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Abstract :

To cope with the biotic and abiotic stresses experienced within their environment, marine macroalgae
have developed certain defence mechanisms including the synthesis of photo-protective molecules
against light and particularly harmful UV radiation. The aim of this study was to screen selected red
algae, a highly diverse phylogenetic group, for the production of photo-protective molecules. The
pigment content and composition (i.e. chlorophyll-a, phycobiliproteins and carotenoids) and the
composition of mycosporine-like amino acids (MAAs) were studied in 40 species of red macroalgae
collected in Brittany (France), at two distinct periods (i.e. February and July 2017). A high inter-specific
variability was demonstrated in terms of pigment content and MAA composition. Twenty-three potential
MAAs were detected by HPLC, and six were identified by LC-MS (i.e. shinorine, palythine, asterina-330,
porphyra-334, usurijene and palythene). This is the first study to report on the composition of pigments
and MAAs in a diverse group of red seaweeds from Brittany, including some species for which the MAA
composition has never been studied before. Nevertheless, the results suggested that some species of
red algae are more likely to cope with high levels of light radiation since those species such as
Bostrychia scorpioides, Porphyra dioica, Gracilaria vermiculophylla and Vertebrata lanosa are living in
environments exposed to higher levels of irradiation, and had various MAAs in addition to their photo-
protective pigments.
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Graphical abstract
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Highlights

» Detection of 23 potential MAAs in 40 Rhodophyta species, including 6 already identified (shinorine,
palythine, asterina-330, porphyra-334, usurijene, palythene). » First report on the MAAs composition
for some red seaweeds. » High variability in MAAs content and composition between the different
species, with no link with phylogeny, morphology, position on the shore or sampling site. » A MAAs
extraction method using 70% ethanol being less toxic than conventional methanol, and giving potential
valorisable extracts.

Keywords : Algae, Diversity, HPLC, MAAs, Metabolites, Photo-protection, Pigments, Rhodophyta,
Screening
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1. Introduction

Macroalgae are known to play a key role in coastakystems as being at the
basis of the food web and providing refugium fommanimal species (Luning, 1990).
In particular, seaweeds produce diverse compounderwnatural conditions, which
could potentially be used in health, cosmeticomdf sectors (Holdt and Kraan, 2011;
Stengel et al., 2011; Stiger-Pouvreau and Guéga&; Surget et al., 2017). However,
both the concentration and composition of thesadtiee compounds can fluctuate
within individuals, with their habitat and with ssm. In the context of climate change,
the environmental parameters impacting particulatigrtidal seaweeds are in a state of
flux. To cope with changing environmental condispeeaweeds have developed
particular adaptive, metabolic responses and aredble to resist and adapt to different

abiotic stresses (Davison and Pearson, 1996; G&%0).

Irradiance is one of the factors which can changs the intertidal range in
coastal areas, in term of quantity and quality beeat varies during the day and with
the tide, the turbidity of the water, the climétee depth or seasons (Sagert et al., 1997).
Light is also very important for seaweeds as algagohotosynthetic organisms (Gantt,
1990; Lobban and Harrison, 1994) with some livinghe intertidal zone and thus
exposed directly to the sunlight during emersioagas. One of the consequences of
climate change is the amount of ultraviolet (U\Jiedion reaching the Earth's surface
(Bischof et al., 2006; Thomas et al., 2012). UViaidns are notably at the origin of
DNA alterations, the synthesis of reactive oxygeacsges (ROS) and, in seaweeds, the
photo-inhibition mechanism or the degradation astpeynthetic pigments (Karentz,

2001; Karsten, 2008; Van de Poll et al., 2001). eeev, due to human activities and
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ozone depletion, the protective filter that comnsés the atmosphere gradually loses its
effectiveness, which means that the amount of Uwhizh the organisms are exposed
tends to increase (Carreto et al., 2018; McKenizad. £2007). Although some authors
agree that the ozone layer will probably not futgover before several decades, the
hole in this layer would be resorbing at mid-ladiés due to the implementation of some
policies tending to reduce greenhouse gas emisdionshis would not be the case at
high latitudes and the evolution of the UV levehans complex (McKenzie et al.,

2011; Wilmouth et al., 2018).

Different types of macroalgae have developed vargitategies to protect
themselves from harmful UV radiation. These incltitke synthesis of photo-protective
molecules (Bhatia et al., 2011; Le Lann et al. 2(R4#&stogi et al., 2010; Sinha et al.,
2007). Among the algal photo-protective compoutits, study focuses on pigments
and mycosporine-like amino acids (MAAs), synthedibg red algae (Rhodophyta).
MAAs were discovered in 1965 in the terrestrialgusAscochyta pisi (Leach, 1965).
Since then, the presence of MAAs has been demoedtiraa wide range of marine
organisms from bacteria to fish (Bandaranayake3;1R8 Barre et al., 2014; Rosic et
al., 2015), including different species of algaeqBux et al., 2014; Sinha et al., 2007).
MAAs are low molecular weight molecules (< 400 Dsjluble in water, with a high
molar extinction coefficient (between 28,000 - BMO*.cm™*) and a maximum of
absorption Xmay between 310 - 362 nm (Rastogi et al., 2010)dufiteon, it has been
demonstrated that red algae, which constitute &watked phylogenetic group, have
the greatest diversity and the highest proportioMAAs (Carreto and Carignan, 2011;

Karentz, 2001; Sinha et al., 2007). Until now, ad@MAAs have been identified in
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various red macroalgae (Sinha et al., 2007). Howegesome recent studies have
shown (Briani et al., 2018; Hartmann et al., 20b&ny MAAs have yet to be
identified. The major role of MAAs in photo-protemt against UV radiation has
already been widely demonstrated (Bedoux et al.42Bluovinen et al., 2004; Singh et
al., 2008), and functionality could be linked teithindividual structures (Wolley et al.,
2018). It appears that some MAAs may also haveouarfunctions such as anti-
oxidants (De la Coba et al., 2009; Torres et 811,82 Wada et al., 2015), osmolytes,
nitrogen storage, or protective agents againstdaon or temperature variations

(Bhatia et al., 2011; Oren and Gunde-Cimerman, 2007

Pigments are part of a second significant grouphaofto-protective compounds
in macroalgae. There are three main families afngigts: chlorophylls, carotenoids and
phycobiliproteins (reviewed in Stengel et al., 20Ihey do not all have a role in
photo-protection, such as chlorophydisd phycobiliproteins which harvest light for
photosynthesis. Among the chlorophylls, there iy chlorophyllain red algae
(Stengel et al., 2011). One characteristic of tgdeis the presence of
phycobiliproteins (reviewed by Dumay et al., 20I#)ese are “secondary pigments”
which also capture solar energy and transfercahtorophylla for the photosynthesis;
they are particularly effective under low light citions (Gantt, 1990; Lobban and
Harrison, 1994). There are 3 main groups of phyigobteins in the Rhodophyta:
phycoerythrin (PElmax = 540-570 nm) which provides their red colour, gdgyanin
(PC,Amax= 610-620 nm) and allophycocyanin (APGax = 650-655 nm) which both
have a blueish hue (Dumay et al., 2014). Findtigre are two groups of carotenoids:

caroteneso-carotenep-carotene in red algae) and xanthophylls (i.e. aethin,
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antheraxanthin, violaxanthin and lutein in red algahich convey a yellowish
colouration. These last pigments have several plogical roles (Karsten, 2008;
Young and Frank, 1996): they take part in photdssgsit through light harvesting in
thylakoids (Hashimoto et al., 2016) but they alagéhan important role in photo-
protection (Mimuro and Akimoto, 2003). Indeed, tlasyo may participate in the
dissipation of solar energy (Young et al., 1997 tmthe de-activation of reactive

oxygen species (ROS) (Rastogi et al., 2010).

According to the nature, quality and quantity obfmhprotective compounds,
and also their morphology (blade, filamentous, ) and life cycle, different species
of macroalgae are then more or less sensitive taddiation (Davison and Pearson,
1996; Roleda et al., 2004). In this context, the af the present study was to
investigate the inter-specific variations in regalphoto-protective compounds within
a diverse, representative group of temperate atad ted seaweeds. Thus, a screening
was carried out on a large number of red seawesdpled from the coast of Brittany
(France). In order to study the maximum numbeipetees, seaweeds were sampled
during two distinctly different seasons, i.e. winé®d summer, as some species occur
only during a part of the year. Candidate spe@esalysis were also collected from
the upper subtidal zone (i.e. emersed only at ggrdes for maximum 1 h; Ar Gall and
Le Duff, 2014) and along the intertidal zone (Wéth different maximum emersion
times from 1 h in the lower intertidal zone to 1ihtihe upper intertidal zone during
spring tides; Ar Gall and Le Duff, 2014). A MAA dsity index was determined for
each species, in order to compare and providerbtgcal comparisons within the red
macroalgae collected in this study. Moreover, itheoito test the hypotheses of a

relationship between the diversity of MAAs and ndual red algal taxonomy, various
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orders/families of red macroalgae were specificiigeted for collection.

2. Materials and methods

2.1 Sampling sites

Macroalgae were collected at low tides on fouredtéht sites in Brittany (France):
Porspoder (48°28'58"N — 4°46’5”"W), Portsall (483%3"N — 4°42'5”"W), Saint-Pabu
(48°34'34”N — 4°38'45”W) and Le Faou (48°17°44”N 4°10'56"W). Portsall,
exposed North-West, is a sheltered and mainly rediey surrounded by sand and
intertidal pools. Despite its western exposurespoader remains sheltered due to the
presence of two large rocky over-hangs. The sitseh at Saint-Pabu, was exposed to
the North; it is characterized by sandy dunes.Ikinke Faou differs from the three
previous sites because a river flows there intdBig of Brest, forming a sheltered but
muddy estuary at low tide. Two samplings periodsavearried out: in February

(winter) and July (summer) 2017.

2.2 Macroalgal samples

Forty species of red macroalgae were collectedsadtee four different sites: 21 species
were found both in winter and summer and 19 spewsrs found on the shore only for
one season. All species belong to the class ofddophyceae, exceporphyra dioica
(Bangiophyceae). These included species from éiftemorpho-anatomical groups (i.e.
MAG, according to Steneck and Dethier, 1994): fégntous algae (MAG 2); corticated
or polysiphonous filaments algae (MAG 2.5); foli@adgae (MAG 3); corticated foliose
algae (MAG 3.5); corticated algae (MAG 4); andautated calcareous algae (MAG 6)

(Appendix 1).



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

After collection, algal samples were brought baxkhe laboratory into sampling bags.
Samples were stored in a fridge and washed wittiauts of sampling with filtered
seawater to remove residual sediments and saljevispiphytes were removed by
hand. Seaweeds were then stored in the freezercdeding freeze-drie@{-8 LD plus
Christ) and the entire thallus was milled intoreefpowder (MM400 Retsch). The dried

powder was kept in darkness at room temperatuibamnalyses.

2.3 Extraction and assay of chlorophyll-a and carotenoids

Pigments were extracted from 75 mg dry weight (M\algal powder in
750 pL of 90% acetone, according to Schmid anddg&lg2015). Two successive
extractions of 30 min and 4 h were carried out & 4under magnetic agitation.
Samples were then centrifuged at 10,000 rpm forrb(miniSpin plus, Eppendorf), and
the supernatants combined and filtered for HPL@Hrressure Liquid
Chromatography) analysis (Dionex Ultimate 3000, rfaScientific). Pigments were
separated using an ACEdZolumn (150 x 4.6 mm, 3 um) with a guard-columm, a
injection volume of 6 pL and a run-time of 33 mer gample. Before injection, each
sample was automatically diluted % with ammoniuetaie buffer (0.5 M, pH 7.2).
Separation was achieved using a solvent gradiestritbed in Table 1, delivered at a
flow rate of 1.0 mL.mift. A photo-diode array detector (DAD3000, ThermoStifi)
was used for the detection of pigments at 435,a4®D650 nm. The identification and
guantification of each pigment was based on spemtraparisons and calibration using
commercial standards: chlorophgl(Sigma, USA), and-carotenep-carotene, lutein,
zeaxanthin, antheraxanthin, violaxanthin (DHI, Dank). Only peaks with an area

larger than 0.4 mAU.min fax- andp-carotenes and 1 mAU.min for the other pigments



169  were considered in the analysis. HPLC data weleateld using Chromeleon 0.7

170  software (Thermo Scientific Dionex, France).

171 2.4 Extraction and assay of phycobiliproteins

172 Tissue concentrations of phycoerythrin (PE) andcphyanin (PC) were

173  determined using a method adapted from Sun e2@0D9). Two successive extractions
174  of 15 min at 4 °C were performed from 75 mg DW lgapowder, with 1.5 mL of

175  phosphate buffer (0.1 M, pH 6.8). Subsequently,daswere centrifuged for 20 min at
176 10,000 rpm (miniSpin plus, Eppendorf) and supemtataere used to measure

177  absorbances at 455, 565, 592, 618 and 645 nm asipgctrophotometer (POLARStar
178 Omega, BMG LABTECH). The concentrations of PE a@d(fg.g* DW) were

179  estimated using the following equations from Bewt Bshel (1985):

180  [PE] = [(A565 — A592) — (A455 — A592) X 0.20] X 0.12

181 [PC] = [(A618 — A645) — (A592 - A45) X 0.51] x 0.15

182

183 2.5 Mycosporine-like Amino Acids (MAAS) extraction and assay

184 20 mg DW of finely ground algae were extractedZdr with 2 mL of 70%
185 aqueous ethanol (v/v) at 45 °C with magnetic stiyriAfter centrifugation (centrifuge
186 5810, Eppendorf) at 1,500 rpm for 10 min, the sogemt was recovered. The pellet
187  was re-extracted twice following the same procedune: the combined supernatants
188  were evaporated to dryness under vacuum (miVace@en France) at 45 °C. The

189  evaporated extracts were then stored at -20 °Qdefwalysis.

190 Prior to HPLC analysis, extracts were dissolve80AuL of 2.5% aqueous

191 methanol with 0.1% acetic acid, centrifuged for i et 10,000 rpm (miniSpin plus,
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Eppendorf), and filtered through 0.2 um-pore syifitlers. MAAs analyses were
performed using a Dionex Ultimate 3000 HPLC (Thei®aentific, Germany)
equipped with a diode-array detector (DAD). MAA aedion was performed using a
Zorbax Eclipse XDB &g column, 5um, 4.6 x 250 mm (Agilent, USA) equipped with a
guard-column. For one analysis, 20 of extract were injected and the operating
parameters were as follow: 0.1% acetic acid iniNQliwater as the mobile phase; a
flow rate of 1 mL.mift; a column temperature of 25 + 1 °C; an injectongerature of
5+ 1 °C; arun time of 20 min. MAAs were detect 820, 330, 334 and 360 nm.
HPLC data were collected using Chromeleon 0.7 sowThermo Scientific Dionex,
France). Individual peaks were identified by onlaiesorption spectra and retention

time (Rt).

For identification, MAAs extracts were also analyzs LC-MS using a LC-
ESI-Q-TOF-MS (Dionex, Ultimate 3000, Bruker, micrOF-QIl) system (Bruker
Daltonik GmbH, Bremen, Germany). The same LC methasl used, only the flow was
reduced to 0.5 mL.mih Source parameters were: positive mode; sourcpesature,
200 °C; capillary voltage, 4.5 kV; nebulizer gas)(Bt 2.8 bars and dry gasAMt 12
L.min™. Mass spectra acquisition was set at 0.5 Hz frgf30 to 1000. MS/MS
analyses were performed with a collision energg®éV and an isolation width of 2
m/Z. All raw data were collected with Compass datalfsis Version 4.1. The
quantification of the identified MAAs was accompiéxl using their molar extinction
coefficientse at the wavelengths of maximum absorption, accgrtirPelillo et al.

(2004), and the molar extinction coefficient of Kin et al. (1998b). For MAAs whose

10
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molecular structure has not yet been elucidateg, tjuantification was not established.

Each MAA was then numbered in the order in whidpipeared during the run.

Finally, the diversity of MAAs within each seawegakcies tested was
estimated by the development of a new index. Theace and absence of each MAA
for each species was coded in a table, as 0 apkcévely. A distance matrix was then

calculated by comparing species two by two usirgftiiowing index:

Index =
naCX =N

were 'M’ is the number of matches between the tpecges (presence and absence) and
'N’ the total number of MAAs which were presentdnly one of the two species. The
closer the index was to 1, the more similar the $pecies were in terms of the
composition of their MAAs. A species with many weaa#lices thus represented a
specific composition. A dendrogram was made frois tatrix with the R program (R
development core team, 2008) to represent spdaesad similar MAA compositions
(hclust with single method, hclust package). Ineortd highlight any links between the
composition of MAAs by algal species with their pygeny, a phylogenetic analysis
was performed usingbcL andcoxl genes sequences, as retrieved from GenBank
(Accession numbers for GenBank sequences are list&dpendix 1 and are available
on https://www.ncbi.nlm.nih.gov). Sequences weignad using the ClustalW
programme in the BioEdit alignment editor (Hall999. A phylogenetic tree was built
using MEGA version 7 (Kumar et al., 2016), basedh@nNeighbor-Joining clustering
method. Evolutionary distances were computed usiagMaximum Composite
Likelihood. The tree was subjected to a bootsteap (5000 replicates) to estimate

robustness at each branch (pvclust, pvclust pagkage
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2.6 Satistical analyses

All data were statistically analyzed with the Rgnam (R development core team,
2008). All extractions were performed in triplicasad results expressed as average +
standard deviation (SD). Comparisons were carngdising a Student’s t-test (2
samples) or an ANOVA (more than 2 samples). Befandhthe conditions of
application were controlled using the Shapiro testompliance with a normal
distribution, and the F-test or Bartlett’s test floe homogeneity of variance (Dytham,
2011). The non-parametric Wilcoxon test (2 sampbesgcheirer-Ray-Hare test (SHR,
more than 2 samples) were used when at least ahe gbnditions of application was
not met (to replace the t-test or the ANOVA, respety). If possible, when significant
results were highlighteghost-hoc tests (i.e. multiple comparisons) were perfornaed:
Tukeypost-hoc test after an ANOVA (TukeyHSD), or a non-paramepost-hoc test
after a Sheirer-Ray test (kruskalme, pirgmess pgekéDytham, 2011). Principal
Component Analysis (PCA) was carried out (packaedMineR) to highlight species

which stood out.

3. Results

3.1 Pigments:. chlorophyll a, carotenoids and phycobiliproteins

The chlorophylla content (Fig. 1) varied significantly among thelgmed red algal
species (SHR test, p-value < 0.0001). In some spgesuch aslastocarpus stellatus or
Furcellaria lumbricalis, chlorophylla concentrations did not exceed 1 Mm@\ -
whatever the season. HoweVEg|lithamnion tetragonum andPlumaria plumosa for

example contained in winter 8.60 + 0.26 and 8.8724 mg.g' DW of chlorophyllea,

12
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respectively. Moreover, a seasonal variability wemonstrated with chlorophyl
concentrations decreasing in summer (SHR test)yeva0.0040). For example,
Palmaria palmata contained 7.02 + 0.31 mg-dW of chlorophylla in February, and
1.50 + 0.27 mg.g DW in July. ConverselyBostrychia scorpioides was the only
species with a significantly increased concentratiosummer (i.e. 5.44 + 0.43, as
compared to 4.32 + 0.09 mg.W in winter).
Similarly, total concentration of carotenoids chatgvith species (SHR test, p-value <
0.0001) (Fig. 2). For exampl€hondrus crispus andF. lumbricalis contained less than
0.2 mg.g- DW of carotenoids, where&&rtebrata lanosa, Porphyra dioica or B.
scorpioides contained up to 0.78, 0.84 and 0.65 rifgyV of total carotenoids,
respectively. A difference in term of compositioasnalso observed (Fig. 2): overall,
lutein was the most common carotenoid in 31 spemieésf 40. However, the amount
of lutein remained low as compared to chlorophylivhich constituted 90.1% on
average of the total liposoluble pigment contentrédver, there was no seasonal
variation in the carotenoid composition as a whbig,the concentration was seen to
decrease in summer (SHR test, p-value = 0.0018) &j except foW. lanosa in which
the concentration increased (e.g. 0.78 + 0.01 a6-00.04 mg.g DW in summer and
winter, respectively)Gigartina pistillata, Metacallophyllis laciniata and
Membranoptera alata did not contain any detectable levels of carot@sman summer.
However, although there were seasonal variatioslorophylla and overall
carotenoid amounts, the ratio of carotenoids /rdployll a appeared to be constant
between both seasons (SHR test, p-value = 0.4948 (ot shown).

The different studied red algae contained variéblels of phycobiliproteins

similarly to their chlorophylk or carotenoid amounts (SHR test, p-value < 0.0001)

13



286  (Fig. 3). For exampleBornetia secundiflora andMembranoptera alata contained 27.39
287 +3.13 and 19.67 + 0.15 mg-dW of PE in winter, respectively, where@scrispus,
288  Mastocarpus stellatus or V. lanosa contained less than 5.0 mg.BW (Fig. 3).

289  P. plumosa was more differentiated from the other specieb Wwigh levels of PE in
290  both seasons (23.18 + 0.49 mYyBW in winter and 13.58 + 1.36 mg-dW in

291 summer). Moreover, it would appear that, on the lejhihe PE content decreased in
292 summer (SHR test, p-value < 0.000Bgstrychia scorpioides was the only species for
293  which the PE concentration really increased in sem{®.62 + 0.22 mg:DW in

294  summer, compared to 5.32 + 0.50 my@W in winter). The results were similar for
295  phycocyanin (data not shown).

296

297 A Principal Component Analysis (PCA) of all pigmeifEig. 4a, 4b) pointed out
298  six speciesB. scorpioides, Porphyra dioica, V. lanosa, Gracilaria vermiculophylla,

299  Gracilaria gracilisandPlumaria plumosa. This last species contained the highest
300 concentration of chlorophydl and phycoerythrin. The five other species wereotilg
301 ones containing zeaxanthin with a concentratiod.5fig.g' DW or greaterG. gracilis
302 also contained antheraxanthin. Finally, the spdmsdenging to similar MAG showed
303 different pigment content (chlorophy) carotenoids and phycoerythrin) and

304 composition. Moreover, no link between pigment cosifion of the red seaweeds
305 studied here and their phylogeny, morphology, pmsibn the shore or sampling site
306 could be demonstrated.

307

308 3.2 Mycosporine-like Amino Acids

14



309 HPLC analyses showed 23 different peaks that megspond to MAAs (Fig. 5
310 and Appendix 2), and six (i.e. shinorine, palythiasterina-330, porphyra-334,

311 usujirene and palythene) were elucidated by LC-M& composition and

312 concentration of various MAAs showed a differeneeneen the various species of red
313 macroalgae sampled in this study. These obsensitiene independent of the sampling
314 season. Amongst the 21 species of algae commonliyiieg in both seasons

315 considered, six did not contain any MAA (theseuided:F. lumbricalis,

316  Metacallophyllislaciniata, Polyides rotunda, Osmundea pinnatifida, Membranoptera

317 alata andPlumaria plumosa). For the eight species which could be collectelg m

318 summer, no MAAs were detected in four and for thuaerested only in winter, five did
319 not contain any detectable MAAs. At the same tiMastocarpus stellatus contained a
320  high concentration of only shinorine (i.e. 3.12.2®and 1.62 + 0.07 mg’PW,

321 respectively in winter and in summer). One showtérhat three species, iRalmaria
322  palmata, B. scorpioides andG. vermiculophylla, contained eight different MAAS,

323  visible as separate peaks on the chromatograns idashown). A chromatogram of
324 the MAAs analysed fror®. palmata (Fig. 6) showed the presence of six identified
325 MAAs (i.e. shinorine, palythine, asterina-330, goyra-334, usujirene and palythene)
326 and two other molecular structures that may coomedpgo MAAsS. Moreover, some

327 unidentified MAAs were present in only one algat¢sies, such aB. scorpioides,

328 which contained four unidentified (new) MAAs (iMAA 4, MAA_ 13, MAA_ 18 and
329 MAA_23), G. pistillata which hadMAA_14 and MAA_22, and/. lanosa MAA_1

330 (Fig. 5).

331
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354

355

Based on HPLC chromatograms, shinorine was theopradnt MAA identified
among all sampled red macroalgae in this studyedddwith the exception of
V. lanosa, shinorine was the only MAA common to all of thageecies which appeared
able to produce MAAs. Shinorine was found to bsireable quantities iNl. stellatus,
G. gracilis, andCeramium nodulosum with 3.12 + 0.26, 4.00 £ 0.06 and 1.92 + 0.11
mg.g* DW, respectively for species harvested in winkabtuary). These amounts
were approximately halved in July with 1.62 + 0.047 + 0.10 and 0.86 + 0.06 mg.g
DW, respectively for the same algae (t test, p-@alD.0004). The next most common
MAA was palythine which was found in 19 differepiesies.

Moreover, no large modifications in the level of M# (Wilcoxon test,
p-value = 0.7804) and their composition was obskbatween both sampling periods
in the different species (Fig. 5). However, somanges were noticed such agin
pinnatifida with the presence of asterina-330, usujirene ahgthpene in those thalli
collected in winter (February), but not in thosdexied in summer (July). The same
was observed foB. pistillata with the presence of two new MAAs (i.e. MAA_14 and

MAA_22) in the winter samples.

In winter and summer, the analysis of the divensitiices for the MAAs
highlighted three groups of species (Fig. 7A ang&mix 3A): those with no MAA
(Group 1), those with few MAAs (between 1 and 50@r 2) and those with many
MAAs (6 or more; Group 3). OnlB. scorpioides seemed to stand out and did not
correspond to any group, even though it containglat eifferent MAAs. Shinorine was
present in all species of Groups 2 and 3, exceyt ianosa which was also the only

species having MAA 1. Moreover, asterina-330 argtpizme were also two MAAS
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379

found in some species from Group 2, and in all iggefitom Group 3 (with the
exception olV. lanosa andB. scorpioides). Finally, there were some MAAs which were
only found in Group 3, notably usujirene and padyth which were present in six of the
nine species of the Group 3 in winter. The higtedsity in MAAs did not seem to be
related to phylogeny (Fig. 7B and Appendix 3B),tanay and morphology, the height
on the shore nor the sampling site (Appendix 1ndée species which are close
phylogenetically (i.eG. vermiculophylla andG. gracilis, or Callithamnion tetricum and

C. tetragonum in our study), morphologicallyM. stellatus andC. crispus), or the only
two species harvested from a muddy habitat Bi.scor pioides andG. vermiculophylla)
did not have the same MAAs profile (see Appendand Fig. 5). No link was also
found between the MAAs and the fact that a spegesintroduced or indigenous to

Brittany (data not shown).

4. Discussion

As intertidal macroalgae are organisms directlyomeal to solar radiation, they
have developed some protective mechanisms in twdrirvive, such as the synthesis
of photo-protective compounds. In this sense, thieative of this study was to collect
many different red algal species from a temperabdeesin order to have a first overview
of the specific distribution of these compounds] arore particularly of mycosporine-

like amino acids for which data are not actuallgitable for some species.

Firstly, a high inter-specific variability has beéemonstrated in terms of

pigment composition and concentration (Figs 1-8n8 species had a high content of

chlorophyll-a (P. plumosa or Callithamnion sp.) while others had more carotenoids
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403

(P. dioica, B. scorpioides, V. lanosa), or others had low concentrations of both pigraent
(C. crispus or G. pistillata). Three groups were observed from the carotenoids
composition, as suggested by Schubert et al. (28P&kies rich in lutein, species rich
in zeaxanthin, and those with violaxanthin or ardRanthin (Fig. 2). Lutein was the
major carotenoid, as already illustrated (Esteliaa. £2009; Marquardt and Hanelt,

2004).

Furthermore, the quantity of photosynthetic pigm@st chlorophylla and
phycobiliproteins) decreased in the summer san{pigs. 1, 3) due to an increase in
irradiance. Indeed, the increase in light energailalsility leads species to reduce their
pigment complement to harvest the same quantiliglaff (Ak and Yilcesan, 2012;
Ramus et al., 1976). Another explanation woulditeeldd to the nitrogenous nature of
chlorophyll-a and phycobiliproteins (Huovinen et al., 2006; li@i1990; Parjikolaie et
al., 2013). They are used for nitrogen storageiimiex and as a nitrogen source when
limitations occur in summer (Barufi et al., 201Bdointe and Duke, 1984; Surget et al.,
2017). Stack et al. (2017) demonstrated that theepr content oPorphyra dioica
doubled in winter months, perhaps because of phlypadieins acting as a nitrogen
storage. In general, the impact of N concentradiopigments has already been widely
demonstrated in many species such d@almaria palmata (Corey et al., 2013;

Parjikolaei et al., 2013).

The aim of the second part of this study was tcidate the MAAs composition

of 40 red macroalgae. The extraction method in @8anol, coupled with the extract

analysis by HPLC, provided reliable data, and Imedadvantage of being non-toxic,
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unlike using methanol which is commonly used inlitezature (e.g. Briani et al., 2018;
Groniger et al., 2000; Guihéneuf et al., 2018; Rgret al., 2017; Yuan et al., 2009).
The use of a less-toxic solvent such as etharmiveld for the valorization of extracted
MAAs as they have a significant potential for badtrology applications in for example
human health and cosmetics (Chrapusta et al., 2@litence et al., 2018; Pangestuti
et al., 2018). For example, Helioguard 365 (Mibgheup, Switzerland) is a
commercial formulation used to protect the skimair from UV radiation and based on
the MAAs shinorine and porphyra-334 extracted ftbmred macroalgBorphyra

umbilicalis (La Barre et al., 2014; Schmid et al., 2006).

The results of the screening revealed a high diyarsMAA composition in
the 40 studied species, including some speciestiah the MAA composition had not
been reported before, eRJumaria plumosa, Bornetia secundiflora, Dilsea carnosa,
Gastroclonium ovatum, Hypoglossum hypogl ossoides, Champia parvula and
Chylocladia verticillata. It was already demonstrated that some specitdgeof
Rhodophyta have the capacity to accumulate a heghe@ of diversity and
concentration of MAAs (e.g. Rastogi et al., 201h& et al., 2007), but this present
study is the first to report on MAA profiles frons anany species of red alga from a
temperate region, here from Brittany. Based orr @i@sorption maxima and retention
time, 23 potential MAAs were identified by HPLC &rses in the 40 red seaweeds
harvested along the Brittany coasts. Shinorinepatgthine were found to be the most
common MAAs in this study (Fig. 5), which is in agment with Karentz (2001). The
composition in MAAs of each species coincided wité literature, even for poorly
studied species such Asparagopsis armata (Figueroa et al., 2008). For example, in

accordance with the bibliography, shinorine ancgpgra-334 are found iR. dioica
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428  (Guihéneuf et al., 2018); shinorine, palythine aodohyra-334 irC. nodul osum; or
429  species contained no MAA suchRisycodrys rubens andF. lumbricalis (Karsten et al.,

430  1998b).

431 The development of a diversity index for MAAs alleavfor the identification of
432  three groups of species (Fig. 7A): i.e. speciebaut MAA (e.g.Plumaria plumosa,

433  H. plumosa, M. alata, Polyides rotunda or F. lumbricalis), species with a few MAAs
434  (e.g.Porphyradioica, Gracilaria gracilis, C. tetricum), and some with more than six
435 MAAs (e.g.Palmaria palmata, B. scorpioides, Gracilaria vermiculophylla, V. lanosa).
436  These observations suggested a huge diversity obspprine-like amino acids among
437  different members of Rhodophyta, with no apparehtwith phylogeny, or

438  morphology, position on the shore or sampling Sieilarly to our study, the

439 distribution of various MAASs in other publicatiorsnot related to a phylogenetic

440 pattern (Karentz et al., 1991; McClintock and Kaéred997), but more to an

441 acclimatization to environmental variations (Briathial., 2018).

442 Furthermore, 23 MAAs of which some potentially nemd as yet unidentified
443  were observed in the 40 species knowing that apmiately 20 MAAs have been

444  reported so far in red algae, suggesting that thmergbe in this study some MAAs that
445  have never been yet identifidsl. scor pioides was the species that stood out the most
446  because it had four, unique, as yet un-identifiedlAd (i.e. MAA_4, MAA 13,

447  MAA_18 and MAA_23). This species also did not fita any of the three groups based
448  on the diversity index (Fig. 7A). Only six MAAs werdentified by LC-MS in the

449  studied species (i.e. shinorine, palythine, porat884, asterina-330, usurijene,

450 palythene). In addition, we propose that MAA_11responded to palythinol by

451 comparing the results with the literature: indgelythinol is a MAA often observed in
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many red macroalgae in the literature (Sinha e2807) and MAAs_11 is the fifth
most common MAA in the red algae studied here. MAAis present for example in

P. palmata, which should contain palythinol according to litterature (Groniger et al.,
2000; Karsten and Wiencke, 1999; Yuan et al., 2009 difficult to identify MAAs
based only on the absorbance spectra and retdinties of known MAAs in the
bibliography, especially since some MAAs are présenery small quantities which
makes it impossible to detect them in LC-MS. Theklaf commercial standards makes
this study particularly complex, in addition to nrakimpossible the quantification of
the different MAAs. In addition, some peaks haveikir absorption maxima and
retention times. For example, usujirene and pahghanly differ by their cis- or trans-
conformation and less than one minute separated (Barreto and Carignan, 2011). In
order to identify other MAAs, more biomass for thdractions (if the available
biomass allowed it), or the development of a pcaitiion protocol to concentrate each

MAA would therefore be necessary.

Moreover, there was no large seasonal differenterims of the composition
and concentration of MAAs (Fig. 5). This is an upested result as the role of photo-
protection by MAAs has been widely demonstrated. (Eonde et al., 2000; Singh et
al., 2008). We expected that the concentratiotal MAAs would increase in relation
to the intensity of radiation in the marine ecosygsiKarsten et al., 1998a; Torres et al.,
2016). However, it is possible that a possiblegase in MAAs content occurred
between the two sampling periods, February and dudjcating that two sampling
periods are not enough to study seasonal variatiAAs content. This is suggested
by Guihéneuf et al. (2018), who found that the emtiation of MAAs increased

between February and Mayh palmata andC. crispus collected on Irish shores and
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not during summer as expected. Another explanagitimat, as MAAS are nitrogenous
compounds, they are used in summer as a sourdétagen (Karentz, 2001). In this
sense, a number of studies have already demortkthegositive effect of nitrogen on
concentrations of MAAs (Figueroa et al., 2014; Kewlet al., 2005; Peinado et al.,

2004).

Thus, the variability observed in pigments and MAs&snposition suggests that
all species do not seem to have the same protempabilities against solar radiation.
In an attempt to obtain a first explanation of iigersity, we tried to relate this
composition to phylogeny, or morphology, positiontbe shore or sampling site, which
was not successful. To date, few studies have exaahthe link between pigment
composition and phylogeny, and no clear relatigmslais been found (Vandervelde,
1973; Wang et al., 2018). The MAAs composition vebalso not be related to a
phylogenetic pattern (Karentz et al., 1991; McQlakt and Karentz, 1997). Thus there
is currently no explanation for the compositionegence/absence) in MAAs between
the different species that seems to be random. KHenvi has been experimentally
demonstrated that an increase in UV radiation chalce an impact on the levels of
MAAs, for example inrPalmaria palmata or Chondrus crispus (Hoyer et al., 2002;

Krébs et al., 2004); or that the MAAs concentrati@pended on the season (Guihéneuf
et al., 2018), nutrient concentrations and pH (fret al., 2018), latitude (Karsten et al.
1998b) or depth (Franklin et al., 1999; Karsten ®hidncke, 1999). For example, the
total MAA concentration irP. palmata andDeval erea ramentaceae collected at

different depths decrease with sampling depthpatjh the composition remains the

same (Hoyer et al., 2001; Karsten et al., 1999).
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500 In our study, four species stand out due to theerdified compositions of

501 MAAs: B. scorpioides, G. vermiculophylla, V. lanosa andP. dioica, which are the

502 sampled species the most exposed to solar radidtieno their relatively high position
503 on the shore. IndeeB, scorpioides lives at the top of muddy estuaries (Sanchez de
504 Pedro et al., 2014¥%. vermiculophylla lives at the surface of the intertidal muddy
505 estuaries (Roleda et al., 2012; Surget et al., gBLdioica is located on the upper

506 intertidal, andVv. lanosa is an obligate epiphyte on the brown macro@gzophyllum
507 nodosum (Garbary et al., 2014) which has a wide range wécage on intertidal

508 rockyshores at mid-tide level. These four red asgacies were characterized by the
509 presence of several MAAs and a high concentrati@amtenoids, in particular

510 zeaxanthin, a pigment synthetized under highet kghditions (Rmiki et al.1996;

511 Schubert and Garcia-Mendoza, 2008). Thus, theydstabfrom the others on the

512  Principal Component Analysis of pigments (Fig.Another speciess. gracilis, also
513 stood out the PCA since it contained antheraxanthiaccordance with Rmiki et al.
514 (1996) and Schubert et al. (2006). Converdelyplumosa, with no observed MAA, was
515 the single species with the highest concentradmretilorophylla and phycoerythrin.
516 This alga lives in shaded areas (Yakovleva efl8B8), which may explain its necessity
517 to have high concentrations of pigments which ab$ight energy, rather than act as
518 photoprotectants.

519

520 5. Conclusions

521 This study highlights the occurrence of numerousAdAn red macroalgae from
522  Brittany, with variations in the number and leveEMAASs per species. Thus, this

523 research contributes to reinforce the few existiatabases on the MAAs composition
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524 of red algae as described by Groniger et al. (2@8d)Sinha et al. (2007), knowing that
525 the identification of these molecules is difficdlie to the lack of commercial standards.
526  Here we attempted to identify the factors contngjlihis MAAs diversity: MAAs

527  composition was no related to a phylogenetic patteowever, the algal species most
528 exposed to light radiation were those with a higel and diversity of photoprotective
529 compounds which could protect their photosynthetechanisms against UV-radiation.
530 Nevertheless, it remains complex to provide conchssabout the actual impact of the
531 different biotic and abiotic factors on the synibed each MAA. Although MAAs

532 seem to be photo-protective, they may play othdraanyet unknown roles in

533  macroalgal metabolism. Subsequently, it is necgdsaselect few species and carry out
534 macroalgal cultures under controlled conditionsender to understand factors

535 responsible for the production of each MAAs. Thhs,impact of temperature, UV

536 radiation, nutrients or pH could be tested one g @r in combination, allowing to

537 highlight a change in the ratio of MAAs for exampldis would result in a better

538 understanding of the synthesis and function ofdélwsmpounds.

539
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Table 1.HPLC solvent gradient. (A) methanol:ammonium aeelaffer 0.5 M

(80:20), (B) acetonitrile:milliQ water (87.5:13.8};) ethylacetate 100%.

(Tn'nrlnn‘i %A  %B  %C
0 90 10 0
1 0 100 0
11 0 78 22
24 0 25 75
% 0 25 75
27 0 100
28 90 10

33 90 10 0




Appendix 1. List of the 40 red macroalgal species collecteBehruary and/or July 2017, with their associatedBank accession

numbers (for the genebclL and cox1), morpho-anatomical group (i.e. MAG;@ding to Steneck and Dethier, 1994), localisatiarthe

shore, substrate and sampling site. The differeikGBlare: (2) filamentous algae; (2.5) corticategayysiphonous filaments algae; (3)

foliose algae; (3.5) corticated foliose algae;dditicated algae and (6) articulated calcareousealg

Accession numbers

Species rbcL cox1l MAG Localisation Substrate Sampling sites
Ahnfeltiopsis devoniensis KU640212.1 KF641876.1 4 Lower intertidal Rocky Rait
Asparagopsis armata GQ337068.1 KJ960343.1 2.5 Lower intertidal Rocky rtsal
Bonnemaisonia hamifera FJ195604.1 KJ960353.1 2.5 Lower intertidal Rocky rtsdl
Bornetia secundiflora No data 2.5 Upper subtidal Rocky Portsall
Bostrychia scorpioides AY920825.1 MF094019.1 2.5 Upper intertidal Muddy fEmou
Calliblepharis jubata KC121138.1 KJ960410.1 4 Lower intertidal Rocky Balit
Callithamnion tetragonum AF439301.1 MF447481.1 2 Lower intertidal Rocky Ralit
Callithamnion tetricum AF439300.1 KJ960434.1 2 Lower intertidal Rocky Baiit
Ceramium echionotum AF439313.1 KJ960509.1 2.5 Lower intertidal Rocky rtBall
Ceramium nodulosum No data 2.5 Lower intertidal Rocky Portsall
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Ceramium secundatum KT250273.1 KT250269.1 2.5 Lower intertidal Rocky ridall
Champia parvula EF613312.1 HQ422864.1 2.5 Lower intertidal Rocky rtsal
Chondracanthus acicularis KJ202090.1 KJ202081.1 4 Lower intertidal Rocky Balit
Chondrus crispus KF026483.1 GU645233.1 4 Lower intertidal Rocky Balt
Chylocladia verticillata No data 2.5 Intertidal Rocky Portsall
Corallina sp. No data 6 Lower intertidal Rocky Porspoti&t-Pabl
Dilsea carnosa KT310705.1 KY572820.1 3.5 Upper subtidal Rocky Palit
Furcellaria lumbricalis No data 4 Intertidal Rocky Portsall
Gastroclonium ovatum KU726714.1 KJ960700.1 2.5 Lower intertidal Rocky rtBaill
Gelidium corneum HM629821.1 KJ960706.1 4 Lower intertidal Rocky Pader
Gigartina pistillata AY294375.1 KJ960717.1 4 Lower intertidal Rocky Rarde?; Portsalf
Gracilaria gracilis AY049400.1 KF714853.1 4 Lower intertidal Rocky Rait
Gracilaria vermiculophylla JQ768774.1 JQ794759.1 4 Upper intertidal Muddy el
Griffithsia corallinoides No data 2.5 Lower intertidal Rocky Portsall
Heter osiphonia plumosa AF083379.1 KJ960780.1 2.5 Upper subtidal Rocky Jadftt St-Pabfl
Hypoglossum hypoglossoides ~ AF257368.1 KJ179930.1 3.5 Lower intertidal Rocky rtball




Lomentaria articulata KU726701.1 KU707860.1 2.5 Lower intertidal Rocky ridall
Mastocar pus stellatus U02992.1 KY572683.1 4 Lower intertidal Rocky Politsa
Membranoptera alata JQ864359.1 KJ960846.1 3.5 Lower intertidal Rocky rtsdl
Metacallophyllis laciniata No data 3.5 Upper subtidal Rocky Portsall
Osmundea hybrida AF281878.1 KX258831.1 4 Lower intertidal Rocky Rait
Osmundea pinnatifida JX828140.1 KU566536.1 4 Lower intertidal Rocky Rodef; Portsalf
Palmaria palmata LN999410.1 KY572816.1 3.5 Lower intertidal Rocky  rfmdet; Portsalf
Phycodrys rubens JX110932.1 KY572841.1 3.5 Upper subtidal Rocky pPoder
Plocamium cartilagineum HQ224543.1 JF271583.1 4 Lower intertidal Rocky sairt
Plumaria plumosa KU381993.1 HQ412551.1 2.5 Lower intertidal Rocky rtBall
Polyides rotunda No data 4 Lower intertidal Rocky Portsall
Porphyra dioica JN703282.1 JN847313.1 3 Upper intertidal Rocky $aift St-Pabf)
Sphaerococcus coronopifolius  AY294376.1 KJ961109.1 4 Upper subtidal Rocky SttPab
Vertebrata lanosa MF120849.1 KX344122.1 2.5 Intertidal Rocky Portsall

®Samples collected in wintétSamples collected in summer
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Figure legends

Figure 1. Chlorophylla concentrations (mg_.lgDW) (mean + standard deviation, n=3)
of 40 red macroalgal species, collected from Bmitten February (winter) and July
(summer) 2017. Blank spaces indicate that chlorialevel was below the limit of

detection or quantification.

Figure 2. Carotenoid concentrations (mgl.@W) (mean, n=3) in 40 red macroalgal
species, collected from Brittany in February (wihend July (summer) 2017. Blank
spaces indicate that carotenoids level was lowaar the limit of detection or
quantification.

Figure 3. Phycoerythrin concentrations (mg.BW) (mean + standard deviation, n=3)
in 40 red macroalgal species, collected from Bmiftan February (winter) and July
(summer) 2017. Blank spaces indicate that phycbenytevel was lower than the limit
of quantification.

Figure 4. Principal Component Analysis (PCA) of pigment @nis, for 21 species of
red macroalgae collected in winter and summer ghiables; B: samples). Ellipses
were drawn around species that had a confidenet &¥5% or more. Dimension 1
was principally characterised by chloroplg/level and dimension 2 by zeaxanthin
presence and level (correlation coefficient = (i@ 0.88, respectively).

Figure 5. Mycosporine-like amino acids composition (mAU.mfmjean, n=3) in 40 red
macroalgal species, collected from Brittany in ey (winter) and July (summer)
2017. Blank spaces indicate that MAAs level wasdothan the limit of detection or

quantification.
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Figure 6. Chromatogram at 330 nm of MAAs extracted fromréd macroalga
Palmaria palmata collected in February 2017 (winter) from Porspodittany,
France).

Figure 7. (A) Dendrogram based on the diversity indices &{A4, obtained from
hierarchical cluster analysis (single linkage medh@B) Neighbor-joining phylogenetic
tree based orbcL and cox1 genes sequences, for the 32 macroglgeiles collected
from Brittany during winter. The most relevant battap values are shown next to the
branches. Some species are not represented ohytlogienetic tree due to missing
sequences on GenBank (see Appendix 1).

Appendix 2. List of the 23 different peaks analysed in 40mextroalgae species, that
may correspond to MAAs, with their absorption spgdt,.x and their retention time
(Rt).

Appendix 3. (A) Dendrogram based on the diversity indices &A8, obtained from
hierarchical cluster analysis (single linkage me)h¢B) Neighbor-joining phylogenetic
tree based orbcL and cox1 genes sequences, for the 29 macroglgeies collected in
summer. The most relevant boot-strap values anrershext to the branches. Some
species are not represented on the phylogeneticitre to missing sequences on

GenBank (see Appendix 1).
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ACCEPTED MANUSCRIPT

Asparagopsis armata
Bostrychia scorpioides
Ceramium nodulosum
Chondracanthus acicularis
Chondrus crispus
Corallina sp.
Furcellaria lumbricalis
Gigartina pistillata
Gracilaria gracilis
Gracilaria vermiculophylla
Heterosiphonia plumosa
Lomentaria articulata
Mastocarpus stellatus
Membranoptera alata
Metacallophyllis laciniata
Osmundea pinnatifida
Palmaria palmata
Plumaria plumosa
Polyides rotunda
Porphyra dioica
Vertebrata lanosa
Bornetia secundiflora
Calliblepharis jubata
Callithamnion tetragonum
Callithamnion tetricum
Dilsea carnosa
Gastroclonium ovatum
Gelidium corneum
Hypoglossum hypoglossoides
Osmundea hybrida
Phycodrys rubens
Plocamium cartilagineum
Ahnfeltiopsis devoniensis
Bonnemaisonia hamifera
Ceramium echionotum
Ceramium secundatum
Champia parvula
Chylocladia verticillata
Griffithsia corallinoides
Sphaerococcus coronopifolius

WINTER SUMMER
Not found on the shore
Not found on the shore
10 8 6 4 2 0 2 4 6 8 10

Chlorophyll a (mg.g™' DW)



ACCEPTED MANUSCRIPT

WINTER SUMMER
Asparagopsis armata
Bostrychia scorpioides “ Violaxanthin
Ceramium nodulosum ® Antheraxanthin
Chondracanthus acicularis " Lutein
Chondrus crispus ® Zeaxanthin
ACoraIIin_a Sp. = g-carotene
Furce{lang Iuml}nf:al/s = B-carotene
Gigartina pistillata

Gracilaria gracilis
Gracilaria vermiculophylla
Heterosiphonia plumosa
Lomentaria articulata
Mastocarpus stellatus
Membranoptera alata
Metacallophyllis laciniata
Osmundea pinnatifida
Palmaria palmata
Plumaria plumosa
Polyides rotunda
Porphyra dioica
Vertebrata lanosa
Bornetia secundiflora
Calliblepharis jubata
Callithamnion tetragonum
Callithamnion tetricum
Dilsea carnosa
Gastroclonium ovatum : Not found on the shore
Gelidium corneum
Hypoglossum hypoglossoides
Osmundea hybrida
Phycodrys rubens
Plocamium cartilagineum
Ahnfeltiopsis devoniensis
Bonnemaisonia hamifera
Ceramium echionotum
Ceramium secundatum
Champia parvula Not found on the shore
Chylocladia verticillata
Griffithsia corallinoides
Sphaerococcus coronopifolius

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Carotenoids (mg.g™' DW)



ACCEPTED MANUSCRIPT

Asparagopsis armata
Bostrychia scorpioides
Ceramium nodulosum
Chondracanthus acicularis
Chondrus crispus
Corallina sp.
Furcellaria lumbricalis
Gigartina pistillata
Gracilaria gracilis
Gracilaria vermiculophylla
Heterosiphonia plumosa
Lomentaria articulata
Mastocarpus stellatus
Membranoptera alata
Metacallophyllis laciniata
Osmundea pinnatifida
Palmaria palmata
Plumaria plumosa
Polyides rotunda
Porphyra dioica
Vertebrata lanosa
Bornetia secundiflora
Calliblepharis jubata
Callithamnion tetragonum
Callithamnion tetricum
Dilsea carnosa
Gastroclonium ovatum
Gelidium corneum
Hypoglossum hypoglossoides
Osmundea hybrida
Phycodrys rubens
Plc ium cartilagi

WINTER SUMMER

Ils

Not found on the shore

Ahnfeltiopsis devoniensis
Bonnemaisonia hamifera
Ceramium echionotum
Ceramium secundatum
Champia parvula

Chylocladia verticillata
Griffithsia corallinoides
Sphaerococcus coronopifolius

Not found on the shore
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Dim 2 (20.88%)

1.0

0.0 0.5
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Violaxanthin
a-carotene
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Dim 1 (38.61%)

Dim 2 (20.88%)
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b)

Vertebrata lanosa

Gracilaria gracilis  *®

Gracilaria vermiculophylla

Porphyra dioica

.ostrychia scorpioides

Pluntaria plumosa
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CCEPTED MANUSCRIP

WINTER SUMMER
Asparagopsis armata
Bostrychia scorpioides | I
Ceramium nodulosum I
Chondracanthus acicularis 1 n
Chondrus crispus | | 1
Corallina sp. |
Furcellaria lumbricalis
Gigartina pistillata | ]
Gracilaria gracilis
Gracilaria vermiculophylia i | [
Heterosiphonia plumosa
Lomentaria articulata
Mastocarpus stellatus \
Membranoptera alata
Metacallophyllis laciniata
Osmundea pinnatitida ]
Palmaria palmata ]
Plumaria plumosa
Polyides rotunda
Porphyra dioica
Vertebrata lanosa [
Bornetia secundiflora
Calliblepharis jubata
Callithamnion tetragonum
Callithamnion tetricum
Dilsea carnosa
Gastroclonium ovatum [ — Not found on the shore
Gelidium corneum |
Hypoglossum hypoglossoides
Osmundea hybrida [ |
Phycodrys rubens
P . S
Ahnfeltiopsis devoniensis ]
Bonnemaisonia hamifera [ ]
Ceramium echionotum
Cemm&':ﬁif:ﬁifﬁﬂ;: Not found on the shore 1=
Chylocladia verticillata
Griffithsia corallinoides
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88, Osmundea pinnatifida
Ceramium nodulosum
Palmaria palmata
Gracilaria vermiculophylla
Osmundea hybrida
76 Vertebrata lanosa

100 Chondrus crispus
4|;—|: Chondracanthus acicularis
63 Gastroclonium ovatum

100. Gracilaria gracilis
Porphyra dioica
Callithamnion tetricum
Hypoglossum hypoglossoides
Mastocarpus stellatus
Plocamium cartilagineum
Gelidium corneum
Asparagopsis armata

Corallina sp.
Gigartina pistillata
Plumaria plumosa
Lomentaria articulata

87

98,

100]

Heterosiphonia plumosa
Membranoptera alata
Polyides rotunda
Metacallophyllis laciniata
Furcellaria lumbricalis
Calliblepharis jubata
Phycodrys rubens

Dilsea carnosa

Bornetia secundiflora
Callithamnion tetragonum

— Bostrychia scorpioides

SYVIN Jusieyip Auepy

SYVIN Mma4

VVIN ON

99 Osmundea pinnatifida
Osmundea hybrida

Vertebrata lanosa
Plumaria plumosa

Phycodrys rubens
Callithamniom tetricum
Callithamnion tetragonum
Heterosiphonia plumosa
Membranoptera alata
Hypoglossum hypoglossoides
Asparagopsis armata
Dilsea carnosa
Mastocarpus stellatus
Chondrus crispus
Gigartina pistillata
86 Chondracanthus acicularis
Gelidium corneum
Gastroclonium ovatum
Lomentaria articulata
99 Gracilaria vermiculophylla

Gracilaria gracilis

Plocamium cartilagineum

Calliblepharis jubata
99 Porphyra dioica
Palmaria palmata

—
0.2

Bostrychia scorpioides



Highlights

Detection of 23 potential MAAs in 40 Rhodophyta species, including 6 aready
identified (shinorine, palythine, asterina-330, porphyra-334, usurijene, palythene)
First report on the MAASs composition for some red seaweeds

High variability in MAASs content and composition between the different species, with
no link with phylogeny, morphology, position on the shore or sampling site

A MAAs s extraction method using 70% ethanol being less toxic than conventional
methanol, and giving potentia valorisable extracts





