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Abstract. With the increasing power of computers, real-time algorithms
tends to become more complex and therefore require better guarantees
of safety. Among algorithms sustaining autonomous embedded systems,
model predictive control (MPC) is now used to compute online trajec-
tories, for example in the SpaceX rocket landing. The core components
of these algorithms, such as the convex optimization function, will then
have to be certified at some point. This paper focuses specifically on
that problem and presents a method to formally prove a primal linear
programming implementation.
We explain how to write and annotate the code with Hoare triples in
a way that eases their automatic proof. The proof process itself is per-
formed with the WP-plugin of Frama-C and only relies on SMT solvers.
Combined with a framework producing all together both the embedded
code and its annotations, this work would permit to certify advanced
autonomous functions relying on online optimization.

1 Introduction

The increasing power of computers, makes possible the use of complex nu-
merical methods in real time within cyber-physical systems. These algorithms,
despite having been studied for a long time, raise new issues when used online.
Among these algorithms, we are concerned specifically with numerical optimiza-
tion which is used in model predictive control (MPC) for example, by SpaceX
to perform computation of trajectory for rocket landing [1].

These iterative algorithms perform complex math operations in a loop un-
til they reach an ε-close optimal value. This implies some uncertainty on the
number of iterations required but also on the reliability of the computed result.
We address both these issues in this paper. As a first step, we focus on lin-
ear programming, with the long-term objective of proving more general convex
optimization problems. We therefore chose to study an interior point algorithm
(IPM, Interior Point Method) instead of the famous simplex methods. As a mat-
ter of fact simplex is bound to linear constraints while IPMs can address more
general convex cones such as the Lorentz cone problems (quadratic programming
QP and second-order cone programming SOCP), or Semi-Definite Programming
(SDP).



Fig. 1. Complete toolchain we are interested in, this
article focus on writing C code and annotation

To give the best possi-
ble guarantee, we rely on for-
mal methods to prove the
algorithm soundness. More
specifically we use Hoare
Logic[2,3] to express what
we expect from the algo-
rithm and rely on Weakest
Precondition[4] approach to
prove that the code satisfy
them.

Figure 1 sketches our fully automatic process which, when provided with a
convex problem with some unknown values, generates the code, the associated
annotation and prove it automatically. We are not going to present all the process
in this paper but concentrate on how to write the embedded code, annotate it
and automatize its proof.

In this first work, we focus on the algorithm itself assuming a real semantics
for float variables and leave the floating point problem for future work. However
the algorithm itself is expressed in C with all the associated hassle and complex-
ity. We proved the absence of runtime error, the functionality of the code and
its termination.

This paper is structured as follow. In Section 2 we present some key notions
for both convex optimization and formal proof of our algorithm. In Section 3 we
present the code structure supporting the later proof process. In Section 4 we
introduce our code annotatations. Section 5 focuses on the proof process. Section
6 presents some experimental results.

2 Preliminaries

In order to support the following analyses, we introduce the notions and nota-
tions used throughout the paper. First, we discuss Linear Programming (LP)
problems and a primal IPM algorithm to solve it. Then, we introduce the reader
to Hoare logic based reasoning.

2.1 Optimization

Linear Programming is a class of optimization problems. A linear program is
defined by a matrix A of size m × n, and two vectors b, c of respective size m,
and n.

Definition 1 (Linear program) Let us consider A ∈ Rm×n, b ∈ Rm and
c ∈ Rn. We define P (A, b, c) as the linear program:

min
x∈Rn,Ax≤b

〈c, x〉 with 〈c, x〉 = cTx (1)



Definition 2 (Linear program solution) Let us consider the problem P (A, b, c)
and assume that an optimal point x∗ exists and is unique. We have then the fol-
lowing definitions:

Ef ={x ∈ Rn | Ax ≤ b} (feasible set of P ) (2)
f(x) =〈c, x〉 (cost function) (3)
x∗ =arg min

x∈Ef

f (optimal point) (4)

Fig. 2. Barrier function

Primal interior point algorithm. We decided
to use interior point method (IPM) to en-
able the future extension of this work to more
advanced convex programs. We chose a pri-
mal algorithm for its simplicity compared to
primal/dual algorithms and we followed Nes-
terov’s book [5, chap. 4] for the theory. The
following definitions present the key ingredi-
ents of IPM algorithms: barrier function, cen-
tral path, Newton steps and approximate cen-
tering condition.

Barrier function. Computing the extrema,
i.e. minimum or maximum, of a function with-
out additional constraints, could be done by analyzing the zeros of its gradi-
ants. However this does not apply in presence of constraints. An approach that
amounts to introducing a penalty function F : Ef → R to represent the feasible
set, ie. the acceptable region. This function must tend towards infinity when
x approaches the border of Ef , cf. Figure 2 for a logarithmic barrier function
encoding a set of linear constraints.

Definition 3 The adjusted cost function is a linear combination of the previous
objective function f and the barrier function F .

f̃(x, t) = t× f(x) + F (x) with t ∈ R (5)

The variable t balances the impact of the barrier: when t = 0, f̃(x, t) is
independent from the objective while when t → +∞, f̃(x, t) is equivalent to
t× f(x).

Central path. We are interested in the values of x minimizing f̃ when t varies
from 0 to +∞. These values for x characterize a path, the central path:

Definition 4 (Central path and analytic center)

x∗ : R+ → Ef

t 7→ arg min
x∈Ef

f̃(x, t)
(6)

x∗(0) is called the analytic center, it is independent from the cost function.



Fig. 3. One step along the
central path

The central path has an interesting property
when t increases:

Property 1

lim
t→+∞

x∗(t) = x∗ (7)

The algorithm prerforms a sequence of itera-
tions, updating a point X that follows the central
path and eventually reaches the optimal point. At
the beginning of an iteration, there exists a real t
such that X = x∗(t). Then t is increased by dt > 0
and x∗(t+dt) is the new point X. This translation
dX is performed by a Newton step as sketched in
Figure 3.

Fig. 4. Newton step for k =
l = 1

Newton step. The Newton’s method computes an
approximation of a root of a function G : Rk →
Rl. It is a first order method, ie. it relies on the
gradient of the function and, from a point in the
domain of the neighbourhood of a root, performs
a sequence of iterations, called Newton steps. Fig-
ure 4 illustrates one of such step.

Definition 5 A Newton step transforms Yn into
Yn+1 as follows:

Yn+1 − Yn = −
(
G′(Yn)

)−1
G(Yn) (8)

We apply the Newton step to the gradient of f̃ , computing its root which
coincides with the minimum of f̃ . We obtain

dX = −
(
F ′′(X)

)−1
((t+ dt)c+ F ′(X)) (9)

Self-concordant barrier. The convergence of the Newton method is guaranted
only in the neighbourhood to the function root. This neighbourhood is called
the region of quadratic convergence; this region evolves on each iteration since t
varies. To guarantee that the iterate X remains in the region after each iteration,
we require the barrier function to be self-concordant:

Definition 6 (Self-concordant barrier) A closed convex function g is a ν-
self-concordant barrier if

D3g(x)[u, u, u] ≤ 2(uT g′′(x)u)
3
4 (10)

and

g′(x)T g′′(x)g′(x) < ν (11)



From now on we assume that F is a self-concordant barrier. Thus F ′′ is
non-degenerate([5, Th4.1.3]) and we can define:

Definition 7 (Local-norm)

‖y‖∗x =
√
yT × F ′′(x)−1 × y (12)

This local-norm allows to define the Approximate Centering Condition(ACC),
the crucial property which guarantees that X remains in the region of quadratic
convergence:

Definition 8 (ACC) Let x ∈ Ef and t ∈ R+, ACC(x, t, β) is a predicate
defined by

‖f̃ ′(x)‖∗x = ‖tc+ F ′(x)‖∗x ≤ β (13)

In the following, we choose a specific value for β, as defined in (14).

β <
3−
√
5

2
(14)

The only step remaining is the computation of the largest dt such that X
remains in the region of quadratic convergence around x∗(t+ dt).

dt =
γ

‖c‖∗x
(15)

with γ a constant.
This choice maintains the ACC at each iteration([5, Th4.2.8]):

Theorem 1 (ACC preserved) If we have ACC(X, t, β) and γ ≤
√
β

1+
√
β
− β

then we also have ACC(X + dX, t+ dt, β).

For this work, we use the classic self-concordant barrier for linear program:

F (x) =
m∑
i=0

−log(bi −Ai × x) with A1, An the columns of A.

Importance of the analytic center. x∗F is required to initiate the algorithm. In
case of offline use the value could be precomputed and validated. However in
case of online use, its computation itself has to be proved. Fortunatly this can
be done by a similiar algorithm with comparable proofs.

2.2 Formal methods

For the same program, different semantics can be used to specify its behavior:
(i) a denotational semantics, expressing the program as a mathematical function,
(ii) an operational semantics, expressing it as a sequence of basic computations,
or (iii) an axiomatic semantics. In the latter case, the semantics can be defined
in an incomplete way, as a set of projective statements, i.e. observations. This
idea was formalized by Floyd [3], Hoare [6] as a way to specify the expected
behavior, the specification, of a program through pre- and post-condition, or
assume-guarantee contracts.



Definition 9 (Hoare Triple) Let C : M → M be a program with M the set of
its possible memories. Let P and Q, two predicates on M. We say that the Hoare
triple {P} C {Q} is valid when

∀m ∈M, P (m)⇒ Q(C(m)) (16)

– P is called a precondition or requires and Q the postcondition or ensures.
– If C is a function, {P} C {Q} is called a contract.

These Hoare triples can be used to annotate programs written in C. In the
following, we rely on the ANSI C Specification Language (ACSL)[7], the speci-
fication language of Frama-C, to annotate functions.

The Frama-C tool processes the annotation language, identifying each Hoare
Triple and converting them into logical formulas, using the Weakest Precondition
strategy.

Definition 10 (Weakest Precondition) The Weakest Precondition of a pro-
gram c and a postcondition Q is a formula WP(C, Q) such that:

1. {WP(C, Q)} C {Q} is a valid Hoare triple
2. For all P , {P} C {Q} valid implies P ⇒WP(C, Q)

Theorem 2 (Proving Hoare Triple)
WP(C, Q) === R P ⇒ R

{P} C {Q}

The WP property can be computed mechanically, propagating back the post-
condition along the program instructions. An example of such rules is given in
Figure 5. The only exception is the while loop rule which requires to be provided
with an invariant, this rule is presented later in the document in Figure. 12.

Assignement
WP(x = E, Q) === ∀y, y = E⇒ Q[x← y]

WP(S2, Q) === O WP(S1, O) === R
Sequence

WP(S1;S2, Q) === R

WP(S1, Q) === P1 WP(S2, Q) === P2
Conditional

WP(if (E) S1 else S2, Q) === E⇒ P1 ∧ ¬E⇒ P2

Fig. 5. Examples of WP rules

Automation The use of SMT solvers enables the automatic proof of some pro-
grams and their annotations. This is however only feasible for properties that
could be solved without the need of proof assistant. This requires to write both
programs (cf. Section 3) and annotations (cf. Section 4) with some considerations
for the proof process.



3 Writing Provable Code

In order to ease the proof process we write the algorithm code in a very specific
manner. In the current section we present our modeling choices: we made all
variables global, split the code into small meaningfull functions for matrix oper-
ations, and transform the while loop into a for loop to address the termination
issue.

Variables. One of the difficulties when analyzing C code are memory related
issues. Two different pointers can reference the same part of the stack. A fine and
complex modeling of the memory in the predicate encoding, such as separation
logic[8] could address these issues. Another more pragmatic approach amounts to
substitute all local variables and function arguments with global static variables.
Two static arrays can’t overlap since their memory is allocated at compile time.

Since we are targetting embedded system, static variables will also permit to
compute and reduce memory footprints. However there are two major drawbacks:
the code is a less readable and variables are accessible from any function. These
two points usually lead the programmer to mistakes but could be accepted in
case of code generation. We tag all variables with the function they belong to
by prefixing each variable with its function name. This brings traceability.

R⇒ Q {P} C {R}
Function call WP(f(), Q) === P

with void f() { C }

Fig. 6. WP rules used for function call

Function. Proving large functions is
usually hard with SMT-based reason-
ing since the generated goals are too
complex to be discharged automati-
cally. A more efficient approach is to
associate small pieces of code with lo-
cal contracts, These intermediate an-
notations act as cut-rules in the proof
process. The Figure 6 presents the function call used in the WP algorithm.

Let A = B[C] be a piece of code containing C. Replacing C by a call to f()
{ C } requires either to inline the call or to write a new contract {P} f() {Q},
characterizing two smaller goals instead of a larger one. Specifically in the proof
of a B[f()], C has been replaced by P and Q which is simpler than a WP
computation.

Therefore instead of having one large function, our code is structured into
several functions: one per basic operation. Each associated contract focuses on a
really specific element of the proof without interference with the others. Thereby
formulas sent to SMT solvers are smaller and the code is modular.

Matrix operation. This is extremely useful for matrix operations. In C, aM ×N
Matrix operations is written as M ×N scalar operation affecting an array rep-
resenting the resulting matrix. With our methods these operations are gathered
in a function annotated by the logic representation of the matrix operation, cf
Figure 7. Contracts associated to this small function associate high-level matrix
operation to the C low-level computation, acting as refinement contracts.



��
/*@ ensures MatVar(dX, 2, 1)

==\old(mat_scal(MatVar(cholesky, 2, 1), -1.0));
@ assigns *(dX+(0..2)); */

void set_dX()
{

dX[0] = -cholesky[0];
dX[1] = -cholesky[1];

}

Fig. 7. Example of matrix operation: dx %=
-cholesky encapsulated in a function for dx
and cholesky of size 2× 1

The encoding hides low-level op-
erations to the rest of the code, lead-
ing to two kinds of goals :

– Low level operation (memory and
basic matrix operation).

– High level operation (mathemat-
ics on matrices).

The structure of the final code
after the split in small functions is
shown in Figure 8.

– compute fill X with the the analytic
center and call pathfollowing.

– pathfollowing contains the main loop which
udpate dX and dt.

– compute_pre compute Hessian and gradiant of
F which are required for dt and dX.

– udpate_dX and udpate_dt call the associated subfunction and
update the corresponding value.

– compute_dt performs (15), it requires to call Chowlesky to compute
the local norm of c.

– compute_dX performs (9), Chowlesky is used to inverse the hessian matrix.

Fig. 8. Call tree of the implementation(rose boxes are matrix computation)

While-loop. The interior point algo-
rithm is iterative: it performs the
same operation until reaching the stop condition. This stopping criteria depends
on the desired precision ε:

tk ≥ tstop =
1

ε
(1 +

(1 + β)β

1− β
) (17)

Proving the termination amounts to find a suitable bound guaranting the
obtention of a converged value. We present here the convergence proof of [5]
and use it to ensure termination. It relies on the use of the following geometric
progression:

Definition 11

Lower(k) =
γ(1− 2β)

(1− β)‖c‖∗x∗
F

(1 +
γ

1 + β
)k−1 (18)



This sequence minimizes t for each iteration k of the algorithm([5, Th4.2.9]):

Theorem 3 For all k ∈ N∗,

tk ≥ Lower(k) (19)

Combined with (17), a maximal number of iteration called klast can be com-
puted:

Theorem 4 (Required number of iterations)

klast = 1 +

ln(1 + (β+1)∗β
1−β )− ln( γ∗(1−2β)

(1−β)∗‖c‖∗
x∗
F

)− ln(ε)

ln(1 + γ
β+1 )

(20)

Fig. 9. Evolution of t and Lower with the
algorithm, notice that t remains always
greater than Lower

Since we have a termination proof
based on the number of iterations, the
while-loop can be soundly replaced
by a for-loop with klast iterations. As
shown in Figure 9, the number of it-
erations is greater than the one ob-
tained with original while-loop with
the stopping criteria but it permits
to have absolute guarantee on termi-
nation.

Analytic center ‖c‖∗x∗
F

is required to
compute klast, therefore a worst case
execution time can be computed if
and only if ‖c‖∗x∗

F
has a lower bound

at compilation time.

4 Annotate the code

The code is prepared to ease its proof but the specification still remains to be
formalized as function contracts, describing the computation of an ε-optimal so-
lution. This requires to enrich ACSL with some new mathematics definitions.
We introduce a set of axiomatic definition to specify optimization related prop-
erties. These definitions require, in turn, additional concepts related to matrices.
Similar approaches were already proposed [9] but were too specfic to ellipsoid
problems. We present here both the main annotation and the function local
contracts, which ease the global proof.

Matrix axiomatic. To write the mathematics property, we need to be able to
express the notion of Matrix and operations over it. Therefore we defined a new
ACSL axiomatic. An ACSL axiomatic permits the specifier to extend the ACSL
language with new types and operators, acting as an algebraic specification.



��
axiomatic matrix
{
type LMat;

First, we defined the new type: LMat standing for Logic Matrix. This type is
abstract therefore it will be defined by its operators.

// Getters
logic integer getM(LMat A);
logic integer getN(LMat A);
logic real mat_get(LMat A, integer i, integer j);

// Constructors
logic LMat MatVar(double* ar, integer m, integer n) reads ar[0..(m*n)];
logic LMat MatCst_1_1(real x0);
logic LMat MatCst_2_3(real x0, real x1, real x2, real x3, real x4, real x5);

Getters allow to extract information from the type while constructors bind
new LMat object. The first constructor is followed by a read clause stating which
part of the memory affects the corresponding LMat object. The Constant con-
structor take directly the element of the matrix as argument, it can be replaced
with an ACSL array for bigger matrix sizes.
logic LMat mat_add(LMat A, LMat B);
logic LMat mat_mult(LMat A, LMat B);
logic LMat transpose(LMat A);
logic LMat inv(LMat A);
...

Then the theory defined the operations on the LMat type. These are defined
axiomatically, with numerous axioms to cover their various behavior. We only
give here a excerpt from that library.
axiom getM_add: \forall LMat A, B; getM(mat_add(A, B))==getM(A);
axiom mat_eq_def:
\forall LMat A, B;
(getM(A)==getM(B))==> (getN(A)==getN(A))==>
(\forall integer i, j; 0<=i<getM(A) ==> 0<=j<getN(A) ==>
mat_get(A,i,j)==(mat_get(B,i,j))==>
A == B;

...
}

Matrix operations. As explained in previous Section, the matrix computation
are encapsulated into smaller functions. Their contract states the equality be-
tween the resulting matrix and the operation computed. An extensionality axiom
(mat_eq_def) is required to prove this kind of contract. Extensionality means
that if two objects have the same external properties then they are equal.

This axiom belong to the matrix axiomatix but is too general to be used
therefore lemmas specific to the matrices size are added for each matrix affec-
tation. This lemma can be proven with the previous axioms and therefore does
not introduce more assumption.

The proof remains difficult or hardly automatic for SMT solvers therefore we
append additional assertions, as sketched in Figure 10, at then end of function
stating all the hypothesis of the extensionality lemma. Proving these postcondi-
tions is straighfoward and smaller goals need now to be proven.



��
assert getM(MatVar(dX,2,1)) == 2;
assert getN(MatVar(dX,2,1)) == 1;
assert getM(MatVar(cholesky,2,1)) == 2;
assert getN(MatVar(cholesky,2,1)) == 1;
assert mat_get(MatVar(dX,2,1),0,0) == mat_get(\old(mat_scal(MatVar(cholesky,2,1),-1.0)),0,0);
assert mat_get(MatVar(dX, 2, 1),1,0) == mat_get(\old(mat_scal(MatVar(cholesky,2,1),-1.0)),1,0);

Fig. 10. Assertion appended to the function from figure 7

WP(C, P ⇒ Q) === R WP(C, P ) === S
Assert WP(C;assert P;, Q) === R ∧ S

Fig. 11. WP rules used for assert

Assertions also act as cut-
rules in ACSL since it intro-
duces the property in the set
of hypothesis considered (see.
Figure 11).

This works for small ex-
ample, when scaling each C instruction is embedded inside a correctly annotated
function.

Optimization axiomatic. Beside generic matrix operators we also need some
operators specifc to our algorithm.��
axiomatic Optim
{
logic LMat hess(LMat x0, LMat x1, LMat x2);
logic LMat grad(LMat x0, LMat x1, LMat x2);

Hessian and gradiant are hard to define without real analysis which is well
beyond the scope of this article. Therefore we decided to directly axiomatize
some theorems relying on their definition like [5, Th4.1.14].
logic real sol(LMat x0, LMat x1, LMat x2);

The sol operator represents x∗, the exact solution which can be defined by

Property 2 (Axiomatic characterization of Definition 2) s is a solution
of 1 if and only if

1. For all y ∈ Ef , cT y ≥ s
2. For all y ∈ R, ∀x ∈ Ef , cTx ≥ y implies s ≥ y

An ACSL equivalent definition is:
logic real sol(LMat A, LMat b, LMat c);
axiom sol_min: \forall LMat A, b, c;
\forall LMat y; mat_gt(mat_mult(A, y), b) ==>
dot(c, y) >= sol(A, b, c);

axiom sol_greater: \forall LMat A, b, c;
\forall Real y;
(\forall LMat x; mat_gt(mat_mult(A, x), b) ==> dot(c, x) >= y) ==>
sol(A, b, c) >= y;

Then we defined some operators representing definitions 7, 8 and 11.



logic real norm(LMat x0, LMat x1, LMat x2, LMat x3) =
\sqrt(mat_get(mat_mult(transpose(x2), mat_mult(inv(hess(x0, x1, x3)), x2)), (0), (0)));

logic boolean acc(LMat x0, LMat x1, LMat x2, real x3, LMat x4, real x5) =
((norm(x0, x1, mat_add(grad(x0, x1, x4), mat_scal(x2, x3)), x4))<=(x5));

...
}

Contract on pathfollowing. A sound algorithm must produce a point in the
feasible set such that its cost is ε-close to sol. This is asserted by two global
post-conditions:
ensures mat_gt(mat_mult(A, MatVar(X, N, 1)), b);
ensures dot(MatVar(X, 2, 1), c) - sol(A, b, c) < EPSILON

as well as two preconditions stating that X is feasible and close enough to
the analytic center:
requires mat_gt(mat_mult(A, MatVar(X, N, 1)), b);
requires acc(A, b, c, 0, MatVar(X, N, 1), BETA);

Thanks to our two new theories Matrix and Optim, writing and reading this
contract is straighforward and can be checked by anyone familiar with linear
programming.

Main Loop. A loop needs to be annoted by an invariant to have its Weakest
precondition computed (cf. Figure 12)

WP(E, I) === P (¬F ∧ I)⇒ Q {F ∧ I} C;G {I}
For loop

WP(for (E;F;G) inv I {C}, Q) === P

Fig. 12. WP rules for a loop

We need three invariants for our path following algorithms. The first one
guarantees the feasibility of X while the second one states the conservation of
the ACC (cf. Def. 8) The third invariant assert that t is increasing enough
on each iteration, more specially that it is greater than a geometric progres-
sion(Definition 11).��
/*@ loop-invariant mat_gt(mat_mult(A, MatVar(X, N, 1)), b);
@ loop-invariant acc(A, b, c, t, MatVar(X, N, 1), BETA);
@ loop-invariant t > lower(l);*/

for (int l = 0; l < NBR;l++) { ... }

Proving the initialization is straighfoward, thanks to the main preconditions.
The first invariant preservation is stated by [5, Th4.1.5] which was translated

into an ACSL lemma, the second by Theorem 1 and the third one by Theorem
3.

The last two loop invariants are combined to prove the second postcondition
of pathfollowing thanks to Theorem 5 and NBR equals klast(20).



Theorem 5 [5, Th4.2.7] Let t ≥ 0, and X such that ACC(X, t, β) then

cTX − cTX∗ < 1

t
× (1 +

(β + 1)β

1− β
) (21)

Loop body. In the main loop there are three function calls: update_pre comput-
ing some common values, update_t and update_x(Figure 8). Therefore Theorem
1 is broken into several properties and the corresponding post-conditions. For
example, the contract of update_t is:��
/*@ requires MatVar(hess, N, N)==hess(A, b, MatVar(X, N, 1));
@ requires acc(A, b, c, t, MatVar(X, N, 1), BETA);
@ ensures acc(A, b, c, t, MatVar(X, N, 1), BETA + GAMMA);
@ ensures t > \old(t)*(1 + GAMMA/(1 + BETA));*/

void update_t();

The first postcondition is an intermediary results stating that:

ACC(X, t+ dt, β + γ) (22)

This result is used as precondition for update_x. The second precondition
corresponds to the product of t by the common ratio of the geometric progression
Lower, cf. Definition 11 which will be used to prove the second invariant of the
loop. The first precondition is a postcondition from update_pre and the second
one is the first loop invariant.

5 Automatic proof with SMT solvers.

For each annotated piece of code, the Frama-C WP plugin computes the Weakest
precondition and generates all the first order formulas required to validate the
Hoare triples.

There are two main solutions to prove goals: proving them thanks to a proof
assistant – this requires to be done by a human –, or proving them with a fully
automatic SMT solver. We decided to rely only on SMT solvers in order to be
able to completely automatize the process. Therefore it is better to have lots of
small goals instead of several larger ones. We splited the code for this reason and
we now split the proof of lemmas into several intermediate lemmas. For example,
in order to prove (22) we wrote update_t_ensures1 where P1 is ACC(X, t, β)
and P2 is dt = γ

‖c‖∗x

∀x, t, dt; P1 ⇒ P2 ⇒ ACC(X, t+ dt, β) (update_t_ensures1)

which itself need update_t_ensures1_l0

∀x, t, dt; P1 ⇒ P2 ⇒ ‖F ′(X) + c(t+ dt)‖∗x ≤ β + γ (update_t_ensures1_l0)

Equation update_t_ensures1_l0 needs 3 lemmas to be proven:



∀x, t, dt; P2 ⇒ ‖c× dt‖∗x = γ (update_t_ensures1_l3)

∀x, t, dt; P1 ⇒ ‖F ′(X) + c× t‖∗x ≤ β (update_t_ensures1_l2)

∀x, t, dt; P1 ⇒ P2 ⇒ ‖F ′(X) + c(t+ dt)‖∗x ≤ ‖F ′(X) + c× t)‖∗x + ‖c× dt‖∗x
(update_t_ensures1_l1)

The proof tree for the first ensures of update_t can be found in Figure 13.

Fig. 13. Proof tree for (22)(In green proven goal, in white axioms)

6 Experimentations

Frama-C is a powerful tool but not always built for our specific needs therefore
we had to do some tricks to make it prove our goals.

Using multiple files Frama-C automatically adds, for each goal, all the lemmas
as hypotheses. This increases significantely the size of the goal. To avoid this
issue that prevented some proofs, we wrote each function or lemma in a separate
file. In this file we add as axioms all the lemmas required to prove the goal. This
allows us to prove each goal independently with a minimal context.

The impact of the separation into multiple function(Section 3) and the sep-
aration into multiple files is shown in Table 1.

The annotated code can be retrieved from https://github.com/davyg/
proved_primal

7 Related work

Related works include first activities related to the validation of numerical inten-
sive control algorithms. This article is an extension of Wang et al [10] which was
presenting annotations for a convex optimization algorithm, namely IMP, but
the process was both manual and theoretical: the code annotated within Matlab
and without machine checked proofs. An other work from the same authors [9]

https://github.com/davyg/proved_primal
https://github.com/davyg/proved_primal


Size of A 2× 5 4× 15 8× 63

Experiences exp1 exp2 exp3 exp1 exp2 exp3 exp1 exp2 exp3

nb function 1 12 12 1 26 26 1 78 78

nb file 1 1 12 1 1 26 1 1 78

nb proven goal 21 48 48 43 97 97 12 257 264

nb goal 25 48 48 46 97 97 109 264 264

Table 1. Proof results for compute_dt with one function and one file(exp1), with
multiple function(exp2) or with multiple file(exp3) and a Timeout of 30s for Alt-Ergo
for random generated problem of specific sizes.

presented a similar method than ours but limited to simple control algorithms,
linear controllers. The required theories in ACSL were both different and less
general than the ones we are proposing here.

Concerning soundness of convex optimization, Cimini and Bemporad [11]
presents a termination proof for a quadratic program but without any concerns
for the proof of the implementation itself. A similar criticism applies to Tøndel,
Johansen and Bemporad [12] where another possible approach to online linear
programming is proposed, moreover it is unclear how this could scale and how
to extend it to other convex programs. Roux et al [13,14] also presented a way
to certify convex optimization algorithm, namely SDP and its sum-of-Squares
(SOS) extension, but the certification is done a posteriori which is incompatible
with online optimization.

A last set of works, e.g. the work of Boldo et al [15], concerns the for-
mal proof of complex numerical algorithms, relying only on theorem provers.
Although code can be extracted from the proof, the code is usually not directly
suitable for embedded system: too slow and require different compilation step
which should also be proven to have the same guarantee than our method.

8 Conclusion

In this article we presented a method to guarantee the safety of numerical algo-
rithms in a critical embedded system. This allows to embed complex algorithms
in critical real-time systems with formal guarantee on both their result and ter-
mination. This method was applied to a primal algorithm solving linear program.

The implementation is first designed to be easier to prove. Then it is anno-
tated so that in a third time Frama-C and SMT solver can prove the specification
automatically. Combined to a code generator such as CVX [16] but with anno-
tation generation it could lead to a tool taking an optimization problem and
generating its code and proof automatically.

We worked with real variables to concentrate on runtime errors, termination
and functionality and left floating points errors for a future work.

This proof relies on several point: the tools used, the axiomatics we wrote,
the main ACSL contract and the theorems used as axioms.



There is also some unchecked code which is independent from the core proof
of the algorithm and remains for further work: the Chowlesky decomposition
and the Hessian and gradiant computation. We also plan to extend the whole
work to convex programming.
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