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Boundary of the Milnor fiber of a Newton non degenerate
surface singularity

Octave Curmi

Abstract

We give in this work an explicit combinatorial algorithm for the description of
the Milnor fiber of a Newton non degenerate surface singularity as a graph manifold.
This is based on a previous work by the author describing a general method for the
computation of the boundary of the Milnor fiber of any reduced non isolated singularity
of complex surface.

1 Introduction

The study of Milnor fibers of complex-analytic functions, which began in the second half of
the 20th century, gave rise to a rich interaction between algebra and topology. One of its
interesting aspects is that it can be used to provide equations for sophisticated topological
objects, such as exotic spheres, see [Bri00, p 46-48] and [Hir95]. See also [Mil68, Chapter 9],
and [Sea19, Section 1].

This potential fabric of exotic spheres led Milnor to study further the topology of
hypersurface singularities, and eventually to write his famous 1968 book [Mil68], aimed at
the study of isolated singularities of hypersurfaces of Cn, V (f) = {f = 0}. In this work
he introduced two equivalent fibrations, using respectively the levels of f/|f | on spheres
centered at the critical points of f and the levels of f in Cn.

The second of these two fibrations has been extended to more general contexts by Lê,
see [Lê77], and is known as the Milnor-Lê fibration. However, it may produce singular
generic fibers, due to the singularities of the ambient space. Hamm, in [Ham71], provided a
setting in which the Milnor-Lê fibration is actually a smoothing of V (f), that is, a way to
put V (f) in a flat family of analytic spaces, where the generic space is smooth. Namely,
if (X, 0) is a germ of equidimensional complex analytic space, and f is any holomorphic
function on (X, 0) such that V (f) ⊃ ΣX, then the function f provides a smoothing of the
singularity (V (f), 0), where ΣX denotes the singular locus of X.

The study of the whole Milnor fiber is very hard, even for isolated singularities, and there
is only a few types of singularities where a description of the full fiber is known. It is the
case for the Kleinean sigularities A, D, E, where the Milnor fiber is unique and diffeomorphic
to the minimal resolution (see Brieskorn, [Bri66]), as well as for the singularities of normal
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toric surfaces, with a description by surgery (see Lisca, [Lis08] and Némethi & Popescu-
Pampu, [NPP10]), and for sandwich singularities (De Jong & Van Straten, [dJvS98]). As
for nonisolated singularities, the only known case is that of hypersurface singularities of the
form {f(x, y) + z · g(x, y) = 0}, see Sigurðsson, [Sig16]. One can also refer to the survey
[Gre19] for more about the topology of smoothings and deformations of singularities.

On the other hand, the study of the boundary ∂F of the Milnor fiber of a smoothing
has been a very active area of research in the last decades. For an isolated singularity ∂F
is unique, and equal to the link of the singularity. In today’s words, Mumford proved in
[Mum61] that the link of any isolated singularity of complex surface is a graph manifold,
that is, a manifold describable using a decorated graph whose vertices represent fibrations in
S1 over compact surfaces. It is Waldhausen, in [Wal67], that later introduced this vocabulary
and began studying this class of manifolds in itself. Furthermore, since the work of Grauert
([Gra62]), one knows exactly which graph manifolds appear as links of isolated singularities
of complex surfaces. However, this strong point is tempered by the fact that one still
does not know, for example, which of these manifolds appear as links of singularities of
hypersurfaces of C3.

Still, one would like to get an analogous result for boundaries of Milnor fibers associated
to non isolated singularities. The first steps towards the comprehension of the topology
of these manifolds were made by Randell [Ran77], then Siersma in [Sie91], [Sie01], who
computed the homology of the boundary ∂F of the Milnor fiber in certain cases, and
characterized the cases in which ∂F is a rational homology sphere.

Concerning the general topology of this manifold, a series of results were aimed at
proving that the boundary of the Milnor fibers associated to a non isolated singularity
is, again, a graph manifold, see [MP03], [MP04] and [MP16] as well as [MPW07] for the
special case of Hirzebruch surface singularities, and [MPW09] for the so-called suspensions
(f = g(x, y)+zn). In [FdBMN14], the authors prove the same result for a larger context, and
in [NS12], the authors give a constructive proof for the case of reduced holomorphic functions
f : (C3, 0)→ (C, 0). This is this last proof that we extend here and in [Cur19] to study the
boundary of the Milnor fiber of a Newton non degenerate function f : (Xσ, 0)→ (C, 0), where
Xσ is the 3-dimensional normal toric variety associated to a cone σ, and V (f) ⊃ Sing(X). In
this setting, we adapt the general procedure of [Cur19] to produce an explicit combinatorial
algorithm for the description of the boundary of the Milnor fiber of f , extending the work
of Oka in [Oka87] for non degenerate isolated singularities in C3.

We prove the following

Theorem. Let (X, 0) be the germ at its vertex of a 3-dimensional toric variety defined by a
3-dimensional cone in a weight lattice. Let f : (X, 0)→ (C, 0) be a Newton-nondegenerate
function whose zero locus contains Sing(X). Then the boundary ∂F of its Milnor fiber is a
graph manifold determined by the local Newton polyhedron of f .

The purely combinatorial nature of the description we make of the manifold ∂F opens
the way for the computation of a great number of examples through a future implementation
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in a computer program. But it also calls for more theoretic work, such as for example
extending what is done in [BN07], where the authors do the opposite work, retrieving a
possible Newton polyhedron of a function f : C3 → C having a given graph manifold as
boundary of Milnor fiber, under the hypothesis that this manifold is a rational homology
sphere. Another exploitation of this method would be to answer the ambitious question
of which manifolds can appear as boundaries of Milnor fibers of non degenerate surface
singularities. In this direction, our algorithm already provides the following obstruction, see
Proposition 5.4:

Proposition. The normal form of the plumbing graph of the Milnor fiber of a Newton non
degenerate singularity of complex surface is planar.

The article is organized in the following way:

• In Section 2, we recall the main material of [Cur19],

• in Section 3, we give the essential definitions and results of toric geometry which are
involved in our construction,

• Section 4 is dedicated to the construction of the graph
?
Γ (Ctot), which is one of the

main ingredients for the description of the manifold ∂F in the general case,

• in Section 5, we show why the data of
?
Γ (Ctot) is sufficient to proceed to the rest of

the computation.

I would like to thank Patrick-Popescu Pampu for his support and for sharing his vision
of toric geometry.

I thank also the AGT team in Aix-Marseille Université and the ANR LISA for allowing
me to attend many enriching events.

2 Reminder of the general result

We recall here some of the main material of [Cur19], one can consult this article and the
references therein for more details.

2.1 Milnor fibration on a singular variety

In the sequel, a variety will mean a reduced and equidimensional complex analytic space.
Let (X, 0) be a germ of complex variety of dimension 3, and let f : (X, 0)→ (C, 0) be a

germ of holomorphic function on (X, 0) assumed not to divide zero, that is, not to vanish on
any irreducible component of (X, 0). The function f defines a germ (V (f), 0) of hypersurface
on (X, 0), where V (f) := {x ∈ X, f(x) = 0}. Denote by ΣV (f) the singular locus of V (f),
and by ΣX the one of X.

In the sequel, if (X, 0) is a germ, X will denote a representative of this germ.
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Definition 2.1. We say that a real analytic function ρ : X → R+ defines 0 in X if 0
is isolated in ρ−1(0), i.e. if there is another representative X ′ ⊂ X of (X, 0) such that
ρ−1
|X′(0) = {0}.

Theorem 2.2. (H. Hamm, [Ham71, Satz 1.6], Lê [Lê77, Theorem 1.1])
Given a real analytic function ρ defining 0 in X, and ε > 0, denote Xε := X ∩ ρ−1([0, ε)),
and Sε := X ∩ {ρ = ε}. Let f : (X, 0)→ (C, 0) be a germ of holomorphic function, such that
X \ V (f) is smooth. Then there exists ε0 > 0, such that ∀ 0 < ε 6 ε0, ∃ δε > 0 such that
∀ 0 < δ 6 δε, the following two maps are diffeomorphic smooth fibrations:

• f
|f | : Sε \ V (f)→ S1

• f : ∂ ({|f | = δ} ∩Xε)→ ∂ (Dδ), where Dδ denotes the closed disc of radius δ around
0 in C.

Definition 2.3. The first of the two fibrations above is referred to as the Milnor fibration
of f , and the second one is called the Milnor-Lê fibration. The closure of the fiber of the
Milnor-Lê fibration is called the Milnor fiber of the germ of function f .

Remark 2.4. The Milnor-Lê fibration is also sometimes referred to as the Milnor fibration.
Using transversality arguments, one may show that the diffeomorphism type of the Milnor

fiber does not depend on the chosen representative, so we speak about the Milnor fiber of
the germ of function f ∈ OX,0

2.2 Graph manifolds

We explain here the definition of graph manifold (also called plumbed manifolds) that we
refer to. For details, one can consult the foundational articles [Mum61] and [Wal67], as
well as the article [Neu81] for a description of the so-called plumbing calculus and other
topological considerations on graph manifolds.

Recall that the Euler number of a fibration in S1 over a surface is an integer e that
characterizes entirely the total space of the fibration up to homeomorphism. See [GS99,
Example 4.6.5] for more details.

Definition 2.5. An orientable plumbing graph is a graph Γ with decorations of the
following type:

• Each edge is decorated by a ⊕ or 	 symbol.

• Each vertex v is decorated by an Euler number ev ∈ Z and a genus [gv], gv ∈ N.

Remark 2.6. When representing plumbing graphs, we may omit the decorations ⊕ and [0].
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Definition 2.7. (Graph manifold)
If Γ is an orientable plumbing graph, define the oriented graph manifold MΓ associated

to Γ in the following way: for each vertex v of Γ decorated by ([gv], ev), let Mv be the
S1-fibration of Euler number ev over the closed smooth surface Bv of genus gv. Pick an
orientation of the base and the fibers so that, taken together, they give the orientation of Mv.

Now, let λv be the number of times the vertex v appears as endpoint of an edge. Remove
from Bv disjoint open disks (Di)16i6λv , consequently removing as many open solid tori from
Mv. Each ∂Di is oriented as boundary component of Bv \

⊔
Di. Denote by M b

v the resulting
circle bundle with boundary. Denote ∂M b

v =
⊔
Ti a disjoint union of tori.

For every edge between the vertices v and v′, glue the manifolds M b
v and M b

v′ in the
following way: pick boundary components T = ∂D × S1 in M b

v , T ′ = ∂D′ × S1 in M b
v′ , and

glue T and T ′ according to the matrix ε
[
0 1
1 0

]
, ε being the sign on the edge.

Finally, we use the convention

MΓ1
⊔

Γ2
= MΓ1#MΓ1

2.3 Main aspects of the general result

We recall here the main steps of the general proof, and show how they relate to the different
steps of the computation shown in Sections 4 and 5 in the setting of toric geometry.

Our computation of the boundary ∂F of the Milnor fiber of f involves a second function
g : (X, 0)→ (C, 0), called companion of f , which is generic with respect to f , and can be
chosen to be the restriction to X of a linear form on (CN , 0) ⊃ (X, 0). Using this function,
one defines, for k ∈ 2N, the germ

(Sk, 0) := ({f = |g|k}, 0).

This is a germ of 4-dimensional real analytic variety, and

Proposition 2.8. ([NS12, Proposition 11.3.3], [Cur19, Proposition 4.13])
If k is large enough, (Sk, 0) is an isolated singularity, and its link ∂Sk is diffeomorphic

to the boundary ∂F of the Milnor fiber of f .

From this point, the goal is therefore to describe the manifold ∂Sk. This is done in
analogy with the case of an isolated singularity of complex surface, by exhibiting a resolution
Π: (S̃ , E) → (Sk, 0) of Sk whose exceptional locus is a transversal union of smooth
orientable closed real analytic surfaces in a 4-dimensional oriented real analytic manifold S̃ ,
and using Theorem A.3.

However, the existence of such a resolution is not obvious, in this category we expect the
preimage of the origin to be 3-dimensional. We build an ad hoc resolution in several steps.

5



• The first step is a modification rX : (X̃, r−1
X (0)→ (X, 0) of the ambient germ which is

adapted to the pair (f, g). In particular, we ask the following: denote D := r−1
X (Vf ·g),

and by D0 the union of the irreducible components of D sent on the origin by rX .
Denote by Df,ex the union of the components of D sent on curves in V (f), and by
Ṽ (f) and Ṽ (g) the strict transforms of V (f) and V (g) by rX respectively. Finally,
denote Df := Df,ex ∪ Ṽ (f).

Finally, denote
Ctot := (Df ∩ D0) ∪ (Df ∩ Ṽ (g)).

Then we require that D is a simple normal crossings divisor at Ctot.

Denote
C := (Df ∩ D0) ∪

(
Df,ex ∩ Ṽ (g)

)
,

the union of the compact irreducible components of Ctot.

In these conditions, define S̃k to be the strict tranform of Sk by rX . We obtain a
modification

rS : (S̃k,C )→ (Sk, 0).

In this work, this first modification is the one that we build in Section 4, by refining
the cone σ corresponding to the ambient variety X = Xσ.

• Then one needs to resolve the singularities of S̃k, which are located along C . This
is done by normalizing S̃k, and then comparing locally the normalization S̃k

N
of

S̃k with the normalization of a singularity of complex surface, to resolve the last
singularities. The normalization step corresponds to the demultiplication of vertices
and edges in Subsection 5.1, while the resolution of the remaining isolated singularities
corresponds to the replacement of some edges by bamboos, according to Appendix B.

The local equations of S̃k along points of Ctot are determined by multiplicities of the
pullbacks of f and g to X̃. If Di is an irreducible component of D, denote respectively mi, ni
the multiplicities of f ◦ rX and g ◦ rX on Di. The following decorated graph will contain all
the necessary data for the description of the exceptional locus E of the resolution of Sk:

Definition 2.9. Denote Γ(Ctot) the dual graph of the configuration of complex curves Ctot.

The decorated graph
?
Γ (Ctot) is obtained from Γ(Ctot) in the following way:

• If C is an irreducible component of D1 ∩ D2, where D1 ∈ Df and D2 ∈ D0 ∪ Dg,
decorate vC , the vertex corresponding to C, with the triple (m1;m2, n2), and with its
genus [g], in square brackets. If D1 ∈ Ṽ (f) and D2 ∈ Ṽ (g), then the vertex associated
to the non-compact curve C is an arrowhead.
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• Decorate each edge ep of Γ(Ctot) corresponding to a double point p of Ctot with ⊕ if this
point is on exactly one component of Df , and with 	 if it is on exactly two different
components of Df .

3 Tools of toric geometry

We give in this Section the necessary material to proceed to Section 4 and the construction

of
?
Γ (Ctot). What follows is mainly based on the book [Oka97] of Oka. To go further, one

can consult the books [Oda88] of Oda, or [CLS11] of Cox, Little, Schenk. See also the
foundational article [Oka87].

3.1 Basic definitions

Let us start with some ad hoc definitions.

Definition 3.1. In this work, a 3-dimensional lattice N is a free group of rank 3, that is,
isomorphic to (Z3, 0). Define the integral length of an element u ∈ N as

l(u) = max{n ∈ N, ∃ v ∈ N \ {0} such that u = n · v}.

An element of N is called primitive if its integral length is equal to 1.
A cone σ in N is a subset of NR := N ⊗Z R of the form

〈v1, . . . , vk〉 := {r1 · v1 + · · ·+ rk · vk, r1, . . . , rk ∈ R+} ⊆ NR.

A cone σ is called stronlgy convex if it contains no linear subspace of NR.
A strongly convex cone is called regular if it can be generated by a family of elements of

N that can be completed in a basis of the Z-module N . We denote by τ � σ the fact that a
cone τ is a face of σ, of any dimension.

Definition 3.2. We will usually denote by M := NX = Hom(N,Z) ' Z3 the dual lattice
of N . For σ a convex cone of dimension d in NR, let us define its dual cone

σX := {m ∈MR, ∀ n ∈ σ, 〈m,n〉 > 0} ⊂MR

and its orthogonal

σ⊥ := {m ∈MR,∀ n ∈ σ, 〈m,n〉 = 0} ⊂ σX.

Note that if σ is of dimension 3, σ is regular if and only if σX is regular.

Definition 3.3. If σ is a strongly convex cone in N , define

Xσ := Spec
(
C[σX ∩M ]

)
the 3-dimensional affine variety associated to it.
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Remark 3.4. A family m1, · · · ,mk ∈ M generating the semigroup σX ∩M provides an
embedding Xσ ↪→ Spec (C[χm1 , · · · , χmk ]) = Ckx1,··· ,xk .

Proposition 3.5. Closed points of Xσ correspond to semigroup morphisms (Sσ,+)→ (C, ·).
Denote TN the set of those morphisms whose image is contained in C∗. The set TN is (non
canonically) isomorphic to (C∗)3 and dense in Xσ. This group is called the (algebraic) torus
associated to N . The action of the group TN on itself extends to a continuous action on the
whole variety Xσ, making TN the unique n-dimensional orbit.

On closed points, the action is defined as on TN , by multiplication: if φ ∈ Xσ and
ψ ∈ TN , then φ · ψ ∈ Xσ is defined by

∀ m ∈M, (φ · ψ)(m) = φ(m) · ψ(m).

Proposition 3.6. If τ ⊂ σ, then the inclusion C[σX] ⊂ C[τX] gives rise to a canonical
birational morphism of algebraic varieties Xτ → Xσ. This morphism is an injection if and
only if τ is a face (of any dimension) of σ.

Definition 3.7. A fan F in NR is a finite set of strongly convex cones such that:

1. If σ ∈ F , any face of σ is in F .

2. The intersection of two cones of F is a face of each.

The support |F | of the fan F is the union
⋃
σ∈F

σ of the cones composing it.

Definition 3.8. A fan F in NR defines a toric variety XF in the following way: take the
disjoint union of the Xσ’s, for all σ in F , and, if σ and σ′ are cones of F , glue Xσ and
Xσ′ along Xσ∩σ′ .

XF :=

(⊔
σ∈F

Xσ

)
�
(
Xσ ∼

Xσ∩σ′
Xσ′

)
Proposition 3.9. The actions of the torus TN on each Xσ glue together, in agreement with
the gluing of the Xσ’s, giving rise to a global action of the torus on XF , under which the
torus TN is the unique n-dimensional orbit. Furthermore TN is open and dense in XF .

Proposition 3.10. (Decomposition into orbits.)
Let σ be a strongly convex polyhedral cone of dimension d belonging to a fan F in NR,

where N is n-dimensional. Let τ1, . . . , τk be the faces of σ of codimension 1.
Then

Oσ := Xσ \
⋃
Xτi

8



is an orbit of XF under the action of TN . It is made of all morphisms (σX∩M,+)→ (C,+)
that are different from zero exactly on σ⊥ ∩M .

In other words, a point of Oσ is a maximal ideal of C[σX ∩M ] containing the monomial
χm ∈ C[σX ∩M ] if and only if m /∈ σ⊥ ∩M .

Furthermore, the variety Oσ can be seen as

Oσ = Spec(C[σ⊥ ∩M ])

providing, non-canonically, the isomorphism

Oσ ' (C∗)n−d.

Remark 3.11. In particular, O{0} = TN .
Furthermore, if F = σ, then Oσ is the unique minimal-dimensional orbit in Xσ. If

dim(σ) = 3, it is called the origin of Xσ, and denoted 0Xσ .
With this notation, if σ is of maximal dimension, we get the germ of toric variety

(Xσ, 0Xσ), or (Xσ, 0), whose local ring of germs of holomorphic functions is

OXσ ,0 = C{σX ∩M}.

Considering this for any cone of F will give us a decomposition of XF into orbits under
the action of the torus, a cone of F corresponding to an orbit:

XF =
⊔
σ∈F

Oσ.

Proposition 3.12. (Closure of an orbit.)
The closure in XF of an orbit corresponding to a cone τ ∈ F is made of the union of

the orbits corresponding to cones of F having τ as a face:

Oτ =
⋃
τ�σ

Oσ.

The following proposition is essential for the sequel and shows how one can read on a
fan the singularities of the associated variety.

Proposition 3.13. The variety XF is smooth at a point p ∈ Oσ if and only if σ is regular.

One can encode certain modifications of a given variety XF through a refinement of F :

Definition 3.14. A refinement of a fan F in NR is another fan F ′ in NR such that:

|F | = |F ′| and ∀ σ′ ∈ F ′, ∃ σ ∈ F such that σ′ ⊂ σ.

A refinement of a cone is a refinement of the fan formed by its faces.
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The following definition is a matter of vocabulary and is introduced for pure reasons of
convenience in the exposition made in Section 4.

Definition 3.15. Let F ′ be a refinement of a fan F . If τ is a cone of F ′, we call minimal
containing cone of τ in F the minimal-dimensional cone of F containing τ .

If τ, σ are two cones such that τ ⊂ σ, the minimal containing face of τ in σ is the
minimal-dimensional face of σ containing τ . A cone τ is said to be in the interior of σ if its
minimal containing face in σ is σ itself.

Definition 3.16. Let F be a fan in N , and F ′ a refinement of F .
The toric morphism ΠF ′,F : XF ′ → XF associated to this refinement is obtained by

gluing the morphisms given by the inclusions of cones of F ′ in the cones of F , defined in
Proposition 3.6.

Proposition 3.17. The morphism ΠF ′,F is a modification of XF . It has the following
combinatorial property: if σ′ ∈ F ′, let σ be the minimal containing cone of σ′ in F . Then
ΠF ′,F (Oσ′) ⊂ Oσ.

The critical locus EF ′,F of ΠF ′,F is exactly the union⊔
τ∈F ′,τ /∈F

Oτ ∈ XF ′

of orbits of XF ′ corresponding to new cones, and the discriminant locus ∆(ΠF ′,F ) is⊔
τ∈F ,τ /∈F ′

Oτ ∈ XF ,

the union of orbits of XF corresponding to cones that have been subdivided.

3.2 modification associated to a germ of function

Let (Xσ, 0) be the germ of affine normal variety associated to a 3-dimensional strongly
convex cone.

Definition 3.18. • Let f =
∑

mi∈σX∩M
aiχ

mi ∈ C{σX ∩ M}. The support of f is

defined as Supp(f) :=
⋃
ai 6=0

{mi} ⊂ σX ∩M .

• The Local Newton polyhedron of f at the origin of Xσ is defined as

LNP(f) := Conv
(
Supp(f) + σX

)
where “+′′ denotes the Minkowski sum in M .
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This definition of Newton polyhedron for general germs may be found in [Ste83, Definition
5], or [PPS13, Definition 8.7].

The following lemma is a direct consequence of the definitions, and allows one to easily
read some parts of the zero locus of a function defined on a germ of toric variety.

Lemma 3.19. The ideal I(τ) ⊂ C{σX ∩M} of functions cancelling on the orbit Oτ of Xσ

is made of the functions f ∈ C{σX ∩M} such that Supp(f) ∩ τ⊥ = ∅.

Definition 3.20. Let v ∈ σ, and f ∈ C{σX ∩M}. Define the height of LNP(f) in the
direction v to be

hv(f) := min
m∈LNP(f)

〈m, v〉 ∈ R+.

Definition 3.21. Let σ be a cone in N , and f ∈ C{σX ∩M}. Let ∆ be a face of LNP(f)
of dimension d. Then the set

τ∆ := {v ∈ σ,∆v = ∆} = {v ∈ σ/∀ m ∈ ∆, 〈m, v〉 = hv(f)}

is a cone of codimension d contained in σ. The set

Ff := {τ∆,∆ ⊂ LNP(f)}

is the fan associated to f .
The morphism ΠFf : XFf → Xσ coming from the refinement of σ is called the modifi-

cation of Xσ associated to f .

Let us describe the behaviour of the strict tranform Ṽ (f) of V (f) under this modification,
and more generally, under any toric modification factorizing through ΠFf .

Let F be a refinement of Ff , and τ ⊂ σ a cone of F . Denote

ΠF : (XF , EF )→ (Xσ, 0)

the modification associated to F , and f̃ = f ◦ΠF the pullback of f by this modification.
Let

∆τ := {m ∈ LNP(f), ∀ v ∈ τ, 〈m, v〉 = hv(f)} .

Note that we may have τ 6= τ ′ and still ∆τ = ∆τ ′ . However, the assumption that F
is a refinement of Ff ensures that this definition makes sense. In fact, if γ is the minimal
containing cone of τ in Ff , then ∆τ = ∆γ .

Note also that dim(∆τ ) 6 codim(τ), and that τ � σ ⇒ ∆σ ⊂ ∆τ .
We have a first lemma, showing how one can read from LNP(f) the multiplicities of f̃

along some divisors in XF :

Lemma 3.22. If τ = 〈v〉R+ for some primitive vector v in N , then the multiplicity of f̃
along Oτ is equal to hv(f).
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Definition 3.23. For a face ∆ of LNP(f), of any dimension, we define f∆, f trun-
cated relatively to the face ∆, as the function obtained by keeping only the terms of f
corresponding to points of this face:

f∆ :=
∑
mi∈∆

aiχ
mi .

In some sense, which is made more precise for example in [Oka97], f∆τ is the equation
of the intersection of Ṽ (f) with the orbit Oτ of XF .

We therefore have the following:

Lemma 3.24. If F is a refinement of Ff , and τ ∈ F , then

Ṽ (f) ∩Oτ 6= ∅ iff dim ∆τ > 1.

The following definitions describe a condition in which the strict tranform Ṽ (f) of V (f)
behaves in a nice way with respect to the modification associated to F .

Definition 3.25. A function f ∈ C{σX ∩M} is called suitable if V (f) does not contain
any 2-dimensional orbit of Xσ, or equivalently, if Supp(f) has points in each 2-dimensional
face of σX.

Definition 3.26. • A suitable germ of function f ∈ C{σX ∩M} is said to be nonde-
generate relatively to a compact face ∆ ⊂ LNP(f) if and only if V (f∆) is smooth
in (C∗)n.

• A suitable germ of function is said to be Newton-nondegenerate, or NND if it is
nondegenerate relatively to every compact face of its local Newton polyhedron.

Proposition 3.27. Let f ∈ C{σX ∩M} be a NND germ of analytic function on (Xσ, 0),
and F a refinement of Ff , such that XF is smooth along Oτ and ∆τ is compact. Then the
intersection Ṽ (f) ∩ Oτ is smooth, and at any point p of this intersection,

(
Ṽ (f), p

)
is a

germ of smooth hypersurface of XF intersecting Oτ transversally.

Furthermore, the following will be heavily used in Section 4:

Proposition 3.28. Let f be a Newton-nondegenerate function on Xσ, and F be a refinement
of Ff . Let τ be a cone of F , such that ∆τ is compact. Then,

• If codim(τ) = 1, denote l(∆τ ) the integral length of this face in M . Then

Card
(
Ṽ (f) ∩Oτ

)
= l(∆τ ).
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• If codim(τ) = 2, denote i(∆τ ) the number of points of M in the interior of ∆τ . Then

C(τ) := Ṽ (f) ∩Oτ

is a smooth curve. Furthermore, if dim(∆τ ) = 2, this curve is irreducible and

g(C(τ)) = i(∆τ ).

If dim(∆τ ) = 1, C(τ) is a disjoint union of l(∆τ ) smooth curves of genus 0.

Remark 3.29. Let us remind that, in both cases, if dim(∆τ ) = 0, then Ṽ (f) ∩Oτ = ∅.

Let us conclude this section with a lemma giving a precise meaning to the genericity of
Newton-nondegenerate functions.

Lemma 3.30. Let f be a holomorphic function on Xσ. Then in the space of coefficients
of all those functions h such that LNP(h) = LNP(f), those which are non-degenerate are
Zariski-dense.

Finally, we will need a corollary of the Bernstein-Koushnirenko-Khovanskii Theorem
(see [CLO98, Theorem 7.5.4]), in dimension 2. We will need the following notations:

If f ∈ C[M ] for some lattice M of dimension 2, denote P (f) := Conv(Supp(f)). Denote
by V (P ) the lattice volume of a polyhedron P , for which a simplex is of volume 1. Finally,
if P1, P2 are two polyhedra in M , denote

V (P1, P2) =
V ol(P1 + P2)− V ol(P1)− V ol(P2)

2

called the mixed volume of P1 and P2.

Lemma 3.31. LetM be a 2-dimensional lattice, and let f ∈ C[M ] be a Newton-nondegenerate
function. Denote P1 := P (f). Then for any convex polyhedron P2 with vertices in M , a
generic choice of coefficients for the elements of P2 ∩M will provide a function g such that
P (g) = P2 and, denoting P = P1 + P2, the compactifications Ṽ (f) and Ṽ (g) of V (f) and
V (g) in XFP intersect transversally only on O0, in V (P1, P2) points.

4 Construction of
?

Γ (Ctot)

Let (X, 0) = (Xσ, 0Xσ) be the germ of normal 3-dimensional toric variety associated to a
rational strongly conve cone σ ⊂MR, where M is a 3-dimensional lattice. Let σsing denote
the union of non regular faces of σ, i.e. the union of faces τ of σ corresponding to orbits Oτ
along which X is singular.

Let f : (X, 0)→ (C, 0) be a holomorphic function such that Supp(f) ∩ σsing = ∅. This
guarantees that V (f) := {f = 0} ⊃ Sing(X), and therefore that f is a smoothing of V (f).

13



We also assume that f is a Newton non degenerate function, in particular it is suitable, see
Definitions 3.25 and 3.26.

In this section, we explain how to compute the decorated graph
?
Γ (Ctot) of Definition

2.9 from the cone σ and the Newton polyhedron LNP (f) of f .
We can already make the following remark:

Remark 4.1. Let τ be a face of σ of dimension 2. Then V (f) ⊃ Oτ iff there is a 1-
dimensional cone of Ff whose minimal containg face in σ is τ .

In particular, if τ is not regular, then the condition V (f) ⊃ Sing(X) implies that there
is a cone of dimension 1 in Ff whose minimal containing cone is τ .

4.1 Universal companion polyhedron

Although there is no chance to describe a function g that will be a companion of every
Newton-nondegenerate function f on X, there exists an object which will be compatible
with every function f .

Definition 4.2. For any sequence G = (m1, · · · ,mk) generating the semigroup σX ∩M ,
denote

P (G) := Conv

 ⋃
16i6k

mi + σX

 .

In the sequel, we fix such a family G.
By Remark 3.4, the sequence G leads to an embedding (X, 0) ↪→ Ckx1,··· ,xk . From this

viewpoint, P (G) is in fact the local Newton polyhedron of the restriction to X of a generic
linear form of Ckx1,··· ,xk .

Now, the fact that the restriction of a generic linear form is a companion of f implies:

Lemma 4.3. For any germ of function f on (X, 0), there is a function g that is a companion
of f and such that

LNP (g) = P (G).

Remark 4.4. One can note that the Newton-nondegeneracy of f is not required for this
lemma. However, for what follows, the hypothesis of Newton-nondegeneracy is central.

From now on, fix g : (X, 0)→ (C, 0) a Newton non degenerate companion of f such that
LNP (g) = P (G).

Remark 4.1 has the following consequence for g:

Remark 4.5. There is no 1-dimensional cone of Fg whose minimal containing face in σ is
2-dimensional.
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In the next subsections, we construct a fan F̃ refining σ and such that the associated
modification

r̃ := ΠF̃ : XF̃ → X

is adapted to the pair (f, g). We will follow this construction on the following example:

Example 4.6. Denote M := Z3, and let

u1 =

 0
1
2

 , u2 =

 0
1
0

 , u3 =

 1
1
−1

 , u4 =

 1
0
0


be vectors in R3, and σ = 〈u1, u2, u3, u4〉R+.

Let X := Xσ be the 3-dimensional toric variety corresponding to σ. The cone σ is not
simplicial, hence X is singular at the origin. Furthermore, the face τ1,2 := 〈u1, u2〉R+ of σ
is singular, hence X is singular along 0τ1,2 .

The cone σX is generated by the vectors U =

 1
0
1

 , V =

 0
1
1

 ,W =

 1
0
0

 , X = 0
2
−1

 . The face of σX corresponding to the face τ1,2 of σ is the ray generated by W .

Furthermore, the semigroup Sσ = σX ∩M is generated by U, V,W,X and Y =

 0
1
0

. The

relations between these vectors provide the description

Xσ = Spec
(
C[U, V,W,X, Y ]�(Y 3 −XV,UX −WY 2, V W − UY )

)
Figure 1 shows the local Newton polyhedron of the restriction g to X of a generic linear

form in C5
U,V,W,X,Y . Full lines represent the cone σ, while dashed lines represent the axes of

coordinates, left for clarity.
Consider the function f ∈ C[σX ∩M ] given by

f = χ

(
1
1
2

)
+ χ

(
2
0
1

)
+ χ

(
0
2
0

)
+ χ

(
0
4
−2

)
= UV + UW + Y 2 +X2.

Note that V (f) ⊃ Sing(X), since f admits no multiple of W in its support. Figure 2
shows the local Newton polyhedron of f , where we kept again the coordinate axes and the
cone σX. Full round marks represent the elements of Supp(f), while empty square marks
represent the other points of M in the compact faces of LNP (f).
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Figure 1: LNP (g).

4.2 The modification associated to the polyhedra

Denote
?
F := Ff ·g the fan associated to the germ f · g. This fan is the minimal refinement

of both Ff and Fg. Denote
?
X = X ?

F
and

?
r := ΠFf ·g :

?
X → X

the modification associated to this refinement.
Note that we have the following commutative diagram:

X

XFf XFg

?
X

ΠFf ΠFg

Π ?
F ,Ff

Π ?
F ,Fg

?
r

Denote
?
D :=

?
r
−1

(Vf ·g), and in the same way,
?

V (f),
?

V (g) the strict transforms of

V (f), V (g) by ?
r. Denote also

?
Df,ex the union of components of

?
D whose images by ?

r are

curves of V (f), and
?
D0 :=

?
r
−1

(0).
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Discussion 4.7. (Reading rules.) The irreducible components of
?
D0 are the closures of

orbits Oτ of X ?
F

corresponding to 1-dimensional cones τ of
?
F whose minimal containing

face in σ is σ itself. Such components are intersected by
?

V (f) (resp.
?

V (g)) if and only if
the minimal containing cone of τ in Ff (resp. Fg) is of dimension 1 or 2.

The components of
?

Df,ex are the closures of orbits Oτ of X ?
F

corresponding to 1-

dimensional cones τ of
?
F whose minimal containing face in σ is of dimension 2.

Definition 4.8. We call cutting cone of a fan F with support σ any 2-dimensional cone
γ of F with 1-dimensional faces τ1, τ2 so that

1. the minimal containing face of τ1 in σ is σ,

2. and the minimal containing cone of τ2 is 2-dimensional.

If γ is a cutting cone of
?
F , then Oγ is an irreducible curve of

?
Df,ex∩

?
D0. The denomination

cutting cone is chosen in reference to the so called “cutting edges” introduced in [NS12,
Definition 7.2.2].

Example 4.9. The fact that the fan Ff ·g is the minimal refinement of both Ff and Fg
implies that it can be computed by “superposing” the two fans Ff and Fg, as in figure 3.

17



This figure is to be understood as the cone over the plane figure. In this figure, thick lines
indicate the 2-dimensional cones which are contained in 2-dimensional cones of Ff , dashed
lines indicate the 2-dimensional cones which are contained in 2-dimensional cones of Fg, so
the thick dashed line indicates a 2-dimensional cone which is in both.

Hollow round marks correspond to 2-dimensional orbits of X ?
F

whose closures are irre-

ducible components of
?
D0 intersected by

?

V (f).
Hollow square marks correspond to 2-dimensional orbits of X ?

F
whose closures are

irreducible components of
?

Df,ex. Remarks 4.1 and 4.5 imply in fact that any 1-dimensional
cone whose minimal containing face in σ is 2-dimensional correpsonds to a component of
?

Df,ex.
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Figure 3: The fan
?
F .

At this step, we do not yet have a modification of Xσ respecting all the required axioms.

We still need to refine some cones of
?
F .

4.3 First refinement of
?

F
We obtain a new fan F̂ by, first, refining regularly the 2-dimensional cones which are contained
in 2-dimensional cones of Ff . This is done in a canonical way, see for example [Oka87] or
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[PP07]. These cones correspond to 1-dimensional orbits of X ?
F

which are intersected by
?

V (f). Then, one needs to add new 2-dimensional cones in a non-canonical way in order to
get a collection of cones respecting the definition of a fan, see Definition 3.7. Furthermore,
for convenience, we require that this last addition is made without introducing new cutting
cones. This is always possible.

Denote by F̂ the fan obtained at the end of this process.

Example 4.10. In our example, the 2-dimensional cones of
?
F in question are already

regular, so the fan F̂ is the same as
?
F .

By analogy with the previous subsection, we introduce the notations D̂0, V̂ (f), V̂ (g), D̂f,ex,
and r̂ : XF̂ → Xσ.

4.4 The fan F̃
Here again, the components of D̂0, V̂ (f), V̂ (g), D̂f,ex can be read on F̂ as in Discussion 4.7,
and if γ is a cutting cone of F̂ , then Oγ is an irreducible curve of D̂f,ex ∩ D̂0. This is what
motivates the final refinement of F̂ .

Denote F̃ a fan obtained by refining the 3-dimensional cones of F̂ having a cutting cone
as a face. These cones correspond to points of XF̂ which are on curves of D̂f,ex∩ D̂0, whence
the need for XF̃ to be smooth here.

There is no canonical way to refine regularly a 3-dimensional cone, but a first necessary
step is the refining of its 2-dimensional faces. For a description of the general process, see
[Oka87].

Our construction ensures the following

Lemma 4.11. The modification rX := ΠF̃ : X̃ := XF̃ → X is a modification of X adapted
to the pair (f, g).

Example 4.12. Figure 4 shows a possible F̃ for our example. The new cutting cones are
represented by continuous thin lines. We erased one end of the corresponding segments on
the drawing to reflect the fact that the corresponding curves do not intersect, as will be
explained in the next subsection. The other new 2-dimensional cone is represented with a
dotted line. Other codes are the same as previously.

4.5 Reading
?

Γ (Ctot)

Let us explain now how the decorated configuration Ctot can be read from the fan F̃ , together
with LNP(f) and LNP(g).
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Figure 4: The fan F̃ .

Recall that Ctot = (Df ∩ D0) ∪
(
Df ∩ Ṽ (g)

)
can be decomposed as

(Df,ex ∩ D0) ∪
(
Ṽ (f) ∩ D0

)
∪
(
Ṽ (f) ∩ Ṽ (g)

)
∪
(
Df,ex ∩ Ṽ (g)

)
.

Since Fg contains no cutting cone, the last intersection is empty. There are therefore
three types of curves to be read.

We introduce the following notations:

Definition 4.13. For τ ∈ F̃ , denote repectively ∆τ (f) and ∆τ (g) the corresponding faces
of LNP (f) and LNP (g).

To make short, if the dimension of those faces is 1 or less, denote

lτ (f) := l(∆τ (f)) and lτ (g) := l(∆τ (g))

with the convention that the length of a 0-dimensional face is 0.
If dim(∆τ (f)) 6 2, denote iτ the number of interior points of ∆τ (f), with the convention

that the number of interior points of a face of dimension 0 or 1 is 0.
Finally, a cone τ in the interior of σ is called pertinent if dim(∆τ (f)) > 1, that is, if

Ṽ (f) ∩Oτ 6= ∅.

Discussion 4.14. (Two types of compact curves.)
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1. The first type is made of curves in Df,ex ∩D0, called exceptional curves Such
curves are of the form Oγ, where γ is a cutting cone of F̃ .
Two such curves intersect if and only if the corresponding cones are faces of a same
3-dimensional cone of F̃ . The nature of their intersection point can be read on the
fan: it is ⊕ if and only if they are in the same component of Df,ex.
The multiplicity decorations are obtained in the following way: let γ be a cutting
cone, and τ1 ⊂

◦
σ, τ2 be its 1-dimensional faces. Then Oγ has multiplicity decoration

(hτ1(f);hτ2(f), hτ2(g)). Each exceptional curve is rational.

2. The second type is made of curves of Ṽ (f)∩D0, called strict tranform curves.
They correspond to 1-dimensional pertinent cones τ of F̃ .

Furthermore, in these conditions, the intersection Oτ ∩ Ṽ (f) is

• an irreducible curve Cτ of genus iτ if dim(∆τ (f)) = 2.

• a disjoint union Cτ = Cτ
1⊔ · · ·⊔Cτ lτ (f) of lτ (f) irreducible rational curves if

dim(∆τ (f)) = 1.

Each connected component of Cτ has multiplicity decoration (1;hτ (f), hτ (g)).

Furthermore, let τ1, τ2 be two 1-dimensional such cones. The possibly disconnected
curves Cτ1 and Cτ2 intersect if and only if τ1 and τ2 are faces of the same 2-dimensional
pertinent cone γ. In these conditions,

Card(Cτ1 ∩ Cτ2) = lγ(f)

and these intersection points are all of type ⊕.
In this situation, if dim(τ1) = 1, then lτ1(f) = lγ(f), and each connected component
of Cτ1 intersects Cτ2 in exactly one point.

Lemma 4.15. (Intersection of curves of the first and of the second type.)
Let C1 = Oγ be an exceptional curve, and C2 = Cτ be a strict transform curve. Then

C1 ∩ C2 6= ∅ ⇔ τ ≺ γ and γ is pertinent.

In these conditions,
Card(C1 ∩ C2) = lγ(f)

and each intersection point is of type 	.

Now, one needs to add to the picture the non compact curves of the intersection
Ṽ (f) ∩ Ṽ (g).

Pick generic coefficients of g so that for any 2-dimensional orbit Oτ of X̃ intersected by
Ṽ (f), the truncations f

∆τ (f)
and g

∆τ (g)
verify the hypothesis of Lemma 3.31.
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Definition 4.16. Denote V (τ) the mixed 2-dimensional volume of ∆τ (f) and ∆τ (g).

With this choice of g, we can access the rest of the configuration Ctot. Indeed,

Lemma 4.17. (Adding non-compact curves)
Let Cτ be a strict transform curve of C , possibly disconnected. Then

Card
(
Cτ ∩ Ṽ (g)

)
= V (τ),

each of these intersection points being an intersection point of Cτ with a curve in Ṽ (f)∩Ṽ (g).
Furthermore, if dim(∆τ (f)) = 1, ∃ k ∈ N such that V (τ) = k · lτ (f), and each connected

component of Cτ is intersected in k points.

Each of these points is of type ⊕, and, in
?
Γ (Ctot), the new curves are represented by

arrowheads decorated with (1; 0, 1).

Example 4.18. Figure 5 shows the graph
?
Γ (Ctot) of our example. The representation of

the graph reflects the disposition of the fan F̃ of figure 4. Following the classical convention,
we do not indicate the decorations ⊕.

(1; 4; 1)

(4; 4; 1)

(1; 2; 1)

(1; 2; 1)

(1; 2; 1)

(2; 2; 1)

(1; 2; 1)

(1; 0; 1)

(1; 0; 1)

[1]

(1; 0; 1)

⊖

⊖⊖

f4×

(2; 4; 1)

⊖

⊖ (1; 4; 1)

(1; 2; 1)

(1; 2; 1)

⊖

Figure 5: The graph
?
Γ (Ctot).

5 Final step of the computation and sufficiency of Ctot

In order to get a plumbing graph for the boundary of the Milnor fiber of f , one needs to

modify the graph
?
Γ (Ctot). Unlike in the general case, the necessary data for this operation
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is entirely encoded in
?
Γ (Ctot). Indeed, one has the following direct consequences of our

construction:

Lemma 5.1. 1. Every non-rational curve of Ctot has a multiplicity decoration of the
form (1;m2, n2).

2. Each cycle in the graph
?
Γ (Ctot) contains a vertex having a multiplicity decoration of

the form (1;m2, n2).

In the language developped in [Cur19], point 1 implies that the data of the so-called

switches is unnecessary, and point 2 implies that a covering data of
?
Γ (Ctot) determines a

unique graph, see [Né00, Theorem 1.20].
As in [NS12, 10.2] (see also [Cur19] for more details), a plumbing graph for the boundary

∂F of the Milnor fiber of f is obtained from
?
Γ (Ctot) by the following two steps:

5.1 The multiplicity graph Γµ(Etot)

Denote Γµ(Etot) the graph obtained from
?
Γ (Ctot) in the following way:

1. Let vC be a vertex of
?
Γ (Ctot) corresponding to a curve C of genus g, such that the

union of vC and the adjacent vertices is of the form

(m1;ms, ns)

[gs]

(ms+t;m2, n2)

[gs+t]

(m1;m2, n2)

[g]

(m1;m3, n3)

[g3]

(ms+1;m2, n2)

[gs+1]
...

...⊕
νs

⊕
ν3

	
νs+t

	
νs+1

where νi indicates that an edge is repeated νi times. Then replace vC by the union of
nC := gcd(m1, · · · ,ms+t) vertices, each one of them decorated by the same genus gC
verifying

nC · (2− 2 · gC) =

(
2− 2g −

s+t∑
i=3

νi

)
· gcd(m1,m2) +

s+t∑
i=3

gcd(m1,m2,mi) · νi,

and a mutliplicity decoration given by µC :=
m2 · n1

gcd(m1,m2)
.

2. • An edge of type ⊕, of the form
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(m2;m1, n1) (m2;m3, n3)

[χ] [χ′]

vC vC′
⊕

is replaced by d := gcd(m1,m2,m3) identical strings of type Str⊕
(
m2
d ; m1

d ,
m3
d |0;n1, n3

)
.

• An edge of type 	, of the form

(m2;m1, n1) (m3;m1, n1)

[χ] [χ′]

vC vC′
	

is replaced by d := gcd(m1,m2,m3) identical strings of type Str	
(
m1
d ; m2

d ,
m3
d |n1; 0, 0

)
.

The notations Str are explained in Appendix B. In both cases, the number d of
new edges is a multiple of the number of new vertices, and the edges are distributed
uniformly on the vertices.

Example 5.2. Figure 6 shows the graph Γµ(Etot) of our example. Here, the different
bamboos are simple and do not bring any new vertices, but the upper vertex gave rise to two
vertices, and the edge ending at this vertex has also produced two edges. The multiplicity
decorations on Γµ(Etot) correspond to the multiplicities of the pullback of the function g on
each irreducible surface of (g ◦Π)−1(0).

5.2 The plumbing graph Γ(∂F )

A plumbing graph Γ(∂F ) is obtained from Γµ(Etot) by replacing the multiplicity decorations
(µi) by the self-intersections ki of the components of the preimage of the origin by Π in S̃ ,
erasing the arrowhead vertices, and keeping the genus and edge decorations.

Let v be a vertex of Γµ(Etot), with multiplicity µ. Let v1, · · · , vn be the adjacent vertices
(including arrowheads), with respective multiplicities µ1, · · · , µn, and denote ε1, · · · , εn the
decorations of the corresponding edges. Then, following Lemma A.8, the self-intersection
decoration k of v in Γ(∂F ) is obtained through the equality

k · µ =

n∑
i=1

εi · µi.

Example 5.3. Figure 7 shows the plumbing graph for ∂F obtained after applying the step
described previously.

Figure 8 shows the normal form of this graph. Note that, unlike in the case of isolated
singularities, this graph does not have a negative definite incidence matrix.
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Figure 6: The graph Γµ(Etot).
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Figure 7: The graph Γ(∂F ).
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Figure 8: The normal form of Γ(∂F ).

The plumbing calculus does not preserve planarity. However, the process of normalization
of a given plumbing graph preserves this property. Therefore, a first consequence of our
method of computation is the following:

Proposition 5.4. The normal form of the plumbing graph of the Milnor fiber of a Newton
non degenerate singularity of complex surface is planar.

Appendices

A Tubular neighbourhoods and graph manifolds

Graph manifolds can appear naturally as boundaries of neigbourhoods of complex curves in
smooth complex surfaces, see [Mum61]. In our context, they will appear as boundaries of
neighbourhoods of real surfaces inside a smooth 4-manifold.

Definition A.1. (Simple configuration of surfaces, and its plumbing dual graphs.)
Let S be a 4-dimensional oriented real analytic manifold. A simple configuration of

compact real analytic surfaces in S is a subset E ⊂ S such that:

1. E =
⋃

finite

Ei, such that each Ei is an oriented closed smooth real analytic surface.

2. For all i 6= j 6= k 6= i, the intersection Ei ∩ Ej ∩ Ek is empty.

3. For all i 6= j, the intersection Ei ∩Ej is either empty or transverse. In particular, it
is a finite union of points.

In this setting, one defines a plumbing dual graph ΓS (E) of E in S by decorating its
dual graph in the following way:

1. Decorate each vertex vEi by the self-intersection ei of Ei in S and by the genus [gi]
of the surface Ei.
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2. Decorate each edge of Γ(E) corresponding to the intersection point p of Ei ∩ Ej, by ⊕
if the orientation of Ei followed by the orientation of Ej is equal to the orientation of
S at p, and by 	 otherwise.

Definition A.2. (See [Dur83].)
Let E be a simple configuration of compact orientable real analytic surfaces in an oriented

4-dimensional real analytic manifold S . In this context, we call rug function any real
analytic proper function ρ : S → R+ such that ρ−1(0) = E.

Theorem A.3. Let E be a simple configuration of compact orientable real analytic surfaces
in an oriented 4-dimensional real analytic manifold S , that admits a rug function ρ as
in Definition A.2. Then, for ε > 0 small enough, the boundary of the oriented 4-manifold
{ρ 6 ε} is orientation-preserving homeomorphic to the graph manifold associated to the
graph ΓS (E).

Definition A.4. In this setting, the manifold {ρ 6 ε} is called a tubular neighbourhood
of E.

About the proof of Theorem A.3. This theorem can be seen as an extension of what is done
in [Mum61], in the case of a configuration of complex analytic curves in a smooth complex
surface.

In our case, observe first that we can extend the definition of rug functions to semi-
analytic functions ρ, and still have a unique homeomorphism type for the boundary of
the neighbourhood {ρ 6 ε} of E for ε > 0 small enough, following the proof of [Dur83,
Proposition 3.5]. Now, one can build by hand a semi-analytic neighbourhood whose boundary
is homeomorphic to the manifold ΓS (E).

This is done by building a rug function for each irreducible component Ei of E, providing
a tubular neighbourhood Ti of each Ei whose boundary is an S1-bundle of Euler class ei over
Ei. One then plumbs those bundles using appropriate normalizations of the rug functions,
building a semi-analytic neighbourhood of E which is homeomorphic to the desired graph
manifold.

Remark A.5. Note that the decorations on the edges of the graph ΓS (E) depend on the
orientations of the surfaces Ei. However, if the surfaces Ei are only orientable, the different
possible plumbing dual graphs still encode the same graph manifold, see move [R0] of the
plumbing calculus in [Neu81].

We end this section with a tool that can be used to compute the self-intersections of the
irreducible components of E:

Definition A.6. Let E =
⋃

finite

Ei be a simple configuration of compact oriented real analytic

surfaces in a 4-dimensional real analytic manifold S . A real analytic function g : S → C is
called adapted to E if
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1. Etot := g−1(0) is a simple configuration of oriented, not necessarily compact, real
analytic surfaces, such that Etot ⊃ E.

2. (a) For any component Ei of Etot, ∀ p ∈ Ei \
⋃
j 6=i

Ej, there is a neighbourhood Up of

p in S and complex coordinates (xp, yp) on Up such that Up ∩ Ei = {xp = 0}
and ni ∈ N∗ such that

g = xnip · ϕ

where ϕ : Up → C is a unit at p.

(b) For any components Ei of E, Ej of Etot, ∀ P ∈ Ei∩Ej, there is a neighbourhood
Up of p in S and complex coordinates (xp, yp) on Up such that Up∩Ei = {xp = 0},
Up ∩ Ek = {yp = 0}, and ni, nk ∈ N∗ such that

g = xnip y
nj
p · ϕ

where ϕ : Up → C is a unit at p.

Definition A.7. In this setting, the integer ni of point 2a of Definition A.6, independent
of the point p ∈ Ei \

⋃
j 6=i

Ej, is called the multiplicity of g on Ei, denoted mEi(g).

Lemma A.8. (Computing self-intersections.)
Let S , E, g, Etot be as in Definition A.6. Let E(1) be an irreducible component of E.

Then the self-intersection e(1) of the surface E(1) in S verifies the following condition: let
p1, · · · , pn be the intersection points of E(1) with other components of Etot, pj ∈ Ej ∩ E(1),
where the same component may appear several times. Then

n(1) · e(1) =
n∑
i=1

εi · ni

where εi ∈ {−1,+1} refers to the sign associated to the intersection pi in the following sense:
if p ∈ Ei ∩ Ej, associate +1 to p if and only if the combination of the orientations of Ei
and Ej at p provides the ambient orientation of S .

Proof. The proof follows the standard argument in the holomorphic category. The difference
of the two members of the equation is the intersection number of E(1) with the cycle defined
by g = 0. This cycle is homologous with that defined by a nearby level of g, which does not
meet E(1) any more. The intersection number being invariant by homology, one gets the
desired result.

In order to make this argument rigorous, one has to work in convenient tubular neigh-
borhoods of E and to look at the cycles defined by the levels of g in the homology of the
tube relative to the boundary.
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B Hirzebruch-Jung chains

We introduce here the Hirzebruch-Jung chains (or strings) that occur in the final step of
our resolution of (S̃k, 0). For more details, one can consult [BPVdV84, III.5], [NS12, 4.3] or
[PP07].

For a, b, c ∈ N, (a, b, c) denotes gcd(a, b, c). Suppose that d := (a, b, c) = 1. In these
conditions, the normal surface (V, p) :=

(
{xa = ybzc}, 0

)N is an isolated singularity of
complex surface. We describe here a graph of resolution of this singularity, decorated
with the self-intersections of the irreducible components of the exceptional divisor and the
multiplicities of the pullback of the function g(x, y, z) = xn1yn2zn3 .

Denote δ :=
ad

(a, b)(a, c)
, and by α the be the unique integer in [0, δ − 1] such that

ad | αc(a, b) + b(a, c).

Let
δ

α
= k1 −

1

k2 −
1

· · · −
1

kl

be the negative fraction expansion of δ/α, ki > 2, ki ∈ N.

Define µl+1 :=
b · n1 + a · n2

(a, b)
, µ0 :=

c · n1 + a · n3

(a, c)
, µ1 :=

α · µ0 + µl+1

δ
and let µ2, · · · , µl

be defined by the relation

∀ 1 6 i 6 l, µi+1 = µi−1 − ki · µi.

Then the graph of Figure 9 is a graph of resolution of (V, 0). Left and right-hand
arrows represent, respectively, the pullbacks of the z and the y-axes. The numbers between
parentheses are the multplicities of the pullback of the function g(x, y, z) = xn1yn2zn3 on
the irreducible components of its total transform.

: : :

(

c·n1+a·n3
(a;c)

)

(

b·n1+a·n2
(a;b) )

)

(µ1)(µl) (µ2)(µ3) (µ0) =(µl+1) =

−kl −k3 −k2 −k1

Figure 9: The string Str(a; b, c|n1;n2, n3).

We denote by Str⊕(a; b, c|n1;n2, n3), resp. Str	(a; b, c|n1;n2, n3) the chain of Figure 9
with each edge decorated by ⊕, resp. 	, and the self-intersection decorations removed.
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