, D. (2017). Corporate governance and blockchains. Review of
finance, 21(1), 7-31.

[5] Szabo, N. (1994). Smart contracts. Unpublished.
[6] Dannen, C. (2017). Introducing Ethereum and Solidity. Berkeley:

Apress.
[7] Prybila, C., Schulte, S., Hochreiner, C., & Weber, I. (2017). Runtime

verification for business processes utilizing the bitcoin blockchain.
Future Generation Computer Systems.

[8] Van Der Aalst, W. M., Ter Hofstede, A. H., & Weske, M. (2003,
June). Business process management: A survey. BPM 2003 (pp. 1-12).
Springer, Berlin, Heidelberg.

[9] Mendling, J., Weber, I., Aalst, W. V. D., Brocke, J. V., Cabanillas,
C., Daniel, F., ... & Gal, A. (2018). Blockchains for business process
management-challenges and opportunities. ACM (TMIS) 2018, 9(1), 4.

[10] Hull, R., Batra, V. S., Chen, Y. M., Deutsch, A., Heath III, F. F.
T., & Vianu, V. (2016, October). Towards a shared ledger business
collaboration language based on data-aware processes. ICSOC 2016 (pp.
18-36). Springer, Cham.

[11] López-Pintado, O., Garca-Bauelos, L., Dumas, M., Weber, I., & Pono-
marev, A. (2018). CATERPILLAR: A Business Process Execution
Engine on the Ethereum Blockchain. arXiv preprint arXiv:1808.03517.

[12] Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., &
Mendling, J. (2016, September). Untrusted business process monitoring
and execution using blockchain. BPM 2016 (pp. 329-347). Springer,
Cham.

[13] Garca-Bauelos, L., Ponomarev, A., Dumas, M., & Weber, I. (2017,
September). Optimized execution of business processes on blockchain.
BPM 2017 (pp. 130-146). Springer, Cham.

[14] López-Pintado, O. (2018). Caterpillar source code (Version 2.1) [Source
code]. https://github.com/orlenyslp/Caterpillar/tree/master/v2.1- last ac-
cessed 30 December 2018.

[15] Tran, A., Lu, Q., & Weber, I. (2018). Lorikeet: A model-driven engi-
neering tool for blockchain-based business process execution and asset
management. BPM Demo Track.

	Introduction
	Background
	Touristic itinerary planning
	Blockchain and smart contracts
	Blockchain and process choreographies

	Related work
	from XML to Solidity smart contracts
	Description of the itinerary XML schema
	Proposed pattern and transformation rules

	Running example and implementation details
	Discussion and conclusion
	References

