N

N

Multi-Timescale Analysis of the Spatial
Representativeness of In Situ Soil Moisture Data within
Satellite Footprints
Beatriz Molero, Dj Leroux, Philippe Richaume, Yh Kerr, Olivier Merlin, Mh
Cosh, R Bindlish

» To cite this version:

Beatriz Molero, Dj Leroux, Philippe Richaume, Yh Kerr, Olivier Merlin, et al.. Multi-Timescale
Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints.
Journal of Geophysical Research: Atmospheres, 2018, 123 (1), pp.3-21. 10.1002/2017JD027478 .
hal-02384845

HAL Id: hal-02384845
https://hal.science/hal-02384845

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright


https://hal.science/hal-02384845
https://hal.archives-ouvertes.fr

QAGU

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2017JD027478

Key Points:

« The spatial representativeness of in
situ stations tends to increase with the
timescale within the satellite footprint

- Stations poorly represent the satellite
footprint at subweekly scales, while
either very well or poorly at seasonal
scales

« The wavelet correlation (WCor)
method is a useful tool to study the
spatial scale mismatch between in situ
and satellite observations

Correspondence to:
B. Molero,
beatriz.molero@cesbio.cnes.fr

Citation:

Molero, B., Leroux, D. J., Richaume, P.,
Kerr, Y. H., Merlin, O., Cosh, M. H., &
Bindlish, R. (2018). Multi-timescale
analysis of the spatial representative-
ness of in situ soil moisture data within
satellite footprints. Journal of
Geophysical Research: Atmospheres, 123,
3-21. https://doi.org/10.1002/
2017JD027478

Received 18 JUL 2017

Accepted 25 NOV 2017

Accepted article online 3 DEC 2017
Published online 4 JAN 2018
Corrected 23 JAN 2018

This article was corrected on 23 JAN
2018. See the end of the full text for
details.

©2017. American Geophysical Union.
All Rights Reserved.

Multi-Timescale Analysis of the Spatial Representativeness
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Abstract we conduct a novel comprehensive investigation that seeks to prove the connection between
spatial scales and timescales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and
measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at
timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial
representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in
situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis
(TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that
uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values
tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial
representativeness at scales below 4 days, while either very good or poor representativeness at seasonal
scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-
crossings, and TC is suitable for week and month scales but not for other scales where data set cross-
correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less
sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one
station per footprint). These results are promising to improve the validation and downscaling of satellite SM
series and the optimization of SM networks.

1. Introduction

Soil moisture (SM) plays an important role in atmospheric, hydrologic, and ecological processes (Daly &
Porporato, 2005; Legates et al., 2011; Rodriguez-lturbe, 2000). By means of them, it participates at various
scales, from the largest climatic and meteorological scales (Douville, 2004; Drusch, 2007) to the medium
hydrological scale (Chen et al., 2011; Draper et al., 2012) and the smallest field and local scales (Vereecken
etal., 2014).

The spatial scale of a set of spatially distributed SM measurements (or observations) refers to a triplet of entities:
the extent (the area enclosing all the measurements), the spacing (the distance between measurements), and
the support (the area actually sensed by the sensor or resolution; Bléschl & Sivapalan, 1995). A typical in situ
station has a support of just some few centimeters (point or local support). In practice, it represents larger areas
because the factors driving SM variability (vegetation, soil texture, topography, and rainfall) are spatially
connected. This effective support or spatial representativeness area is defined by the surrounding area showing
sufficient similarity with the station location in terms of SM, according to a given evaluation methodology.
Hereafter, we will use simply representativeness to refer to spatial representativeness. From space, passive
microwave sensors provide SM estimates at a global extent with a resolution of several tens of kilometers (large
support), which is defined by the antenna footprint as the area containing half of the total signal power. C-and
X-band sensors like AMSR-E, AMSR2, and WindSat (Mladenova et al., 2011; Parinussa et al., 2012; Wagner et al.,
2007) and L-band sensors like SMOS and SMAP (Al Bitar et al., 2012; Colliander et al., 2017; Kerr et al., 2016) have
shown good skills in capturing the temporal patterns of top-surface SM at ~1 cm and ~5 cm
depths, respectively.

Factors driving SM variability (vegetation, soil texture, topography, and rainfall), although spatially depen-
dent, are not homogeneous within satellite footprints. As a consequence, ground stations rarely represent
satellite footprints perfectly. This spatial scale mismatch is by principle not known and difficult to estimate.
Validation of satellite products usually consists of their direct comparison with in situ time series through
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linear metrics (correlation, bias, and RMSE). Since the spatial scale mismatch is not considered, the statistics
can be hampered to a great extent (Crow et al., 2012; Loew & Schlenz, 2011).

The spatial scale mismatch between satellite and in situ measurements can be reduced with upscaling
approaches that increase the effective in situ support. They can be applied if multiple in situ stations are avail-
able within the footprint (dense networks). The simplest techniques consist of linear and weighted spatial
averages of the stations time series (Jackson et al., 2010). The locations of the stations can also be selected
in a spatial configuration that ensures the representativeness of the average, based on prior knowledge
on, for example, soil texture and land cover (Bircher et al., 2012). Downscaling of satellite observations can
potentially help in reducing the spatial scale mismatch for satellite validation (Malbéteau et al,, 2016). The
principal drawback of most upscaling and downscaling approaches is the difficulty to assess the method
uncertainty and the remaining spatial scale mismatch. When the statistical spatial structure of SM can be
inferred, the upscaling uncertainty can be estimated with geostatistical techniques like block kriging (J.
Wang et al., 2015). However, they need dense sampling schemes (>100; Webster & Oliver, 1992) that could
never be met in practice for long-term in situ networks.

An alternative approach is to choose directly the ground station that behaves most like the footprint time
series. Temporal stability analysis (Vachaud et al., 1985) selects the station that exhibits the smallest differ-
ence, in terms of mean and dispersion (Cosh et al., 2006, 2008; Kornelsen & Coulibaly, 2013). It is based on
the assumption that spatial SM fields are stable in time, which is not always true (Yee et al., 2016). Triple col-
location (TC) can also be used to estimate the representativeness of ground stations (Chen et al., 2016; Gruber
etal, 2013; Miralles et al., 2010). It requires three data sets and is very sensitive to the independence between
the errors and between the signals and the errors (Yilmaz & Crow, 2014). Finally, the “inverse footprint”
method (Nicolai-Shaw et al., 2015; Orlowsky & Seneviratne, 2014) simply evaluates the synchronism between
surrounding stations.

The spatial representativeness of SM data sets may be different depending on the timescale. Studies at
country and continental extents showed that large and small timescales have large and small representa-
tiveness areas, respectively (Cayan & Georgakakos, 1995; Entin et al., 2000; Vinnikov et al., 1996). Entin et al.
(2000) identified two spatiotemporal scales: the small scale was of the order of some tens of meters and
few days and was due to local processes such as infiltration, precipitation, and drainage; the large scale
was of the order of some hundreds of kilometers and 2-3 months and was due to climatic atmospheric
forcing. The works of Chaney et al. (2014) and Su and Ryu (2015) have provided similar conclusions for
footprint extents. Chaney et al. (2014) showed that in the Little River catchment, large spatial scale factors
(land cover and evapotranspiration) influence SM seasonal cycles, while the small ones (soil texture) do
not. Similarly, Su and Ryu (2015) have showed that the correlation between point and large-support data
sets (in situ and satellite) increases with the timescale. However, at the view of the literature on TC, we
ascertain an alternative interpretation about SM seasonal scales. TC studies have usually considered that
there exist significant differences between the seasonal components or “climatologies” of ground and
satellite/model data sets due to their different spatial support sizes (Gruber et al,, 2016). For this reason,
TC studies have systematically detrended the SM series for the seasonal component. To our knowledge,
this apparent divergence between interpretations of the seasonal SM component has not been addressed
yet in the literature.

The evaluation of SM representativeness on a per-timescale basis requires separating the SM series in time-
scales. Moving averages have been applied to separate the seasonality and trend components (large time-
scales) from the anomaly series component (shorter timescales; Gruber et al., 2013; Nicolai-Shaw et al.,
2015). Although events are localized with precision in the anomaly series, these are still affected by part of
the seasonal component. Fourier analysis has been used to analyze the power of each timescale (Katul
etal, 2007; Su et al,, 2016), but it does not allow localizing events in time. More advanced spectral techniques
like the short-time Fourier transform and wavelet transforms can solve this issue. Wavelet transforms have
the advantage of localizing events in time with a precision that does not depend on the timescale (Barford
et al,, 1992; Cornish et al., 2006). Some examples of wavelets applied to SM series include the study of daily
to annual components at different depths (Lauzon et al., 2004), the connections with other geophysical vari-
ables per timescale (Graf et al., 2014), and the correction of multiplicative and additive biases per timescale
(Su & Ryu, 2015).
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The objective of this study is to investigate the connection between spatial and timescales within satellite
footprints. The investigation is performed in three steps: First, a preliminary assessment of the scales and their
geophysical drivers is conducted on modeled SM data. Second, we investigate which method is suited the
best for assessing spatial representativeness (spatial scale) when SM time series are decomposed in time-
scales. Timescales are obtained with wavelet transforms. The approaches tested for assessing the spatial
representativeness are temporal stability, triple collocation, and two new ones: the temporally correlated
areas (CArea) method and an approach based on wavelet correlations (WCor). The third and final step con-
sists of analyzing actual measured SM data to verify the conclusions reached at that point. To our knowledge,
this is the first study of this kind to investigate the footprint extent with a comprehensive set of methods and
data sets. In addition, we analyze the seasonal components of point and footprint support series in order to
solve the apparent divergence in literature mentioned before.

This article is structured as follows. Section 2 presents the methods used for the analyses in the time domain
(wavelets; section 2.1) and in the spatial domain (representativeness methods; section 2.2). Section 3
describes the data sets. Section 4 gathers the results from each of the three steps of the investigation in
respectively three subsections. The conclusions are summarized in section 5.

2. Materials and Methods
2.1. Timescale Decomposition of SM

Wavelets are mathematical functions that can be used to decompose time series in a set of timescales
(Foufoula-Georgiou & Kumar, 1994; Percival & Walden, 2000). Wavelet transforms are time-frequency trans-
forms: they detect the frequency components of the signal and also when events occur in time. The contin-
uous wavelet transform is expressed as a collection of variables {W(z, t): 7 > 0, —o0 < t < oo}, where 7 denotes
the timescale (equation (1)). It consists of convoluting the original signal x(t) with a set of translated and
stretched/shrinked versions of the wavelet basis function w(t).

W(r,t) = I:x(u)w(“ - t) du M

The maximal overlap discrete wavelet transform (MODWT) is a subsampled version of the continuous wavelet
transform at dyadic scales (equation (2)):

=2"T, j=1,2,..,10 )

where JO is the last level of decomposition, T is the sampling period of the original signal (in time units), 7; is
the timescale (in time units), and j is the the unit-less scale. The maximal overlap discrete wavelet transform
can be applied to any sample size and is shift-invariant (Percival & Walden, 2000, pp. 159, 160).

The wavelet transform produces JO series of wavelet coefficients {W(t)} for the scales {z} (j=1,2,...,J0) and
one series of scale coefficients V)y(t) that contains all variations at scales larger than z,. For the sake of clarity,
the scale series are usually referred as Vg instead of W(yo _ ;. The inverse transform of the W; and Vq coeffi-
cients produces the detail (D)) and smooth (Syo) series, respectively. The detail series represent anomalies at
scale z; (rapid variations), that is, differences in weighted averages of periods of length ; or slightly longer
(Percival & Walden, 2000, pp. 11 and 59). They are zero mean by construction. The smooth series contain
the remaining variations and the bias for timescales larger than JO (slow variations). The sum of the detail
and smooth series recovers the original time series (equation (3)):

JO
x(t) = '21 Dj + Sy (3)
=

One of the critical aspects of wavelet analysis is the choice of the maximum level of decomposition JO and the
wavelet basis function w(t). The largest timescale at JO should be smaller than the length of the series
2° = 7 < N). In this study, we use 6 month and 2 year series with a sampling period (T;) of half a day.
Therefore, we select JO = 8 for the 6 month series and JO = 9 for the 2 year series. The list of possible scales
is provided in Table 1. Regarding the wavelet basis function, we will use the Daubechies-4 (D4; Daubechies,
1992) and the Haar (Haar, 1910) wavelet. While D4 better isolates timescales due to its sharper response in the
frequency domain, it is longer in time than Haar. Given that the length of the wavelet at scale JO should be
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Table 1

Wavelet Scales for Sampling Period T¢ = 0.5 Days

shorter than the length of the series (Cornish et al., 2006), we select Haar

for the 6 month series and D4 for the 2 year series.

Timescale Timescale (days)

j 7= P 2.2. Spatial Representativeness Metrics

1 0.5 In this section, we describe the methods we use to evaluate the spatial
2 1 representativeness: two existing methods, temporal stability (TStab) and
z i triple collocation (TC), and two new methods, the temporally correlated
5 3 area (CArea) and the wavelet-based correlation (WCor). CArea is designed
6 16 to serve as the reference when working with modeled spatial fields since it
7 32 accounts for all the local supports contained within the footprint. In the
8 64 case of dense in situ networks, the spatial sampling is insufficient to ensure
9 128

accurate CArea results. WCor is designed to serve as an alternative method

to TStab and TC that, as will be shown, require quite restrictive conditions
constraining their use to limited range of timescales.
2.2.1. Temporal Stability (TStab)
TStab was introduced by Vachaud et al. (1985) and has been thoroughly detailed in a number of publications
(Cosh et al., 2006; Martinez-Fernandez & Ceballos, 2005; Mittelbach & Seneviratne, 2012). In short, TStab eval-
uates how the relative differences (RD;o; equation (4)) between the spatial average values SM,,4 and point
support values SM;, at the location iy vary in time. The most representative point time series is the one with
both smaller mean RD (MRD;y; equation (5)) and smaller standard deviation of RD (SDRD;q; equation (6)). In
this study, stations with small and big MRD also had small and big SDRD, respectively (not shown here).
Thus, for the sake of concision, we bring the two metrics into one, the RMSE;, (equation (7)), following the
notation of Jacobs et al. (2004):

~ SMijg(t) — SMayg(t)

) = G *
1N
MRD; = — 5 RDjo(t) 6)
N =1
1 N 2
SDRD;o = \/ ¥ (RDjo(t) — MRDjo) ©
N — 1=

RMSE;y = 1/MRDZ + SDRD @)

2.2.2. Triple Collocation (TC)
TCis a technique for estimating the random errors of three collocated data sets that are meant to represent
the same geophysical variable (Stoffelen, 1998). It relies on a linear error model:

xk(t) = ok + By 0(t) + ex(t) (8)

where k denotes one of the three data sets, a, and S are calibration constants, 8(t) is the (unknown) true SM, and
&k is the error term. In the case of SM, when TC is used to evaluate the spatial representativeness, the TC triplet is
formed by the in situ data set (which is assessed for representativeness) and two data sets of equivalent large sup-
ports. Supposing that the latter show stronger similarities because of their similar support sizes and that the data
set’ errors are much smaller than the differences due to the spatial scale mismatch, the error metrics of the in situ
data set should mainly reflect its spatial representativeness (Gruber et al,, 2016; Vogelzang & Stoffelen, 2012).

Two TC metrics are typically used to assess the errors of each dataset xy, the variance of its errors afk (Gruber
et al, 2013; Miralles et al., 2010) and its correlation with the true soil moisture p,, 4 or p,, 1 for readability
(Chen et al., 2016; McColl et al., 2014). In this study we use the TC correlation coefficient because, unlike
the error variance, it is normalized by the total signal power and so allows the direct comparison of results
from different stations and networks.

MOLERO ET AL.
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Assuming that the covariances between the true signal 9(t) and the errors &(t) and between the errors of dif-
ferent data sets are null, the error variance and the TC correlation estimators can be derived (Chen et al., 2016)
and written as

2 2
;= Ok — OKGkm/Omi ©)
OklOkm
=+ (10)
Px true O'io'ml

where a,f is the variance of data set k and oy, oxm, and o,y are the cross-covariances between the two data sets
specified in the subscript. The three following conditions are necessary to compute equation (10) (Chen et al.,
2016): (a) nonnegative cross-correlation between all data sets; (b) nonnegative 52; and (c) nonnegative 2, -
2.2.3. Temporally Correlated Areas (CArea)

Nicolai-Shaw et al. (2015) and Orlowsky and Seneviratne (2014) introduced the notion of “inverse footprint”
for in situ SM series that they define as the area surrounding a station where other stations exhibit temporal
similarity (correlation) above a specified threshold. In this study, we propose a modification that we call the
temporally correlated areas (CArea) method. The three main changes are as follows:

1. Itis only applied to SM gridded data. Even in the case of dense in situ networks, the spatial sampling is too
sparse for detailed spatiotemporal analyses.

2. Pearson correlation replaces Spearman correlation, in order to be consistent with the other approaches
used that rely on the Pearson statistic.

3. The final metric is the percentage of pixels above a specific correlation threshold. The mathematical
formula is presented in equation (11), where iy is the location where representativeness is evaluated,
M is the number of locations i within the area A, RXHX;0 is the correlation between the SM time series at
locations i and ig, Ry, the correlation threshold, and H the Heaviside function that is 0 and 1 for negative
and positive numbers, respectively.

CArea —~ 3 H( Rux, — Rin ) %100 (%) (1)
M vizigca °

The CArea method consists then of calculating the percentage of point SM time series within the study area
that correlate with the reference series x;, above a specific threshold. The higher the percentage (and the
correlation threshold), the more representative is a location i.

2.2.4. Wavelet-Based Correlation (WCor)

W(Cor evaluates the representativeness of a location iy on a per-timescale basis. First, the point time series and
the large-support series at that location are decomposed in detail series with wavelet transforms. Then, cor-
relation R; between the detail series at each scale j is computed:

R :R{Djpoint—i07D}arge}7 j=1,2, .00 (12)

The WCor values are simply a measure of linear matching. They cannot by themselves quantify separately the
errors in the data sets and the spatial scale mismatch. However, the analysis of a collection of in situ and
modeled SM series in the following sections will show that they are useful to understand the connection
between spatial and temporal scales and to compare the relative representativeness levels of a set of stations.

3. Data Sets
3.1. Local-Support Data Sets

We have selected for analysis the Little Washita watershed in USA (Cosh et al., 2006) and the Yanco area of the
Murrumbidgee Soil Moisture Monitoring Network in Australia (Smith et al.,, 2012). They are selected because
both are monitored by dense in situ networks and have contrasting climatic conditions (subhumid and semi-
arid, respectively) and SM forcing (irrigation is present in Yanco but not in Little Washita). Little Washita will be
used for the analysis of point in situ and point modeled series and Yanco for the analysis of time series of
modeled SM gridded data at 1 km resolution. As explained in the introduction, modeled data will be used
for illustrating the connections between spatial scales, timescales, and geophysical variables, while actual
measured data will be used for verifying the findings.

MOLERO ET AL.
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Table 2

Values Assigned to the Pan’s Model Parameters for the Generation on Synthetic SM Time Series

Parameter Value Differences with Pan et al. (2003)
y 0.40 Adjusted to control the effect of p (y = 1 produced SM > 1 m3/m3)
SMmin (M>/m°>) 0.025
SMimax (M>/m?) 05
n (m/yr) 7(t) = max {0.2 - Ks + 0.4 - LAI(t), 0.5} Equation changed to match observations
Z (m) Z=Zmax — I'mod - (Ks — KSmin) Equation changed to match observations. A texture-depending Z allows a wider range of decay rates. Z
With Fmog = ZoaZun_ — 0.05-005 is reduced as soil becomes sandier (smaller depth provokes faster changes)
Smax —KSmin —0.
Ks (cm/h) Sand: Ks = 5, loam: Ks = 1.3 Source: FAO htp://ftp.fao.org/fi/cdrom/fao_training/FAO_Training/General/x6706e/x6706€09.htm

The Little Washita network has an extent of ~610 kmZ. The average annual rainfall is 750 mm, and most of it
takes place in spring and autumn (Allen & Naney, 1991). The area is mainly covered by rangeland and crops,
soil texture is diverse (sands, loams and clays), and the topography is moderately rolling. The network is made
up of 20 permanent Stevens Hydra Probe stations installed at a depth of 5 cm with a sensing range between 3
and 7 cm.

The Yanco network has an extent of ~3,000 km?. The average annual rainfall is around 400 mm with precipi-
tations concentrated in winter and spring. The area is mainly flat and is covered by pastures and both dry and
irrigated crops. The network is made up of 13 permanent Stevens Hydra Probe stations providing SM inte-
grated over the top 5 cm of soil.

3.1.1. Modeled Series (Little Washita)

The model in Pan et al. (2003) was specifically designed for the Little Washita network. Simplicity is its major
asset, and the output SM time series are adequately realistic for our purposes. Three components with dis-
tinctive temporal scales control the SM series dynamics: precipitation (short-term), texture (short-to-medium
term), and vegetation (seasonal term). These timescales could be represented by other factors in other areas
of study or in more complex models. For this reason, we consider that precipitation includes irrigation,
texture represents any soil memory process, and vegetation represents any seasonal signal, like
temperature trends.

The model is summarized by the following equation:

. ot pp(t) ro o '
SM(Y) = mln{ max {SM(T 1)6 Z +71(t)'7—5 |:1 z :|7SMm|n}7SMmax} (13)

where T; is the sampling period in hours (h), p(t) is the cumulative pre-
cipitation (m) between t — 1 and t, y is the interception by vegetation,

0.6 — : .
o5 @ ?:‘;iile(igef’a) i is the loss coefficient (m/h), and Z is the penetration depth (m). The
= 04 In situ-avg loss coefficient is calculated as a function of the drainage coefficient
E 03 R Ks and the leaf-area index (LAI). The parameters used in this study
= 02 \ W’ v \“\ i are described in Table 2.

P ol # g NV j Two-year SM series are produced with this model at a 12 h sampling
0 LN . . . interval. Two sets of series (a, b) are generated by varying the LAI

0.6 T T T amplitude. Each set is formed by a reference series (ref-a/ref-b) and
_05¢ b) El\c/lﬁiw . four sample series (1-, 2-, 3-, 4-a/b). The reference series are produced
mg 0.4 X - u ,‘; .. S AMSR?2 :‘ for a loam texture using the in situ measured precipitation and the
”g 031 .. }._..' . "\"‘"'3’}?;1 oo ;'-‘.\-'-.,\‘v.) & MODIS LAI time series observed at station 1. The ref-a time series is
= 02p :_"_“a.;.;,-\_‘ ":3, ,“.:.:‘-' & .:',‘.:"’\ﬁ::';.é-'l“.n_:,-’- 3 ?‘:"v,‘ shown in Figure 1a, together with the true in situ series at station 1.
o1 :"\-"5*3. :;‘..41.‘,’ ‘,/:*"s";f"“-'- E‘:"‘ ,-;.“"'-'5"”-.” 3 R Sample series are generated identically to their respective reference

0 PERde O RC EEAE vt RO series except for one variable (Table 3): For sample series 1-a/b, we

2012-08-19 2013-03-07 2013-09-23 2014-04-1 introduced random variations in precipitation amplitudes. For sample

Figure 1. Time series of the SM data sets used in the Little Washita region, before
gap filling. Only one of the time series of the modeled data set (ref-a) and two of

series 2-a/b, we changed also the synchronization of some precipita-
tion events (10% of the events are randomly selected and shifted in

the in situ data set (station 1 and the spatial average) are included. time by +0.5 day and another 10% by —0.5 day). For series 3-a/b,
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Table 3
Characteristics of the Modeled SM Series of Little Washita
Variables
Series Precipitation Texture LAI
Ref-a/b Preflt) Loam LAlref — alAlief — b = LAlyef _ 2/4
1-a/b Different amplitudes Loam LAlief — a/b
p(t) = Pres(t) + N(o7o.pref/4)

2-a/b Different amplitudes and times: 10% of the events shifted Loam LAlref — a/b

by +0.5 day and 10%, by —0.5 day

P(t) = Pref-suir(t) + N(0, 0p,, /4)
3-a/b DPref(t) Sand LAlref — a/b
4-a/b Pret(t) Loam 1 month shift

LAla/b(t) = LAlref - a/p(t — 30)

we changed the texture to sand. Finally, for series 4-a/b, we introduced a 30 day time shift in the seasonal
component. The detailed setup is provided in Table 3, where the variable changes are highlighted in italics.
3.1.2. In Situ Series (Little Washita)

The 20 in situ series of Little Washita for the 2 year period from July 2012 to July 2014 are selected. The data
was provided by the team of the U.S. Department of Agriculture (USDA) in charge of maintaining the network.
Data access and contact details can be found in the USDA Agricultural Research Service website (http://ars.
mesonet.org/). The spatial average of all the station series and the time series measured at station 1 are shown
for illustration in Figure 1a. Since wavelet transforms need regularly sampled time series, big gaps (>1 month)
are filled by linear regression with the most similar station series. The percentage of filled gaps with this
method is ~5.7% of the entire series. The remaining gaps, which represent ~1.1% of the samples, are filled
with a discrete cosine transform (DCT) approach (G. Wang et al.,, 2012). The advantage of DCT is that it uses
the full series—and not just local information—to estimate the missing data based on the signal spectrum.

3.1.3. In Situ DISPATCH Gridded Data (Yanco)

In this study, SM maps at 1 km resolution are generated by disaggregating the spatial average of the SM in
situ Yanco time series. Yanco in situ data are available from the OzNet hydrological monitoring network web-
site (http://www.oznet.org.au/). The disaggregation method used is derived from the operational version of
the Disaggregation based on Physical and Theoretical Scale Change (DISPATCH) algorithm (Merlin et al.,
2012, 2013; Molero et al.,, 2016). Former validation studies of DISPATCH over the Yanco region gave satisfac-
tory results (Malbéteau et al., 2016; Merlin et al., 2012). The algorithm was originally designed to improve the
resolution of satellite SM data sets by using temperature and vegetation data from optical/thermal sensors
like MODIS. Note that in this study, we replace the satellite SM by the Yanco in situ average series, so that
the SM maps are as close as possible to the ground reality. DISPATCH preserves the spatial average by con-
struction. The data set will be called in situ DISPATCH (in situ-DIS).

The Yanco in situ-DIS series are sampled at SMOS overpass times (approximately 6 A.M. and 6 P.M.). Long
periods of clouds reduced dramatically the availability of DISPATCH data during the Austral winter; as an
example, most of the in situ-DIS series at the stations’ locations presented long periods of unavailability
(1-2 months), and data gaps represented 50% of the series in average. As a consequence, we only consider
the 6 months from September 2014 to March 2015, which are affected by much shorter periods (below
9 days) and lower percentages of unavailability (~23%). Data gaps are filled with the DCT approach
(G. Wang et al,, 2012).

3.2. Large-Support Data Sets

3.2.1. SMOS

The SMOS mission (Kerr et al.,, 2001) is led by the European Space Agency (ESA) with collaboration of the
Centre National d’Etudes Spatiales and the Centro Para el Desarrollo Tecnolégico Industrial. The SMOS sensor
is a passive 2-D microwave interferometer observing the Earth at L-band (1.4 GHz) dedicated for the observa-
tion of SM and ocean salinity. The mission provides SM estimates in m®/m?> over the top ~5 cm surface layer.
The footprint (support) has a resolution that varies from 27 to 55 km depending on the observation geome-
try, with an average resolution of 43 km. The maximum revisit time of SMOS is 3 days with crossing nodes at
6 A.M. and 6 P.M. local solar time for ascending and descending orbits, respectively.
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The SMOS data used in this study are obtained from the ESA Level 2 (L2) SM products (version 620). The SM
retrieval algorithm takes into account the landscape heterogeneity of the observed surface. When the domi-
nant land cover is low-vegetated soil (like in this study), the brightness temperatures of the low-vegetated
part are modeled with the L-band Microwave Emission of the Biosphere forward model (L-MEB) (Wigneron
et al,, 2007). Details of the L2 SM retrieval algorithms can be found in Kerr et al. (2012, 2014).

The L2 grid nodes that are in the center of each in situ network are selected: the node 226157 for Little
Washita and the node 8174767 for Yanco. These are depicted in Figure 2, together with the position of the
ground stations of each network. Ascending and descending orbits are merged in one single time series with
a 0.5 day sampling period. The original SMOS time series for the Little Washita network is shown in Figure 1b.
SM retrievals with probability of radiofrequency interference (DQX) higher than 10% and data quality index
(DQX) higher than 20% are removed. The gaps represent 59% of the Little Washita and Yanco SMOS series
and are evenly distributed: the mean number of consecutive gaps is 2.8, and the mean number of consecu-
tive samples (without gaps) is 2.2. They are filled with the DCT method.

3.2.2. AMSR2

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a passive multiband scanning radiometer
onboard the Global Change Observation Mission Water 1 (GCOM-W1) satellite, launched by the Japan
Aerospace Exploration Agency in May 2012. Its revisit time is 1-2 days with crossing nodes at 1:30 P.M.
and 1:30 A.M. local solar time for ascending and descending orbits, respectively. Since SM derived from lower
frequencies is expected to be more accurate, the lowest AMSR2 band (6.9 GHz, C-band) is selected here. At
this frequency, the footprint is ~35 x 61 km (along scan x along track; Japan Aerospace Exploration
Agency, 2013), and the derived SM products represent the soil moisture of the top ~1-2 cm surface layer.

Several AMSR2 SM products exist. We use the Land Parameter Retrieval Model (LPRM) products (Owe et al.,
2008). LPRM considers the surface as homogeneous within the footprint in terms of vegetation scattering
albedo, surface roughness, and so on. The product distributed by the NASA Goddard Earth Sciences Data
and Information Services Center showed unusual temporal patterns and positive biases (Cho et al., 2017),
so we use an AMSR2-LPRM SM data set directly provided by Dr. Parinussa.

We only used LPRM products from descending overpasses (1:30 A.M.). They have been proved as more accu-
rate than their ascending counterparts (Draper et al., 2009; Lei et al., 2015), probably due to the more uniform
surface temperature and soil moisture vertical profiles. For each network in this study, the AMSR2 pixel closer
to the selected SMOS node is chosen (Figure 2). The AMSR2 time series for the Little Washita network is
shown in Figure 1b. SM estimates are discarded either when they are equal to zero or when the quality mask
values are higher than 68. On average, gaps represent 70% of the AMSR2 series and are uniformly distributed
along the Little Washita and Yanco series: the mean number of consecutive gaps is 3.8 and 1.9, respectively,
and the mean number of consecutive samples is 1. Data gaps are filled with the DCT method.

3.2.3. ECMWF

We use the ECMWF SM data set used by the SMOS L2 processor as initial guess in the retrieval loop. This cus-
tom ECMWEF data set is obtained from the top 0-7 cm soil layer of the ECMWF forecast system and has been
interpolated in space and time to match the SMOS L2 grid and overpass times. The custom ECWMF product is
extracted from the SM_Init_Val field of the Level 2 Soil Moisture Data Analysis Product (MIR_SMDAP2), which
is available through the ESA SMOS dissemination web service (https://smos-ds-02.eo.esa.int/oads/access/).
More information on the ECMWF auxiliary product can be found in Kerr et al. (2012, 2014, 2016). The
ECMWEF time series for the Little Washita network is shown in Figure 1b. On average, gaps represent 48%
of the series and are uniformly distributed: the mean number of consecutive gaps is 2.5, and the mean
number of consecutive samples (without gaps) is 2.7. Gaps are filled with the DCT method.

4. Results and Discussion
4.1. Connection Between Spatial and Timescales

This section presents the first step of our investigation and seeks to reveal the existing connections between
spatial scales, timescales, and geophysical drivers in SM modeled data sets. We analyze how SM timescales are
influenced by differences in the sources of SM variability (forcing events, soil memory, and seasonal sources),
for which the Little Washita modeled series were specifically designed. To this end, we evaluate the correla-
tion between each sample series and its respective reference series (a or b, Table 3) on a per-timescale basis.
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Figure 2. Location of the in situ stations and the SMOS and AMSR2 grid nodes in each of the validation areas. The circles
represent two typical SMOS antenna footprint sizes considered in the retrieval algorithms: the average one of 43 km
diameter and the maximum one of 55 km diameter.

The correlation of each sample-reference series pair is depicted in Figure 3 with differently colored lines.
Solid lines correspond to correlations of the a group and dashed lines to the b group. Differences in for-
cing events (blue and red lines) deteriorate the correlation, at least in the first timescales (<2 days).
Moreover, desynchronizations produce irregular correlation patterns (red lines). Regarding texture hetero-
geneity (magenta lines), it deteriorates the correlations of middle scales up to the first seasonal scale
(32 to 64 day scales). This illustrates that both meteorological forcing and surface memory can contri-
bute to the month and seasonal scale signatures. Finally, when the seasonal component is not synchro-
nized, the correlation at month and seasonal scales is hampered. This happens only when the seasonal
component represents an important part of signal (case 4-a); otherwise, the correlation is maintained
(case 4-b).

We have just shown the connections between some of the sources of SM variability and SM timescales, from
a model perspective. Do these sources also exhibit characteristic spatial scales? For an exhaustive spatial
investigation, the area under study requires to be fully sampled, so in the next experiment, we use the time
series of in situ-DIS spatialized data. We evaluate the spatial representa-
tiveness of the pixels containing an in situ station on a per-timescale basis,

by applying CArea to their wavelet decomposed series. We also evaluate
the representativeness of two other series that are expected to represent
the satellite footprint better than the point in situ series: the field average
é 08 e — }E series (FAvg, the average of all the pixels) and the network average series

g —e— 22 (NAvg, the average of the pixels containing a station).
S 0.6 T The results are presented in Figure 4, where each line represents the CArea
values obtained for a specific pixel for a range of correlation thresholds.
04 Regardless of the FAvg and the NAvg series that have their own names,
the ID of each pixel corresponds to the ID of the in situ station contained
1 within. We observe that the lines move to the right and are more distant
from each other as the timescale increases. This implies that, in general,
spatial representativeness increases with the timescale, but the evolution
_§ 08 — e 3a is not the same for all locations. The latter could be explained by the
%" - 431:2 combination between the propagation of small-scale effects and the
g 0.6 4-b appearance of larger scale SM factors (the propagation of small-scale
© effects was shown in the modeled Little Washita series). As expected, the
field and the network average series are the most representative ones at

0.4 all timescales.

%
QN“’V%L"%’EQ

Scales (days)

Figure 3. Correlations between the detail series of different sample series
and their respective reference series (a or b), as a function of timescales.

Small timescales (0.5-2 days) exhibit the smallest correlated area, with
less than 25% of the area correlated above 0.5 (Figure 4). This can be
due to three possible reasons: (i) gap filling, (ii) noise from the disaggre-
gation method and inputs, and (iii) important spatial heterogeneity. In
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Figure 4. CArea scores: Size of the representativeness area in percentage of the total area, for a set of different locations
(pixels) and the field and network average series (FAvg, NAvg). The data set is the in situ-DIS Yanco data set, for the
6 month period from September 2014 to March 2015.

order to assess the impact of gap filling, we used measured in situ series, where we could set the same
gaps as those in the in situ-DIS series and compare scores before and after filling the gaps. Since the
number of spatial samples was not large enough for applying CArea (13 stations), we simply computed
the wavelet correlation scores. We found that, at the 0.5-2 day scales, correlation decreased by 0.08 on
average. This means that gap filling does not change significantly the first three timescales as shown in
Figure 4, with respect to the other timescales. Concerning the disaggregation noise, we expect it to be
negligible with respect to the geophysical heterogeneity because the analysis of actual in situ series, as
it will be shown in section 4.3, exhibited similar decorrelation levels. Hence, we may conclude that the
spatial heterogeneity is the main cause of low correlation at subweekly timescales. In this case, the
heterogeneity is most likely controlled by irrigation: the Yanco area contains both irrigated and
nonirrigated plots, and we showed before that precipitation (and by extension, irrigation) produced
decorrelation at short timescales.

Regarding weekly scales (8-16 days), most of the series have more than 50% of the surface correlated
above 0.5 and 0.6 correlation points, respectively. This suggests that there is little soil heterogeneity,
according to our analysis of Figure 3 where texture was associated to middle scales. The month scale
(32 days) breaks the tendency of increasing representativeness with timescale. As we deducted from
Figure 3, such drops in correlation appear at similar timescales when precipitation events are not synchro-
nized, a phenomenon that should be present in Yanco because of irrigation. Also taking into account that
the 32 day scale has small temporal variance, similar to that of the 2 day scale for this data set (not shown
here), the signal-to-noise ratio might be quite low and induce low correlation (as demonstrated by Berger
& Sweney, 1965; Goodwin & Leech, 2006).
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Figure 5. Maps of temporal correlation between each pixel time series and the field-average time series of the in situ-DIS
data set. Values are calculated on detail series. Color code is bounded between 0 and 1, although negative correlation
values exist.

The largest scales (16-64 days) deserve special attention. First, we recall that the relative positions between
the lines change in Figure 4. This justifies the separate evaluation of spatial representativeness per timescale.
For example, location 1 is a good option if we are interested in seasonal changes (64 day scale), but it is not for
week-scale applications (8 and 16 day scales). Second and most importantly, the seasonal 64 days scale is the
scale that exhibits the largest areas with correlation very close to 1: the most representative series exhibits
~40% of the area with a correlation above 0.9 (Figure 4). However, there are some locations that have extre-
mely small representativeness areas (location 13) while others have extremely large ones (locations 9 and 10).

In order to investigate deeper, Figure 5 presents the correlation maps derived for the FAvg series, prior to
the calculation of the CArea percentages for this series. It shows the same overall trend of increasing
representativeness with timescale, including the correlation drop at the 32 day scale explained before.
It also corroborates that at the 64 day scale, locations can be either highly representative of footprint
SM (correlation close to 1, in yellow) or not at all (correlation <0.5, in dark blue). Additional experiments
(not included here) showed that concurrent heterogeneities in precipitation synchronization and texture
affected seasonal timescales, which can explain the observed dispersion in representativeness. From this,
we conclude that the seasonal component of SM is made up of standalone seasonal elements (vegetation
growing cycle, temperature trends, etc.) along with the integration over time of smaller timescale compo-
nents, like short-time precipitation events and surface memory.
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Figure 6. Representativeness values (vertical axis) from different methods (horizontal axis) for different pixels of the in situ-DIS Yanco data set. The methods are
applied to (a) full series and to (b) detrended series (components >32 days are removed). The CArea correlation threshold is 0.55.

The results presented in this section solve the apparent opposition between the detrending in TC studies and
the conclusions in Su and Ryu (2015) about seasonal scales that was mentioned in the introduction. Both
Figures 4 and 5 reveal that, at seasonal timescales, both situations coexist: some locations exhibit important
differences with respect to the footprint time series, as suggested in TC studies, but also a large number of
locations exhibit good synchronization, as proposed by Su and Ryu (2015). Finally, we have also shown that
time and spatial scales are connected in the model-based Little Washita and Yanco data sets. We hope to find
similar behavior in actual in situ series (section 4.3), given that both model data sets are dependent on mea-
sured in situ data.

4.2. Intercomparison of Methods for Spatial Representativeness Assessment

Herein, we describe the second step of our investigation, which is dedicated to finding the best methods for
assessing spatial representativeness of SM data sets, especially when SM time series are decomposed in time-
scales. To this end, we compare the performances of TStab, TC, CArea, and WCor methods when applied to
the Yanco in situ-DIS data set for the 6 month period from September 2014 to March 2015. Because of the
CArea method, the area of study includes all the stations plus a 0.05° extension to avoid border effects in
peripheral stations. The TC triplets are made up of one local-support data set (one in situ-DIS series) and
two large-support data sets (the SMOS data set and either the AMSR2 or the ECMWF data set).

4.2.1. Original Series

Figure 6a shows the spatial representativeness values obtained with each method on each selected
location (pixel). The vertical axis is oriented from small to large representativeness, from bottom to
top. Results are grouped per method: at the left, the CArea percentages; in the middle, the TC correla-
tion ppixelrue Values; and at the right, the TStab RMSE values (in reverse vertical-axis order). Some loca-
tions (markers) are missing from the TC groups because the preliminary test on the error variances
(section 2.2.2) gave a negative value. This can be due to temporal biases, which can cause an imbal-
ance between the data set variance and the product of covariances (equation (9)). TStab exhibits the
largest disagreements with respect to the other methods. In agricultural sites, human decisions (crop-
ping and irrigation) undermine TStab performances because they affect the temporal stability of the
spatial distribution of SM (Yee et al., 2016).

In Figure 6a, the ranking of the locations in terms of representativeness is not the same for CArea and TC
methods. Moreover, the values of the two TC variants are not coincident in general, although they both
assign the largest values to the network average and pixels 9 and 12. All these differences could be induced
by seasonal biases. Typically, TC studies removed the 30 day average component in order to have more
chances to fulfill TC requirements (e.g., Chen et al,, 2016; Miralles et al., 2010). In our case, we take advantage
of the wavelet decomposition technique to provide a detrended triplet where variations larger than 32 days
are removed. Figure 6b shows the representativeness scores of the detrended series. The ordering of the
locations is more similar for the two TC variants than in Figure 6a. The wavelet-based detrending is beneficial
because AMSR2 was positively biased during the first half of the period (not shown here). This can be due to
C-band being more sensitive to vegetation and atmospheric factors than L-band. However, detrending does
not prevent the TC and the CArea methods to provide very different results (Figure 6b). They both agree in
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Figure 7. Spatial representativeness values from CArea, TC, and WCor methods for different pixels of the in situ-DIS Yanco data set, per timescale. The CArea correla-

tion threshold is 0.55.

attributing more spatial representativeness to the network average and locations 9, 5, 4, 10, and 8, while
smaller spatial representativeness to locations 1, 2, 6, and 7, but still some locations like 12, 13, and 3
exhibit large discrepancies. This reveals that detrending improves TC performance, but it does not succeed
by itself to ensure that TC conditions are perfectly fulfilled.

4.2.2, Timescale Decomposed Series

The methods presented show significant differences in performance depending on whether some time-
scales, especially the seasonal one, are removed or not. Herein, we study the phenomenon in more detail
at all timescales. The decomposition in timescales allows using the WCor approach, which compares the ser-
ies of the selected pixels with the series of their spatial average (NAvg), on a per-timescale basis. In Figure 7,
each plot contains the representativeness scores obtained with the different methods, including WCor, at a
different timescale. There is a large absence of TC scores at the half-day, 1, 32, and 64 day scales. This is either
because they are off vertical axis limits or because they fail the TC preliminary tests (e.g., most of the times the
correlations between the data sets were too low, below 0.5, not shown here).

In Figure 7, the relative ranking of TC values differ to a great extent from that of the WCor and CArea values.
Considering only the ECMWF-based configuration of the TC scores, the highest concordance between TC
and WCor rankings occurs at the 8 day scale. The mismatch at larger scales (=16 days) can be explained
because the number of independent samples is drastically reduced due to wavelet filtering. The length of
the series (366 samples) is already lower than TC recommendations: around 500 samples are needed for
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Figure 8. Spatial representativeness of Little Washita stations per timescale, evaluated with different TC and WCor methods for the 2 year period from July 2012 to

July 2014.
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estimated with low uncertainty (11%; Zwieback et al.,, 2012). The mismatch at small scales
(<2 days) is probably due to the very low correlation between the data sets, which hampers the validity of
the linear model assumption. All these suggest that TC should be applied neither to too short series nor

to the shortest timescales.

Finally, the WCor and CArea methods give consistent results: the ranking of the locations is similar for all time-
scales. This is significant since the fact that a location correlates well/badly with the rest of locations (CArea)
does not imply that it correlates well/badly with the network average (WCor), and vice versa: the correlation
between the average and a point series cannot be simply summarized as the average of point-to-point cor-
relation values. From this we conclude that WCor is a robust method for the evaluation of spatial representa-
tiveness on a per-timescale basis.

4.3. Spatial Representativeness Assessment of In Situ Series

This last section of results investigates whether the conclusions reached on modeled SM data apply to true in situ
series, concretely those of the Little Washita network. The CArea method will no longer be applied since the spatial
sampling is not sufficiently dense. The WCor method will be also tested on other large-support data sets different
from the in situ average (SMOS, AMSR2, and ECMWF). It will allow exploring whether WCor could be applied to
sparse networks (a single in situ station per footprint). The 2 year period from July 2012 to July 2014 is selected.

The results of the WCor and TC methods are presented in Figure 8. In contrast to the in situ-DIS Yanco case (
section 4.2), much more TC scores are present, which is due to the larger number of samples. Figure 8 con-
firms the connection between time scales and spatial scales described in section 4.1: spatial representative-
ness increases with the timescale and the largest timescales (64 and 128 days) present the largest scatter in
representativeness values. However, a drop in representativeness scores appears at the 64 day scale and con-
cerns all the method configurations except the WCor-in situ avg. The most likely explanation is that the Little
Washita network covers only half of the surface of the satellite footprints. As a consequence, the in situ series
should present similar differences with respect to the satellite products in terms of precipitation and surface
memory, and as explained in section 4.1, these elements can cause decorrelation in the 32 and 64 day scales.

Is the gap filling the root cause of the low representativeness scores at subweekly scales? According to the pre-
vious section, the gap filling in the point and average in situ series has a marginal effect. In addition, in this sec-
tion we evaluated its effect on the large scale data sets. The procedure consisted in setting the large-scale data
set gaps in the in situ series and computing the scores again. In the case of WCor, we observed that at scales
smaller than 4 days, the experiment induced a small reduction in variance and an increase in correlation of
between 0.05 and 0.2. According to these results, the gap filling does not change the relative scores presented
in Figure 8 and in this study in general: the scores at scales smaller than 4 days remain much lower than those of
larger timescales, even after taking into account the correlation increase due to gap filling.

When TC and WCor approaches are compared, similarities are found by groups (Figure 8): ECMWF-based TC
results match well with the WCor results when the large-support data set is either the in situ average, SMOS,
or ECMWEF (first group), while AMSR2-TC values match well with the WCor-AMSR2 values (second group). This
highlights that both TC and WCor methods have a high sensibility to the choice of the large-support data set.
Two main features can explain the differences between the first and the second group. First, the gaps and the
sensing time of AMSR2 series are different to those of the second group. Second, the interpolation of the cus-
tom ECMWF data set and its use as first guess in the SMOS retrieval system could foster similarity with SMOS-
based scores. However, at the view of recent analyses of both products (Kerr et al., 2016), the SMOS retrievals
are independent of ECMWF values.

The TC-WCor consistency is lost at the 64 day scale for the first group and at the 32 day scale for the second
group. This is probably caused by a poorer performance of the TC method due to the reduction in the number
of independent samples along with a correlation decrease between the data sets at those particular scales. This
can be seen in Figure 9, where the correlation between the data sets is shown. We also observe that the higher
correlation values for the first group at the 128 day scale (Figure 9a) seems related to the good consistency
between WCor and TC results at this scale in Figure 8. For example, both methods designate stations 3, 11,
14,15, 17, and 19 as the most representative and stations 2, 4, 5, 8, 16, and 20 as the least representative ones.

SMOS and ECMWF WCor results are the most similar to the in situ-avg WCor scores (Figure 8), so we consider
necessary to examine them in more detail. First, SMOS- and ECMWF-based correlations are very low (<0.5)
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at the first three scales (0.5-2 days), while the in situ-avg, correlations are
—e— R{SMOS,AMSR2}

—e— R{In situ avg, SMOS} —e— R{In situ avg,SMOS} higher than 0.6. In the case of satellite data sets, this could be due to high-
a) | b) | frequency noise, but not in the case of models like ECMWF that are gov-
1 r erned by a smoother model structure. Another more likely explanation is
5 0.8 08 4 related to the spatial support: the spacing between the in situ stations is lar-
£06 0.6 ger than the correlation length of SM, which ranges between some meters
% 0.4 0.4 to some hundreds of meters (De Lannoy et al., 2006; Western et al., 2004;
© o2 02 Western et al, 1998). As a consequence, the in situ average is computed
0 0 with an undersampled surface, which misses small spatial scale phenom-
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Scales (days)

Moreover, satellite sensors estimate SM from the energy integrated over
the footprint, which is not necessarily equal to the integral of SM due to non-

Scales (days)

Figure 9. Correlation between decomposed series (detail series) of the Little  |inearities in the models and in the scaling of parameters (Crosson et al.,

Washita data sets: (a) the TC ECMWF-based triplet and (b) the TC AMSR2-

2010; Crow et al., 2001). From this we conclude that the smallest timescales

based triplet. For clarity, only the in situ average series is present as in situ

data set.

(<2 days) are not good choices to validate satellite estimates given the large
geophysical mismatch between satellite and in situ measurements.

Regarding the middle scales (4-16 days), the ranking of ECMWF-WCor is more similar to the in situ-avg rank-
ing than the SMOS one (Figure 8), which we attribute to SMOS observational noise. However, at last scales
(32-128 days) we observe the opposite. Therefore, we consider SMOS as a good large-support data set to
be used for spatial representativeness assessment in the Little Washita region, especially at the month and
seasonal scales.

5. Conclusions

Satellite surface SM products are often validated with ground samples by direct comparison, despite the dif-
ferent spatial supports of the two data sets (~50 km and a few centimeters, respectively). Ground samples can
represent areas larger than their measurement support. The representativeness area may vary with the time-
scale (Entin et al., 2000). This study sought to investigate the connections between SM spatial scales and time-
scales within typical coarse scale satellite footprint-size areas. For this purpose, we evaluated the spatial
representativeness of different locations at a range of timescales with various methods: triple collocation
(TC), temporal stability analysis (TStab), the percentage of correlated area (CArea), and a new proposed
approach consisting in wavelet-based correlations (WCor).

The comparison of the four approaches revealed that TStab, although applicable to SM absolute values, could
not be applied to wavelet decomposed series because of their multiple zero crossings. TC could not give any
results or gave results that were not consistent with the other methods under two situations: at short time-
scales (0.5-2 days), because the correlation between the data sets was too low, and at larger timescales (lar-
ger than 8 days in the case of 6 month series and larger than 32 days in the case of 2 year series), because the
number of independent samples was too low after wavelet filtering. CArea and WCor results were consistent
in general. WCor is less sensitive to the spatial sampling density than CArea, so it is a robust method for in situ
networks that moreover requires less restrictive conditions than the three other approaches presented.

By applying TC, CArea, and WCor to modeled and true in situ time series in the Little Washita watershed and
to spatialized SM data in the Yanco area, we found that SM spatial and timescales were connected. The series
were sampled every 0.5 days. Precipitation and irrigation were found responsible of small representativeness
areas at small timescales (0.5-2 days). As the timescale increased from 0.5 days to 128 days, the spatial repre-
sentativeness scores tended to increase as well; however, they became more scattered. This was explained by
different geophysical factors. First, desynchronizations in precipitation were propagated to larger timescales,
preventing representativeness to regularly increase at some locations. Second, we observed that the seaso-
nal scale did not only include seasonal signals (vegetation growth, temperature trends, etc.) but also the tem-
poral integration of precipitation and soil memory responses from short and medium timescales.

This is, to our knowledge, the first comprehensive investigation on the connection between SM spatial and
timescales within the satellite footprint (~50 km). It has revealed that time decompositions along with the
WCor method are promising tools for improving satellite validation and modeling of surface soil moisture.
At small timescales (below 4 days), the spatial scale mismatch between satellite/model series (SMOS,
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AMSR2, and ECMWF) and in situ series was found extremely large and similar for all stations. Therefore, we
suggest not taking into account these timescales in the validation of satellite products. At the seasonal scale,
some locations were observed very similar to the footprint support series, while some others were very dif-
ferent. This explained why in some previous studies seasonal scales were found similar for both in situ and
satellite series (e.g., Su & Ryu, 2015), while in TC studies, they were supposed intrinsically different so seasonal
detrending was applied (e.g., Gruber et al., 2016). Finally, the findings of this study can contribute to other SM
applications like downscaling or modeling: multiscale algorithms can be built based on the specific interac-
tions at each time and spatial scale. Given its timescale dependence, spatial variability should be addressed
differently depending on the timescale.
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Erratum

In the originally published version of this article there were errors in the acknowledgement section as well as
within the body of the text. On page 6, in the last paragraph, the line “Two TC metrics are typically used x;*
should read "Two TC metrics are typically used to assess the errors of each dataset x,". Additionally, In
Equation 10, "true” should be a subscript, at the same level as the 'x’ in the subscript. And in Equation 12,
"j" should be at the same level as "i* in the subscript, not as "0".

Below, you will find the acknowledgment section as it should have read.

This study was financially supported by the "Terre, Océan, Surfaces Continentales, Atmosphére” and the
CATDS programs of the "Centre National d'Etudes Spatiales” (CNES, France). USDA is an equal opportunity
provider and employer. Soil moisture datasets accessed for this study are publicly available and the respec-
tive sources are listed in section 3 of this article. The authors acknowledge the USDA ARS for providing the
elementary watershed information and the Murrumbidgee monitoring network, whose initial setup and
maintenance was funded by the Australian Research Council (DP0343778, DP0557543) and by the CRC for
Catchment Hydrology. The authors would like also to thank Robert Parinussa, Richard de Jeu and Robin
van der Schalie (VUA) who produced and provided the AMSR2 LPRM soil moisture data sets to us.

These errors have since been corrected, and this version may be considered authoritative version of record.
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