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Abstract 

Hybrid organic-inorganic perovskites have become one of the most promising low-cost alternatives 

to traditional semiconductors in the field of photovoltaics and light emitting devices. It combines 

both attractive features of organic and inorganic materials within a single composite, for instance 

with excellent electronic properties. We used x-ray diffraction to reveal a sub-structure within 

CH3NH3PbI3 single crystals. We could observe the presence of additional peaks with a square 

symmetry in several monocrystalline samples. We discuss these results in terms of two different 

models: a super-structure modulated in two in-plane orthogonal directions, and a model with tilted 

domains with a shallow angle of ~0.6°. In both cases,  the modulated or tilted domains appear in 

regions with small lattice expansion. We show that this last model appears to be the most likely to 

explain our observations.  

 

Introduction 

Methylammonium lead triiodide (CH3NH3PbI3, so-called MAPI) is a reference material at the origin of 

the development of perovskite-based solar cells. Its crystal structure is tetragonal at room 

temperature, but undergoes two structural phase transitions as a function of temperature : from 

orthorhombic to tetragonal at 160 K, and from tetragonal to cubic at about 330 K [1,2]. We address 
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here some diffraction features that appear in the tetragonal phase at room temperature where the 

organic cation was shown to be orientationally disordered over four sites [3]. We believe that 

detailed structural analysis would help in getting some answers for puzzlingly good electronic 

properties obtained from crystalline soft chemistry synthesis at only 100°C [4]. Also, a specific 

property of this material is its ability to accommodate structural defects with benign impact over 

opto-electronic properties [5,6] that should be related to some specific structural and dynamic 

features that are yet to be elucidated. 

 

 

Experiment 

In this study, we performed single-crystal x-ray diffraction to probe the crystal structure of the 

tetragonal phase of MAPI at room temperature. The tetragonal phase is characterized by tilted 

halide octahedra around the c-axis, alternatively clockwise and anticlockwise for adjacent 

octahedra. Compared to the high-temperature cubic phase, the cell is thus doubled along the c 

direction and tilted by 45° in the (a,b) plane. The tetragonal structure of MAPI is recalled in Fig1a and 

1b in the (b,c) and (a,b) planes respectively. The corresponding reciprocal lattice has been calculated 

taking 10x10x10 cells. The (0kl) and (hk0) reciprocal planes are shown in Fig1c and 1d respectively. 

The reflection conditions corresponding to the I4/mcm group are retrieved (h+k=2n in hk0 and 

k,l=2n in 0kl) and each peak displays a cardinal sinus squared profile due to the finite size of the cell. 

 

Single MAPI crystals were grown using the inverse temperature crystallization method [4]. 

Methylammonium iodide (CH3NH3)I (called MAI hereafter) was synthesized by adding dropwise 

10,5 mL of hydriodic acid HI (57 % in water, stabilized, Sigma Aldrich) to 20 mL of methylamine 

CH3NH2 (2 M solution in ethanol, Sigma Aldrich) at 0°C for 2 hours. The solvent was then evaporated 

at 60°C under vacuum using a rotary evaporator. The powder was subsequently washed several 

times with diethyl ether and dried overnight at 60°C. In order to increase purity, the yellowish MAI 

powder was finally recrystallized in a mix of ethanol and diethyl ether. 636 mg of MAI and 1844 mg 

of lead Iodide PbI2 were dissolved in 4 mL of DMF (1:1 molar ratio) in a small Teflon capped vial. The 

vial was then placed in an oil bath at 105°C. Single crystals of MAPbI3 start to appear at the bottom 

of the vial after a couple of hours. There were recovered, dried and washed with diethyl ether 

several times. The samples are well-faceted crystals, ~1mm3 in volume, with a (100) orientation of 

the as-grown surface [7]. The samples were kept under N2 gas and measured under vacuum. A first 

experiment was performed using a Rigaku RU-300B Cu rotating anode coupled with focusing 

multilayers optics, producing a ~800µm beam size on the sample at 8.04 keV. The sample was 

mounted on a Huber eulerian 4-circle diffractometer and detection was performed with a NaI 
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scintillator in the vertical scattering plane. Slits were inserted just before the detector, ~70cm 

downstream of the sample, to get better angular resolution. The specular 400 reflection was 

measured along the longitudinal direction performing a -2 scan (see Fig 2a). An additional feature 

can be observed on the lower-angle side of the 400 Bragg reflection, approximately 20 times weaker 

than the Bragg reflection. For reproducibility we performed the same kind of measurements with 3 

different single crystals. 

 

To get a better understanding of this additional signal measured along the -2 scans, we recorded 

a 3D reciprocal volume around the 400 reflection. To do so, we recorded the diffracted intensity 

along the three non-colinear directions of reciprocal space, making / maps at several 2 positions 

of the detector. A range of 3 degrees was explored in the two directions of the angular / maps, 

with steps of 37.5 mdeg, and a range of 1 degree was explored in the 2 directions, with steps of 0.1 

deg. The use of slits before the detector insured to have a good resolution in all directions of 

reciprocal space. The intensities were thus recorded in a 3D angular volume that was then converted 

into a volume indexed with the hkl reciprocal coordinates (see fig 2b), in a 10x40x40 pixels grid along 

h,k and l respectively. Note that the [010] direction of the crystal was perpendicular to the vertical 

scattering plane. 

The measured intensity, plotted in the 3D hkl volume, is displayed in Fig3a. Several intensiy 

isosurfaces are displayed up to 3000 cts (see Fig 3a). The crystal truncation rod (CTR) is visible along 

the h direction of reciprocal space, as expected, as well as the 400 Bragg reflection, which lies inside 

the upper yellow region. However, the additional feature that was visible on the -2 scan of Fig2a 

manifests as additional peaks that are well separated one from the other in the plane h=3.98 of 

reciprocal space. To get a better view of how those peaks are arranged, three planes at constant h 

values are displayed: the one in which the 400 Bragg reflection lies (h=4), the one in which the 

superstructure peaks lie (h=3.98) and the one which is symmetric with respect to the 400 Bragg 

reflection (h=4.02) (see Fig 3b and Fig3c-e). For clarity reasons, the intensity scale is the same for all 

maps, with a maximum intensity fixed at 3000 cts. That is why in the plane h=4, the 400 reflection 

appears wide although its maximum intensity is ~2e5 cts. In the plane h=3.98, 4 superstructure 

peaks appear at ±(k±l), with k≈l = 0.030±0.002. This reciprocal space distance corresponds to 

20nm in real space. Finally in the symmetric h=4.02 plane, the CTR contributes to some intensity at 

k=l=0, but there is no such superstructure peak as in the h=3.98 symmetric plane. Note that this 

characteristic feature has been observed in the 3 samples that we measured. 
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To complement these laboratory measurements, additional ones were performed at the undulator 

beamline CRISTAL of SOLEIL Synchrotron. The beam energy was set to 18.48keV with a Si(111) 

monochromator, and prefocused with mirrors. We then used 50x50µm² slits to define the beamsize 

on the sample. The rocking curves of the 400, 800 and 402 reflections were recorded using a 2D 

Maxipix pixel detector (55µm pixel size), positioned 65cm downstream of the sample, giving a 

resolution in q-space q = 7.92 10-4 Å-1.  

The 400 and 800 Bragg reflections were measured in the vertical diffraction plane in specular 

geometry as shown in Fig.2b, and the 402 asymmetric reflection was recorded out of the vertical 

plane, using the vertical rotation axis of the detector arm. Similar reciprocal space volumes as drawn 

in Fig. 2b were thus recorded around the three Bragg reflections by performing -scans. Projections 

of these 3D volumes are presented in Fig. 4. The four additional peaks appear close to all three 

reflections, although their relative positions vary significantly. In addition, they always appear in a 

plane perpendicular to the Bragg wavevector in reciprocal space and again, not in the main Bragg 

plane, but at lower values, similarly to the intensity maps shown in Figure 3. It is convenient to 

compare the signals found on the 400 and 800 reflections, as the relationship between the two is 

straightforward (the 800 reflection is twice as far as the 400 reflection along the same reciprocal 

space line). One can see that the additional peaks are twice as far from the 800 reflection as they are 

on the 400 reflection. Similarly, they are twice as far one from each other than on the 400 reflection, 

in both transverse directions (called q and  on Fig 4).  

 

This observation is very interesting and unexpected if only the usual crystallographic structure of 

MAPI is taken into account. Indeed, as shown in Fig1c-d, Bragg reflections are only expected at 

integer values of h, k and l provided the conditions of existence are satisfied. The fact that additional 

well-localized peaks appear at other reciprocal space positions accounts for a new long-range extra-

order. Another interesting feature is that they appear along k and l which are non-equivalent 

crystallographic directions in the tetragonal phase. 

 

 

This observation cannot be explained by the presence of tetragonal domains in the sample. Indeed, 

for the 400 reflection, this would result in two different reflections along h, associated to the two 

non-equal lattice parameters of the tetragonal cell. Similarly, twin domains that were already 

observed in films would not produce such features, but reflections appearing at equivalent 2 

values, as no change of lattice parameter would take place.  

We are here in the presence of well-defined reflections with a clear square symmetry in the plane 

h=3.98. Here, the superstructure peaks appear in a lower-h plane compared to the Bragg reflection, 
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and their symmetric counterparts along h with respect to the 400 reflection (at h=4.02) do not exist. 

This suggests that the average lattice parameter is expanded along a in the region of the sample 

where the extra-modulation lies. It could in particular be the case in the region located near the 

surface of the crystal, where surface reconstruction effects might play an important role, as was 

shown in CH3NH3PbBr3 single crystals [8]. Surface restructuring was also observed on faces of 

CH3NH3PbBr3 [9] and CH3NH3PbI3 single crystals using STM [10]. The bromide single crystals trap 

density is for instance estimated about two orders of magnitude larger at the surface than in the 

bulk, giving rise to a strong lattice deformation [8].This deformation should however have relatively 

little impact on the electronic properties as the spectral shift between surface and bulk emission 

should not be larger than about 10 meV, as was shown using comparatively both 

cathodoluminescence and photoluminescence [11]. In this supposedly expanded lattice region, the 

presence of the superstructure reflections could find different origins.  

 

A first explanation is to consider an array of lattice defects. Indeed, as the growth rate of MAPI 

single crystals is very high, dislocations are expected to be present in the sample with high density. 

In this scenario, the superstructure peaks would appear if those defects get periodically ordered 

every ~20nm. Such an array of dislocations for instance would produce peak splitting due to out-of-

phase crystallographic planes between the regions separated by dislocations. However, detecting 

such topological defects with a classical beam seems unlikely, because the probe has to be coherent 

over the typical size of the defected region to make the peak splitting visible, as it originates from an 

interference phenomenon [12-14]. In our case, with a classical beam generated by a laboratory 

rotating anode, this periodicity should not be visible. However, further structural studies should be 

considered before ruling out this scenario. 

 

Another possible scenario involves a modulated phase. If the extra peaks can be described relatively 

to the 400 Bragg reflection, their position correspond to large wavelengths, around 30 times larger 

than the lattice parameters i.e. ~20nm. Modulated phases are generally favorable in low-

dimensional systems, displaying highly anisotropic properties in different directions of the crystal. 

This is for instance the case in Peierls-like charge-density-wave (CDW) systems [15] but they are also 

found in many other condensed matter systems like in magnetism, with helimagnetic structures, or 

composite materials with mixed periodicities [16].  In addition, modulated phases can be 

commensurate or incommensurate with the underlying lattice, which can lead to very different 

physical properties. For instance, incommensurate CDW systems can display non-linear transport 

properties in contrast to commensurate ones which are pinned due to a strong coupling to the 

underlying lattice. Even higher order modulations can appear in such states, with highly long-range 
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soliton lattices [17,18]. In the present case of additional satellite reflections appearing in the h=3.98 

plane, the modulated phase seems the most relevant to us. First, such a phase has been recently 

reported in the parent Br compound CH3NH3PbBr3 [19], with very similar additional reflections 

appearing in the diffractograms. However, the reciprocal space positions of the additional 

reflections with respect to Bragg reflections measured at room temperature here are ten times 

smaller than reported in CH3NH3PbBr3 (in a very limited temperature range) by Guo et al. [19], 

meaning that the associated periods are very different in the two cases. 

For a better understanding of our measurements, we performed simulations using a 2D modulated 

lattice and calculated the associated diffraction maps. As shown in [20], a buckling instability could 

take place, with a displacement of the halide octahedra center of masses, inducing periodic 

modulations. Here, we took into account two modulations appearing in a simplified mono-atomic 

model lattice in the (𝑏⃗ , 𝑐 ) plane, along (𝑏⃗ + 𝑐 )  and (𝑏⃗ − 𝑐 )  crystallographic directions, to account 

for the appearance of the measured satellite reflections. To do so, we first built a square lattice of 

those positions in a (𝑥, 𝑦) space coordinate, with orthonormal unitary vectors (𝑖 , 𝑗 ), and allowed 

small displacements around the periodic positions. We model the total electron density of the 

system𝜚𝑡𝑜𝑡(𝑥, 𝑦) as the convolution between an on-site electron density and a 2D Dirac comb:  

𝜚𝑡𝑜𝑡(𝑥, 𝑦) = 𝜚0(𝑥, 𝑦) ⊗ ∑ ∑ 𝛿(𝑥 − 𝑛𝑎 + 𝑢𝑥(𝑥, 𝑦))𝛿(𝑦 − 𝑚𝑎 + 𝑢𝑦(𝑥, 𝑦))

𝑁

𝑚=1

𝑁

𝑛=1

 

where 𝜚0(𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2)/(2𝜎2) is the on-site electron density, taken Gaussian in first 

approximation, 𝑎 is the lattice parameter, 𝑁 is the number of atomic cells, and 𝑢𝑥(𝑥, 𝑦) and 

𝑢𝑦(𝑥, 𝑦) are space-dependent atomic displacements along 𝑥 and 𝑦 respectively.  

We describe the two modulations with respective wave vectors 𝑘1
⃗⃗⃗⃗ ∥ (𝑖 + 𝑗 ) and 𝑘2

⃗⃗⃗⃗ ∥ (𝑖 − 𝑗 ), and 

assume that the corresponding displacements 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  are longitudinal i.e. 𝑢1⃗⃗⃗⃗ ∥ 𝑘1
⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗ ∥ 𝑘2

⃗⃗⃗⃗  so 

that: 

{
𝑢1⃗⃗⃗⃗ = 𝐴1 cos(𝑘1

⃗⃗⃗⃗ ∙ 𝑟 ) (𝑖 + 𝑗 )

𝑢2⃗⃗⃗⃗ = 𝐴2 cos(𝑘2
⃗⃗⃗⃗ ∙ 𝑟 ) (𝑖 − 𝑗 )

 

and: 

{
𝑢𝑥(𝑥, 𝑦) = (𝑢1⃗⃗⃗⃗ + 𝑢2⃗⃗⃗⃗ ) ∙ 𝑖 = 𝐴1 cos(𝑘1

⃗⃗⃗⃗ ∙ 𝑟 ) + 𝐴2 cos(𝑘2
⃗⃗⃗⃗ ∙ 𝑟 )

𝑢𝑦(𝑥, 𝑦) = (𝑢1⃗⃗⃗⃗ + 𝑢2⃗⃗⃗⃗ ) ∙ j = 𝐴1 cos(𝑘1
⃗⃗⃗⃗ ∙ 𝑟 ) − 𝐴2 cos(𝑘2

⃗⃗⃗⃗ ∙ 𝑟 )
 

 

where 𝐴1 and 𝐴2 are the amplitudes of the displacements along (𝑖 + 𝑗 ) and (𝑖 − 𝑗 ) respectively. 

The diffracted intensity 𝐼 is then obtained in reciprocal coordinates (𝑞𝑥, 𝑞𝑦) by taking the squared 

Fourier Transform of the total electron density 𝜚𝑡𝑜𝑡(𝑥, 𝑦) which has been beforehand included in a 

larger volume of zero density to account for the finite size of the sample and get the associated 
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squared sinc form factor in the intensity distribution. This new total electron density is called 

𝜚𝑡𝑜𝑡
𝑏 (𝑥, 𝑦) and 𝐼(𝑞𝑥 , 𝑞𝑦) thus reads: 

𝐼(𝑞𝑥 , 𝑞𝑦) = |ℱ(𝜚𝑡𝑜𝑡
𝑏 (𝑥, 𝑦))|

2
 

 

The results of this model are shown in Figure 5. We took 𝑁 = 14, ‖𝑘1
⃗⃗⃗⃗ ‖ = ‖𝑘2

⃗⃗⃗⃗ ‖ = 2𝜋/𝜆 with 

𝜆 = 5.33𝑎 , 𝐴1 = 𝐴2 = 0.069𝑎. We chose those values in such a way that the resolutions in both 

real and reciprocal spaces are satisfactory, and used non-trivial fractional quantities to avoid the 

superposition of eventual artifacts.  

The non-modulated and modulated atomic positions are shown in Figure 5a and 5b respectively, 

and the associated diffractograms in Figure 5c and 5d. In the case of a non-modulated structure, the 

diffraction pattern is very similar to the one found in MAPI in the 0KL plane (Figure 1c), with peaks 

arranged in a square lattice. When the modulation is added, the atomic lattice is buckled, as 

expected (Figure 5b) and additional peaks appear around Bragg reflections on the diffractogram 

(Figure 5d). Superstructure peaks appear around Bragg reflections at reciprocal positions ±𝑘1
⃗⃗⃗⃗  or 

±𝑘2
⃗⃗⃗⃗  or both ±𝑘1

⃗⃗⃗⃗  and ±𝑘2
⃗⃗⃗⃗ , depending on the value of the scalar product between the  𝑄⃗  vector of 

the considered Bragg reflection and the displacement direction. When 𝑄⃗ ⋅ 𝑢𝑝⃗⃗ ⃗⃗ = 0 (𝑝 = 1 𝑜𝑟 2), the 

corresponding satellite reflection in the specific direction of 𝑘𝑝
⃗⃗⃗⃗  is not present. Another property of 

those satellite reflections is that their intensity increases with increasing ‖𝑄⃗ ‖ values and at the same 

time the intensity of the associated Bragg reflections decreases to keep the total intensity of the 

Bragg and its satellites constant. A zoom of the central region of the diffractogram is shown in 

Figure 5e. One can see that in this model, the superstructure peaks that appear around the 400 

Bragg reflection for instance are very similar to the ones found in the h=3.98 plane of MAPI. In 

addition, the intensity of each of this reflection is not equal, but depends on how far they are located 

with respect to the reciprocal space origin. Non-equal intensities were indeed observed in the data, 

but the careful comparison between the measured and calculated intensity distributions requires 

further studies seen the simplicity of the model taken here compared to the real system. However, 

in the calculation, the separation distance of the additional peaks from the main Bragg reflection is 

the same for all Bragg reflections, contrary to what appears in our data. This strong difference 

actually rules out any explanation based on a modulated structure in this case.  

We finally modelled tilted domains of the sample. To do this, a similar 2D square lattice as in the 

previous simulation was built (Fig 6a) (without modulation: 𝑢𝑥(𝑥, 𝑦) = 𝑢𝑦(𝑥, 𝑦) = 0), and two other 

ones were obtained by applying both a lattice expansion and a rotation by +3° and -3° (see Fig 6 b,c).  

The scattering factors were taken different for the lattice at 0° and for the ones at ±3° to account for 

the likely unequal domain sizes of different orientations. The diffracted intensities were computed 
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by summing the patterns obtained with the three lattice orientations, taking again the squared 

Fourier Transform of the total density. The results are shown in Fig 6 d,e. In that case, the additional 

reflections are also located at lower q values than the Bragg reflections (as the lattice constant is 

expanded), and the peaks are further apart and from the main Bragg reflection for increasing 

distance from the center of reciprocal space. Moreover, the additional reflections are always lying in 

the plane perpendicular to the q-vector of the main Bragg reflection. Those two features are in 

agreement with our data : the diffraction patterns measured around the 400, 800 and 402 

reflections, shown in Fig 4a,b,c, can directly be compared to the simulated reflections 200, 400 and 

201 of Fig 6e. This suggests that tilted domains are very likely to explain the measurements in our 

samples. In the data, the rotation angle 𝛼 of these sub-domains can be calculated as follows:  

𝛼 = 𝑡𝑎𝑛−1 (
√(∆𝑘² + ∆𝑙²)

3.98
) = 0.6° 

In our data, we measure 4 additional reflections, meaning that to reproduce our data, one should 

take 4 tilts in 4 directions of space.  

However, many other features remain to be understood, especially why is this precise value 

emerging in the structure, and what is the process leading to it? Are the tilted regions arranged in 

domains, or do they appear only close to the surface? To answer those questions, additional 

measurements will be necessary, as well as computations to get additional information about the 

role of strain for instance. Indeed, the fact that the sample grows in the cubic phase with a (110) 

orientation of the cubic system and then undergoes the cubic to tetragonal transition, fixes the 

surface orientation to (100) in the tetragonal system. The surface strain due to this transition could 

result in both a tilt and an expansion of the lattice in some regions of the sample.  

In any case, the exact nature of this additional structure has to be clarified with other experiments 

and its correlation with the intrinsic electronic properties of MAPI further investigated. If this 

structural feature appears only near the surface, it could be correlated to different near-surface and 

bulk electronic and optical features, through a modification of the band structure or double charged 

surface layers [21]. 

 

 

Conclusion 

We have studied (CH3NH3PbI3) single crystals using x-ray diffraction. We have evidenced satellite 

peaks with a square symmetry in all the different samples studied. This puzzling feature can be 

addressed with different hypothesis. Here we first considered a periodic lattice displacement model 

based on a modulated structure with 2 different in-plane modulations of about 20 nm wavelength in 

order to describe the measurements. We have found that this model can well describe the 
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measurements close the specific 400 Bragg reflection but is not consistent with the measurements 

performed around the 800 and 402 Bragg peaks. A second scenario involving tilted domains seems 

to be in better agreement with the different measurements performed around the three Bragg 

reflections. Another interesting feature is that this additional structure lies in an expanded region of 

the sample, probably near the sample surface. Further measurements should help understand 

better these new crystallographic features and eventually relate them to other puzzling features of 

this system like for instance a relatively good tolerance to defects or the long carrier diffusion 

lengths and efficient charge collection observed in this material.  
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Figure 1 : Structure of MAPI in the tetragonal phase, (a) in the (b,c) plane and in (b) in the (a,b) plane. 
Corresponding calculated diffraction patterns calculated, (c) in the 0KL reciprocal plane, and (d) in the HK0 
reciprocal plane. The finite number of cells taken in the calculation gives rise to the fringes around Bragg 
reflections (squared sinc function form factor related to a cubic volume). 
 

 

 
Figure 2 : (a) Longitudinal -2 scan performed around the 400 specular Bragg reflection, with a 8keV beam 
generated by a rotating anode (log scale). A shoulder is visible on the lower angles from the 400 position, but not 
at higher angles. (b) Scheme of the experiment and 3D data recording in the vertical scattering plane. 2D angular 

maps were recorded at different  and  angles by rotating the sample around the y-axis and z-axis respectively. 
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The out-of-scattering-plane plane volume is reached using  (not shown on the figure). Such 2D angular maps 

were recorded at several detector positions 2, thus making a 3D volume, that was then converted into a new 3D 
volume indexed in hkl coordinates associated to the sample Fourier space.  
 

 

 
Figure 3 : (a) Intensity recorded in the 3D volume around the 400 Bragg reflection in the hkl coordinates system, 
with 8.04keV x-rays. Several iso-surfaces are represented, and reveal both the main 400 Bragg reflection (upper 
strong intensity region), and the 4 satellites in a lower-h plane. (b) Same hkl volume with intensity maps shown at 
three specific h values, at and around the 400 reflection: h=3.98, h=4 and h=4.2. The intensity scale has been 
limited to 3.10

3
, ie ~1/100 of the maximum Bragg intensity, to better highlight the 4 extra peaks in the h=3.98 

plane. (c)-(e) Same kl maps recorded at h=3.98, h=4 and h=4.2, with the same scale as in (b). The extra peaks 

appear in (c) at ±(k±l), with k≈l = 0.030. Inset of (d): same map scaled with the maximum intensity. Note 
that the small elongations are due to interpolation after conversion of the angular volume into hkl volume. 
 

 

 

 
Figure 4: The diffracted intensity was obtained in 3D around the 400, 800 and 402 Bragg reflections by rocking the 

sample around  and recording intensity on a 2D detector, measured with 18.48keV x-rays. The vertical and 
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horizontal directions of the detector correspond to directions in reciprocal space called q// and q respectively. 

These 3D angular volumes were then projected along the rocking direction  (upper line), and along q// (lower line) 
around the three Bragg reflections: (a) and (d) around the 400 reflection; (b) and (e) around the 800 reflection; (c) 
and (f) around the 402 reflection. The intensity scale is logarithmic and identical for all maps.  
 

 
 

 

Figure 5 : Simulations of a 2D single-atomic square crystal and associated diffraction patterns. (a) Perfect square 
lattice obtained by the convolution of a Dirac comb with an on-site Gaussian-like electron density. (b) Same lattice 
obtained using periodic displacements along the two diagonal directions (see text). (c) and (d) Diffractograms 
associated to the lattices shown in (a) and (b) respectively, obtained by calculating the squared Fourier Transform 
of the real space total electron density (see text). The linear intensity scale has been truncated to the third of the 
maximum intensity. The form factor appears on each Bragg reflection as a squared sinc modulation. For the 
double-modulated crystal, additional peaks appear around Bragg reflections along k1 and k2, with selection rules 
depending on the displacement direction. (e) Zoom on the central region of (d). First and second order peaks are 
visible, and the intensity of the satellites is higher at higher q wavevectors.  
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Figure 6: Simulation of 2D square lattices obtained by the convolution of a 2D Dirac comb with Gaussian-like 
electron densities: (a) without tilt ; (b) with a +3° tilt; (c) with a -3° tilt. The on-site electron density is different for 
the untilted and tilted lattices to account for the eventual non-equal volumes in which they respectively appear. 
(d) Computed reciprocal space map corresponding to the superposition of the three lattices of different 
orientation, obtained by summing the Fourier transforms of each real-space lattice. (e) Zoom on a region of the 
reciprocal space map showing that the expected peaks are much further apart for increasing q-values, and that 
their orientation depends on the direction of reciprocal space considered.  

 


