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ABSTRACT:

In the last decade, airborne laser scanning (ALS) systems have become an alternative source for the acquisition of altimeter data.

Compared to high resolution orthoimages, one of the main advantages of ALS is the ability of the laser beam to penetrate vegetation

and reach the ground underneath. Therefore, 3D point clouds are essential data for computing Digital Terrain Models (DTM) in

natural and vegetated areas. DTMs are a key product for many applications such as tree detection, flood modelling, archeology or road

detection. Indeed, in forested areas, traditional image-based algorithms for road and pathway detection would partially fail due to their

occlusion by the canopy cover. Thus, crucial information for forest management and fire prevention such as road width and slope would

be misevaluated.

This paper deals with road and pathway detection in a complex forested mountaneous area and with their geometrical parameter

extraction using lidar data. Firstly, a three-step image-based methodology is proposed to detect road regions. Lidar feature orthoimages

are first generated. Then, road seeds are both automatically and semi-automatically detected. And, a region growing algorithm is carried

out to retrieve the full pathways from the seeds previously detected. Secondly, these pathways are vectorized using morphological tools,

smoothed, and discretized. Finally, 1D sections within the lidar point cloud are successively generated for each point of the pathways to

estimate more accurately road widths in 3D. We also retrieve a precise location of the pathway borders and centers, exported as vector

data.

1 INTRODUCTION

1.1 Motivation

Forest monitoring is a domain where GIS and remote sensing data

could help on many tasks. Road and pathway databases of good

quality enable foresters to plan their moves. Moreover, infor-

mation about road width and slope permit to know which kind

of vehicles are able to reach areas of interest in mountainous re-

gions. Finally, accurate DTM and forest parameters (tree volume,

species, etc.) are used for hydrological models, land monitoring,

fire prevention, and othe natural hazard management.

Unfortunately, for mapping institutes, accurate DTMs and path-

way databases are often very difficult and expensive to compute

and maintain. In situ measures with tacheometers or terrestrial

laser scanning need a long acquisition time and expensive sur-

veys, especially for moutainous areas. Besides, traditional pho-

togrammetric methodologies are limited by the canopy top since

the ground is partially or totally occluded by trees on geospatial

images. Therefore, it makes road detection and DTM genera-

tion very difficult and sometimes requires the use of external data

or higher-level approaches (Mayer et al., 1998, Zhang and Balt-

savias, 2000, Amo et al., 2006).

However, the airborne lidar technology has the ability to penetrate

vegetation and offers the possibility to reach the ground under-

neath. This has lead, in the last decade, to successful research on

DTM generation and forest parameter estimates on mountainous

areas. Thus, the use of ALS data for forest monitoring is today

common, with lower and lower acquisition costs. Nevertheless,

compared to lidar data filtering, only few articles have been ded-

icated to the use of ALS data for road and pathway detection.

1.2 Aims and background

The scope of this paper is to detect pathways in a mountainous

area from airborne lidar data. More precisely, our primary goal

is to show the proof of feasibility of such task with a prototype

of full workflow from raw lidar data to vector database objects.

An example of such workflow, but mainly focused on urban ar-

eas, has been described earlier in (Clode et al., 2007). This last is

splitted on two parts: first, road classification, then, vectorization,

with centerline and borderline detection. A similar strategy has

been adopted in this work.

In (Clode et al., 2005), road classification is carried out by filter-

ing twice ALS data. First, points are selected as candidats with re-

spect elevation and ALS intensity bounds. Then, in order to take

the homogeneity of road objects into account, the density of road

candidate points is used as second filtering criterion. Whereas,

in (Rieger et al., 1999), roads are extracted on mountainous areas

using high quality DTMs from ALS data. First, a slope model

improved by applying an edge enhancement filter is generated.

Then, a combination of line and point features are extracted. Fi-

nally, road borderlines are automatically or semi automatically

detected using the concept of “twin-snakes”.

Different strategies also exist for the extraction of road geomet-

ric parameters. In (Hatger and Brenner, 2003), a road database

is used to initialize road centerlines. Then, cross-sections per-

pendicular to the road database features are analyzed in com-

parison with a theorical road model. Finally, geometric param-

eters are computed from the cross-sections which are best fitting

with the model. In (Clode et al., 2007), the vectorization part is

processed by convolving the binary classification result with the

Phase Coded Disk method.

The paper is structured as follows. The data set is first described

in Section 2. Then, the proposed processing workflow is de-

tailed in Section 3. Finally, results are shown and perspectives
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are drawn in Section 4

2 DATA TEST

The study area, shown on Figure 1, is a 108ha state forest located

in southern French Alps. This is a protective afforestation mainly

composed of black pine originating from the end of the XIXth

century. Most of the stands are even-aged and mature. This area

is part of an Observatory for Research on the Environment (ORE

Draix) monitoring erosion and hydrological processes in moun-

tainous areas. Elevation ranges from 802 m to 1263 m. The steep

topography has a 53 % mean slope reaching up to 100 % locally.

Stand density varies from low-densities (100 stems/ha) originat-

ing from seed cuttings in the low-lying part of the study site to

high densities (more than 750 stems/ha)

Data was acquired in April 2007 using a RIEGL c�LMS-Q560
system. This sensor is a small-footprint airborne laser scanner

with waveform-digitizer capabilities. Main technical characteris-

tics are presented in (Mallet and Bretar, 2009). The lidar system

operated at a pulse rate of 111kHz. The flight height was approx-

imately 600 m leading to a footprint size of about 0.25 m. The

point density is about 5 pts/m2.

Raw full-waveform data consists of 1D intensity profiles along

Figure 1: Data test location.

the line of sight of the lidar device. The temporal sampling of the

system is 1 ns. Each return waveform is composed of one or two

sequences of 80 samples corresponding to 12 m or 24 m length

profiles.

Data has been processed using the approach described in (Chauve

et al., 2007). Waveforms have been decomposed using a Gaus-

sian model. A 3D point cloud has been generated from the sig-

nal processing step with additional observables (amplitude and

witdh). That allows to retrieve target backscattered cross-section

information (Wagner et al., 2008).

Finally, the 3D point cloud has been segmented into ground and

off-ground points, and a DTM has been computed on the ground

points using the algorithm described in (Bretar, 2007).

3 METHODOLOGY

In order to detect pathways, a coarse-to-fine methodology has

been adopted (Figure 2). In a first time, focus is made on de-

tecting 2D raster regions where roads exist. Then, a refinement

step is carried out using raw lidar data to qualify the detected 2D

segments, and to precisely extract their geometrical properties.

Even if the raw data consists of 3D points, a 2D image-based

methodology has been selected for coarse pathway detection. Such

methodology allows to use many useful algorithms already exist-

ing in the image processing community for road detection. More-

over, data processing is much more simpler and faster in 2D than

in 3D. Finally, the loss of precision due to interpolation process

is corrected with a return to raw data during the fine step.

Figure 2: Three steps global methodology workflow.

3.1 Image-based pathway detection

The first part of the proposed workflow is composed of three

steps. The first step is a classical 2D reprojection and interpo-

lation of 3D ALS features to obtain 2D images. A resolution of

1m has been chosen due to the point density of our data set. ALS

features are carefully chosen depending on the physical and geo-

metrical properties of the road object. Ideally, the generated im-

age should be easily segmented onto pathway and “non-pathway”

regions.

Next, seed positions of pathways are detected. This second step

greatly influences the final result and could strongly depend on

the geographical area of interest. Therefore, it has been decided

to both test semi-automatic and automatic detection approaches.

Then, to obtain full pathways, a region growing algorithm is ap-

plied on each feature image. Finally, the different segmentations

are combined to obtain a 2D binary pathway mask.

3.1.1 Feature orthoimages selection and generation Fea-

ture selection is carried out from a priori properties of the path-

way objects on a mountainous area context. A summary of these

properties is presented below:

• Context properties:

– pathways are ground objects;

– pathways are often bordered with vegetation.

• Local and global geometrical properties:

– locally plane;
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– pathway width is constrained, locally constant and bounded;

– pathway are linear with parallel borders.

• Radiometric properties:

– pathways often have a same radiometry (homogeneous,
no road marks);

– pathway radiometry is contrasted with vegetation ra-
diometry.

Considering the above properties, three feature images have been

generated from the 3D point cloud. First, a normalized Digital

Surface Model (nDSM) is computed. A nDSM corresponds to

the elevation above the ground (nDSM = DTM−DSM). It per-
mits to use the fact that pathways lie on the ground (Figure 3).

However, some tests have shown that the last pulse DSM should

be preferred to the first pulse DSM. As a consequence, pathway

regions have less occlusions due to canopy cover, but canopy still

has enough density to generate an image with good contrast. This

means that not all the last pulses belong to the ground.

Secondly, an image of altimetric variance (σz) is generated

Figure 3: nDSM image generated from the last pulses of the lidar

point cloud.

to segment plane regions from regions with significant altimetric

dispersion as vegetated areas (Figure 4).

Finally, an intensity (I) image is also interpolated from ALS

data to detect regions with a homogeneous radiometry and bor-

dered with contrasted radiometry (Figure 4). Intensity computed

from a Gaussian decomposition of lidar waveforms enables to re-

trieve a normalized physical feature, compared to the “intensity”

sometimes provided with multi-echo sensors. Therefore, we have

(Wagner et al., 2008):

Ii =
√

2πPisi (1)

Where: Pi is the amplitude of the echo i within the waveform,

and si its width. Finally, the intensity value is corrected according

to the flying height and the local slope of the terrain, estimated

from the DTM computed before.

3.1.2 Detection of pathway seeds Seed selection is a critical

step for effective region growing algorithms. However, the man-

ual detection of all the seeds necessary to full pathway detection

is highly time expensive. To overcome this issue, it has been de-

cided to use a statistical learning methodology.

A group of representative seeds are manually or automatically se-

lected. Then, statistical parameters of this group are extracted for

Figure 4: Left: Altimetric variance image. Right: Intensity im-

age.

each feature f (mean m(f), variance σ(f)). Finally, the selected

seeds are all the pixels inside the interval [m(f) − σ(f), m(f) +

σ(f)] for the three features.
Several criteria have been tested to automatically initialize the

seed detection. First, the mean and variance of preselected groups

of pixels are calculated for each feature image. In our case, the

hundred lowest pixels have been chosen for nDSM and altimetric

variance features. Because pathways exhibit high reflectance on

this study area (due to gravels), the highest pixel values have been

selected for the intensity image. Nevertheless, it has to be noticed

that this is a not a valuable property for all kind of geographical

areas.

The automatic methodology has shown promising results toward

a fully automatic pathway detection. Nevertheless, the semi-

automatic pathway detection still provides better results and has

been prefered as basis for the next workflow steps.

3.1.3 Region growing The region growing algorithm used is

a ITK implementation itk�onfidence�onnectedImageFilter.

ITK (Kitware, 2009) is a widespread open-source imagery toolkit

with various image processing algorithms. The algorithm is ap-

plied separately on each feature image in order to obtain three

different binary masks.

The algorithm starts from a pixel seed. Then, for each pixel p

in a region: (i) the local meanmp and variance σp are computed

from a 7×7 neighborhood; (ii) pixels belonging to a 3 ×3 neigh-
borhood with their value in [mp − σp, mp + σp] are added to the
current region. The algorithm stops when no other pixel could be

added.

As it has been decided to split the region growing algorithm by

features, a merging step is necessary. It has been noticed that

the intersection of the three binary masks leads to the best re-

sults. In order to analyze more easily advantages and drawbacks

of each feature, a merged label image, mixing the results of the

three region growing processes, have been computed. A binary

encoding has been used to compute label image values from the

binary masks. For each pixel (i, j) of the image the final label is
computed using the following formula:

label(i, j) =
# featuresX

f=0

maskf (i, j)× 2f
(2)

3.2 Geometrical pathway extraction

In order to extract the geometric properties of the detected path-

ways, the binary mask is first vectorized. Then, vectors are used

to compute altimeter cross-sections along detected pathways us-

ing the 3D lidar point cloud. Finally, the border locations are

extracted from these cross-sections.
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Figure 5: Label image mixing the results of the three bi-

nary masks (nDSM, variance σz , and intensity I). Red

= {σz ∩ I ∩ nDSM} – Green = {σz ∩ nDSM} – Blue =
{I ∩ nDSM}.

3.2.1 Binary mask denoising and vectorization The path-

way vectorization starts with a skeletization step. Since the mask

resulting from the region growing is noisy, a cleaning of binary

regions is first applied. The binary mask denoising begins with a

median filter in order to remove salt and pepper noise. Then, for

smoothing pathway borders, erosion and dilation morphological

filters are successively applied.

Next, a skeleton is computed with classical morphological tools.

Then, the skeleton is decomposed into road segments by detect-

ing pathway intersections. A road intersection is here a skeleton

pixel with more than two neighbours belonging also to the net-

work skeleton. Nevertheless, some of the detected road segments

are too small for being introduced in a pathway database. Such

tiny segments could come from poor detection, but also represent

fields or forest driveways. They can be removed by applying a

threshold on their length (< 5m).
On the final step of the vectorization, a centerline model is fitted

for each segment to the corresponding pixel set. Due to the moun-

tainous context, the pathways have not the same properties than

classical roads and no official normalization documents could be

used for modelling them. However, pathways still have a max-

imum curvature. Moreover, to obtain pathway cross-sections of

good quality, the model has to enable a precise (planimetric) per-

pendicular estimate for each point of the pathways. Regarding

these constraints, the Bezier spline curves have been chosen as a

suitable model to fit the pathway pixels.

3.2.2 Road width extraction and accurate border localiza-

tion The extraction of geometrical properties of pathways is

made with a simple strategy. First, for each detected segment,

a set of equidistant cross-sections are computed within the raw

3D lidar point cloud. The 2D cross-section bounding boxes are

oriented from the perpendicular of vectorized segments and have

all the same width and length (1 m and 20 m). Altimetric profiles

are generated from the first pulse of the point cloud (cf. Fig-

ure 6). Echoes within the bounding box are sorted along the

cross-section length axis and then linked on this order. Each

cross-section is processed independently.

The altimetric profile is first simplified with a generalization al-

gorithm as the Douglas-Pecker line simplification. Then, it is

filtered with a slope threshold, and the longest of the resulting

segments is kept. Finally, the selectioned profile is extended with

its neighbours while a joint slope and width criterion is respected.

The proposed algorithm always finds a pathway profile, even if no

Figure 6: 1D altimetric profiles of pathway cross-sections. Left:

erroneous detection. Right: correct detection.

pathway exists or if the cross-sections are too noisy for pathway

detection (see Figure 6). To overcome this issue, quality crite-

ria have been added to evaluate the process. Quality criteria are

lower and upper bounds for the pathway width (depending on

the geographical context), and a maximum slope limit. Pathway

profiles are labelled as good if they respect the two criteria, as un-

certain if one of the criteria is not respected but near to the criteria

limits, and as wrong otherwise (Figure 7).

Figure 7: Result of the borderline detection. The blue line cor-

responds to the simplified centerline estimated from the region

growing algorithm. The pink dots represent the borders correctly

estimated from the cross-sections.

4 RESULTS AND DISCUSSION

A prototype of a full workflow for pathway detection in moun-

tainous areas from airborne laser data has been presented. This

prototype leads to promising results and also underlines the is-

sues that have to be tackled toward a more automatic and robust

pathway characterization.

4.1 Feature selection

The result of the region growing algorithm shows that it is possi-

ble to correctly detect pathways using only ALS features. Never-

theless, the choice of good ALS features is still a research task.

The nDSM is a widespread feature for ALS data segmentation.
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In a urban context, the main advantage of nDSM compared to

the variance is its ability to differentiate ground from plane roofs.

But, in a mountainous context, this advantage is less obvious.

Moreover, a major drawback of nDSM is its dependency to the

ground filtering algorithm. To overcome it, the use of a point

density feature has also been investigated. An image of the den-

sity of echoes being both first and last pulses has been computed

(Figure 8). The idea is here that, in a pathway, there are less mul-

tiple echoes than in forested regions (except border regions with

trees occluding the pathways). This feature seems promising but

is more noisy and less obvious to process than nDSM. On the

opposite way, DTM could also be used to extract a slope feature

(Rieger et al., 1999).

A second issue is the choice of an appropriate feature scale de-

Figure 8: Density of echo being “unique” on their pulse (blue:

low values, red: high values).

tection. Such multi-scale approach has been successfully applied

for road detection from images at different resolutions (Heipke

et al., 1997). The main advantage of the multi-scale approach

is its ability to deal with noise from road regions in case of roads

wider than one pixel. With lidar data, it could be expected that in-

creasing the neighborhood size in the interpolation process could

decrease the noise level, especially for features like altimeter vari-

ance.

4.2 Region growing

ALS data outperforms passive optical data for pathway detection

in forest and mountainous areas. However, we also have to deal

with tree shadows and tree canopy partially covering the roads.

Due to such occlusions, the region growing algorithm leads to

some unconnected segments. To improve the pathway detection

rate, a methodology to grow and link pathway regions in a more

robust way is needed.

First, the binary mask could be improved using the label image

(Figure 5). Pathway regions could be added by analyzing the in-

tersection from two of the three binary masks. They are added to

the binary mask if they respect some criteria such as an elongated

geometry and a proximity to yet detected pathways.

Finally, another possibility is to use profile matching and Kalman

filtering methodologies as described in (Vosselman and de Knecht,

1995) for cross-section processing. Such algorithms enable to use

and extend the result from one cross-section to adjacent profiles.

In this case, pathway borders are not processed independently

and this leads to a more robust and regular detection. This also

could be used to propose propagation directions from vectorized

pathway centers.

4.3 Pathway geometric parameters retrieval

Two geometric parameters have been extracted: center and bor-

der positions. The slope attribute has not been computed but is

another useful parameter. For the detected regions, the vectoriza-

tion shows results similar to an existing pathway database. Path-

way borderlines labelled as correct are coherent with the feature

image geometry but not with an existing orthoimage (Figure 9).

A small planimetric shift is noticed between the two images but

is not due to erroneous border detection (< 3m in absolute).
Moreover, in order to be integrated into a vector database, path-

Figure 9: Result of the vectorization step. Red: detected and

vectorized pathways. Pink: detected borderlines. Blue: pathways

from an existing database.

way borders need also to be regularized and vectorized. This step

could for instance be carried out with a lidar data-driven method-

ology. Another solution to increase pathway border quality is

to improve the pathway detection from lidar cross-sections. On

one hand, it can be done by processing cross-sections with more

robust 1D signal processing algorithms. On the other hand, gath-

ering all lidar points (not only last echoes) intersecting the cross-

sections is of interest (Kaasalainen et al., 2009).

4.4 Workflow automatization

The automatic seed detection is the most difficult part to solve of

the detailed workflow. The proposed seed detection has a very

low false positive rate but has still an important under detection

rate. Such results mean that the parameters learnt from the seed

automatically detected are too restrictive for an efficient region

growing (Figure 10).

Concerning the generalization of rules for automatic pathway

Figure 10: Image of labels after seeds automatically (left) and

semi-automatically (right) detected.

detection, it must be remarked that if a threshold on geometri-

cal features like nDSM or variance could easily be generalized to

different contexts, this is not the case for features like intensity.
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Indeed, a calibration task is first needed to obtain values homo-

geneous over different landscapes and for distinct surveys.

4.5 Extension to other kinds of areas

The method presented in this paper has been designed to detect

roads in a forested mountanous area, i.e., a specific context com-

pared to rural or urban areas that are traditionaly tackled in the

literature. Modifications on the proposed workflow are required

to assess whether the latter one is valid in such areas.

Firstly, the segmentation features should be modified. The lidar

intensity is still a discriminative feature but:

• the nDSMwould no longer be efficient in rural areas since there
is likely to be fewer above-ground items compared to forested and

urban areas. It should only be used to locally detect trees and con-

nect resulting segments in the final step of the workflow.

• the altimeter variance would be useless both in rural and urban
areas since there are fewer trees and more rigid opaque anthropic

structures.

In such areas, for instance, the computation of breaklines should

be performed to constraint the region growing algorithm (Briese,

2004).

Secondly, the road width extraction and the accurate border lo-

calization is still possible in urban and rural areas but is likely to

be less effective if the point density of the available point cloud is

not sufficient (more profiles classified as uncertain). Indeed, there

is no longer trees or significant steep slopes to indicate where the

border is, especially in urban areas. Other bounding criteria have

therefore to be found to achieve an accurate detection. However,

the exhaustivity of the border detection should be higher in such

areas since the variations of the road are more foreseeable (well

known width bounds or maximum curvature).

5 CONCLUSION

A full workflow for the pathway detection on mountainous area,

from raw ALS data to vector database objects, have been pro-

posed. With the increasing use of ALS data for DTM generation,

such workflow should enabled to decrease the data acquisition

cost for mapping institute. The detected pathways could also be

used both for improving DTM generation and as features for strip

adjustment and registration. The results show the feasibility of

generating and updating pathway databases from ALS data, but

their quality is still insufficient to be used on a production context

for mapping agencies. In order to tackle the mentioned issues, it

has been draw perspectives to improve robustness and automatic-

ity of pathway detection.
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