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ABSTRACT:

In contrast to conventional airborne multi-echo laser seasystems, full-waveform (FW) lidar systems are able tone the entire
emitted and backscattered signal of each laser pulse.abhsteclouds of individual 3D points, FW devices provide cected 1D
profiles of the 3D scene, which contain more detailed andtiatdi information about the structure of the illuminatedfaces. This
paper is focused on the analysis of FW data in urban areasprblbéem of modelling FW lidar signals is first tackled. Tharstard
method assumes the waveform to be the superposition ofl signaibutions of each scattering object in such a lasenheehich are
approximated by Gaussian distributions. This model isablgtin many cases, especially in vegetated terrain. Hawsiee it is not
tailored to urban waveforms, the generalized Gaussian hi®delected instead here. Then, a pattern recognitionadefr urban
area classification is proposed. A supervised method usipgp@t Vector Machines is performed on the FW point cloudebasn
the parameters extracted from the post-processing steguiltRshow that it is possible to partition urban areas itding, vegetation,
natural ground and artificial ground regions with high aacyrusing only lidar waveforms.

1 INTRODUCTION inside the penetrated canopy offers insight in the vegetayipes
and state (Harding et al., 2001). In urban areas, the patenti
of such data has been barely investigated. For instance, Jut
and Stilla (2005) extract linear features on roof tops byagth-

ing neighbourhood relationships between waveforms. Thay a
aim at localizing more accurate building outlines. On thigeot
hand, by exploiting other features in addition to the geaoynet
(e.g, pulse amplitude or width), segmentation of vegetatedsarea
is now possible (Gross et al., 2007). To achieve more addance
point classification in urban areas, a theoretical knowdeafghe
influence of the geometric and radiometric properties oftite
?argets i.e. the differential laser cross-section) on the shape of
the lidar waveforms is required.

The aim of the article is to show that a fine analysis of full-
waveform lidar data can lead to an accurate classificatiam-of
ban areas. The general outline of this work is described @ Se
tion 2. Then, a new modelling function is proposed to process
raw signals in Section 3. The results of the integration ef th
previous extracted features into a supervised classiitaigo-
rithm are presented in Section 4. The aim is to discriminaie f
classes: buildings, vegetation, artificial and naturalugcbre-
gions. The test data sets are outlined in Section 5. Fintléy,
results of waveform processing and classification are ptede
and the conclusions are finally drawn.

In the last decade, airborne lidar systems have become emn alt
native source for acquisition of altimetrer data. Such cevide-
liver areliable, fast and accurate representation of $éied land-
scapes through georeferenced and unstructured 3D poumd<lo
(RMSE < 0.1 min altimetry). Range is determined directly ac-
cording to the signal runtime measurement whereas phatogra
metric techniques derive the 3D information indirectly éd®n
the camera orientations and the disparity of corresporegeirc
stereo photos identified by image matching methods. A larg
body of literature addresses the potential of laser scgneita
for urban and suburban area analysis. For instance, many alg
rithms for classifying lidar point clouds have been devebbgo
far aiming at building detection and subsequent recontsbmic
(Matikainen et al., 2003; Sithole and Vosselman, 2004). yThe
often depend on the availability of a cadastral map, evesiihi-

out this information, building outlines can at least royghé ex-
tracted. In the latter case the discrimination of buildirfigsn
adjacent trees is difficult. Allthese approaches rely oplgruge-
ometric and topologic criteria and have in common to be seasi
to large off-terrain objects and surface discontinuitieserefore,
many authors proposed other inputs like echo intensitywTio
and Vogtle, 2004) or multi-spectral images (Rottensteaial.,
2005) to achieve better results.

Since few years, a new generation of lidar devices designmed t 2 OVERALL METHODOLOGY

digitize and to record the entire backscattered signala eanit-

ted laser pulse became operational. They are chllediaveform  Common laser data formats are clouds of 3D points, often pro-
(FW) lidar systems. Full-waveform data offer the opportunity vided without link to the original laser shot. In contrastthds,

to overcome many drawbacks of classical multi-echo lidaa da FW profiles comprise information of the 1D object structuong
(Wagner et al., 2004). In addition to single range measunésne the line of sight. Nevertheless, such data are more diffiodian-
further physical properties of the objects included in tierat- dle and specific studies have to be carried out. In this artal
tion cone may be revealed by analysis of the shape of the sampl approach is proposed to process FW lidar data to extract 82 po
backscatter sequence. clouds featuring more useful parameters in addition to rtheit
Many studies have already been carried out to perform FW dattonal (z, y, z) coordinates and to perform subsequently a point
processing, mainly in vegetated areas. The higher poirgigen classification based on these parameters.



Waveform processing consists in decomposing the wavefaton i
a sum of components or echoes, in order to characteriseffae di 0-20 7

entindividual targets along the path of the laser beam. Ampat- A
ric approach is choseng., parameters of a mathematical model 045 Q::ﬂf:'ﬁmf
are estimated. The aim of waveform processing is to maximize

the detection rate of relevant peaks in order to foster méor
tion extraction from the raw signal. Non-parametric methtkke
splines, neural networks or Parzen windows are known to work
very well to fit 1D signals. Nevertheless, they eventuallgrag-
imate curves to the data (Bishop, 2006) and do not provide the
signal maxima location, which is required to produce 3D poin
clouds through a georeferencing process. 0.00
The objective of waveform processing is twofold. A pararcetr 13
decomposition increases the accuracy of the signal maxiong a o
the lidar beam. Furthermore, from a class of functions tist fite
to the waveform is chosen. This allows to introduce new param
ters for each echo and to extract additional informatioruatioe

target shape and its reflectance. - o sensors and does not exist in multiple-pulse point cloudghe
Then, the extracted point cloud is classified. The aim is to asjierative process, a weak pulse just behind a strong oneviseo

sess whether or not each new feature introduced is relegant fmoved when their amplitude ratio is closed to the ratio co@gu
classification and how significant it is for urban analysiee®  om the emitted pulse (given with the data).

it provide really useful information?). The features aré fieto

a supervised classification algorithm using Support VeMear 32  Modelling functions

chines (SVM). This method is well adapted to deal with high-

dimensional feature space since the algorithm complexigsd  Waveforms collected with a small-footprint lidar systera ased

not depend on the data dimension. Furthermore, SVM belong tf this article (RIEGL LMS-Q560). Such data can be well mod-
the non-parametric classification techniquies, no parametric  elled by superposition of Gaussian pulses (Hofton et aDORO
probability density functions are required. In recent ge&VM  Wagner et al. (2006) have shown that more than 98% of the ob-
became relevant for solving remote sensing classificatiskst  served waveforms collected from the RIEGL system could be fit
(Huang et al., 2002). SVM allows to use jointly classical ge-ted with a sum of Gaussian functions. Each laser output pulse
ometric features (number of extracted peaks, altitudewifice  shape is assumed to be Gaussian, with a specific and catibrate
between first and last echoes of a waveform, etc.), imagesbas width. The collected pulse is therefore a convolution betwis
information (Secord and Zakhor, 2007) as well as in our case n djstribution and a "surface” function, depending on theawifhg
parameters extracted from the post-processing step. objects. Nevertheless, in fact the transmitted signal isatveays

The methodology for classification in urban areas by FW lidarGaussian. Indeed, it is observed that the LMS-Q560 tratethit
data analysis is designed to be flexible. Depending on the modyaveform is slightly asymmetric.

0.10

% of waveforms

0.05 A

Figure 1: Histogram ofv values over the four test classes.

elling function, the theoretical understanding of pulsepaga-  In urban areas, most of the return waveforms are in reality su
tion in such regions and the chosen options of the SVM classifi ject to the mixed effects of geometrie.g, roof slopes) and radio-
itis possible to adjust the level of detail of the classifimat metric object propertiese(g, different kinds of streets and roof

materials), histograms of the four considered classesllae i

trated in figure 1. Hence, the characteristics of return p@adky

differ significantly. It was already shown that standardcesions

of the Gaussians model, which are Lognormal and generalized

3.1 Methodology Gaussian functions, are suitable to model raw lidar sigri#ding
the generalized Gaussian (GG) model improves the signalfitt

Our methodology is based on a paper written by Chauve et afor symmetric and distorted waveform shapes (more thar289.3

(2007). The authors describe an iterative waveform praegss  of satisfactory results) (Chauve et al., 2007). Here, thenGf@el

using a Non-Linear Least Squares fitting algorithm. Aftesrse  was used also to process two FW data sets of different sites:

initial peak detection, missing peaks are found in the redil

of the difference between the modelled and initial signélfs. |z — M|a2

new peaks are detected, the fit is performed again. This gsoce fea(x) = Aexp | ————5— 1)

is repeated until no further improvement is possible. Tiis e

hanced peak detection method is useful to model complex-wavgnare 4 is the pulse amplitude; its width,  the function mode
forms with overlapping echoes and also to extract weak echoey ., a shape parameter which allows to simulate Gaussias (
not found by on-line detection techniques. In urban ardas, t V2), flattened & > v/2) or peaked [ < a < v/2) pulses.

former case is observed when the laser beam graces building ; anq« are the three new features which will be introduced
edges. The resulting waveform is therefore composed of disg, the classification step in Section 4.

tributed backscatters of the roof and the ground, which ¢@m0  1he | ggnormal model fits asymmetric pulses with success but
nl?:it be separated by hardware detection algorithm usinglthre ¢:c for symmetric ones.

olds.

Moreover, the methodology has been improved to take thg-'rin

ing effect’ into account: after the sampled emitted pulsemall 4 CLASSIFICATION OF URBAN AREAS

secondary maximum due to the effects of the hardware wawefor

processing chain can be seen. Consequently, in urban esfears, 4.1 Methodology

the laser beam hits plane objects of high reflectance andawith

small angle of incidence (typically streets and roofs),hsari- Based on a clustering analysis of the parameters extracied f
fact is still present in the reflected waveform. It is typiochFW  the modelling step, four classes have been chosen to cearact

3 WAVEFORM PROCESSING



ize urban areas: buildings, vegetation, natural groundaatid  with K (z;,z;) = (®(z;) | ®(x;)). In fact, the knowledge ok
ficial ground. Artificial ground gathers all kinds of streets (tar, is sufficient to compute the optimal classifier. It has onlfuldfil
asphalt,...) and pavements whereasriairal groundclass in-  Mercer’s condition (Scholkopf et al., 1998).
cludes grass, sand and bare-earth regions.
Multi-class SVMs SVMs are designed to solve binary prob-
4.2 Support Vector Machines lems. When having > 3 classes of interest, various approaches
are possible to address the problem, usually combining afset
The general mathematical formulation of SVMs is briefly tech ~ binary classifiers. We choose the ‘one-against-one’ ajgproa-
in this section. cause it has been shown to be more suitable for large problems
(Hsu and Lin, 2002). For such pairwise classificatigfn—
Linear SVMs D is the data spac@; the label space and the  binary classifiers are computed on each pair of classes. daach
training seté.g, D = R"*, ¥ = {—1, 1} in two-class problem). ple is assigned to the class getting the highest number esvot
The classification is carried out using a linear discrimtrfanc- A vote for a given class is defined as a classifier assigning the
tionw (D — Y). =; € A are theN training samples available sample to that class.
with their labelsy; / i € [1, N]. The theoretical aim of supervised
classification is to find a classifier consistent with thertir set.  In practise The LIBSVM software is used to implement the
The SVM method consists in finding the hyperplane maximiz-SVM algorithm (available aittp: //www.csie.ntu.edu. tw/
ing the distance (called the margin) to the closest traimiaga ~ ~cjlin/libsvm). Slack variables are introduced (soft-margin
points in both classes (the support vectors). For a linessél classifier). Then, the paramet€rhas to be optimized with the
fier, w(z) = w -z — 0, wherew € D is the normal vector to kernel hyperparameters (see Section 4.3).
the hyperplane and the bias. We aim at finding the classifier )
parametersw, #) which verify: 4.3 Kernel selection

V(zi,yi) €A, yix (W-z; —0)>0 2 Without sufficient a priori knowledge of the influence of gegim
_ B ric and radiometric parameters on the pulse shape (or er@mst
Since the SVM method searches the best classiféerthe largest  hints about characteristic behaviours on urban areasjetsign

margin), we impose: of a kernel dedicated to our specific purpose given our cuas is
very difficult task. Therefore, a generic kernel was selictiee
V(zi,yi) €A, yix (W-zi—0)>1 () Gaussian kernel defined as:

The support vectors lie on two hyperplangs © — 6 = +1 lzs — ]2 .
which are parallel and equidistant to the optimal lineaiasaple K(zi,zj) = exp (T) withy >0 (6)
hyperplane. Finally, the optimal hyperplane has to maxéntiie
margin {.e., the Euclidian distance between both hyperplaneswhere~ tunes how similar to the training data the test data is
defined as 2jw||) under the constraints defined in Equation 3. expected to bey( — 0 for instance leads to over-fitting and con-
Unfortunately, in most cases, such quadratic optimizapimb-  sequently reveals a low generalization ability of the dfaess3.
lem is unsolvable: we cannot find a linear classifier consiste Because optimal values of C and are not known beforehand, a
with the training set. The classification problem is not éifg  grid search is performed in which the cross-validation eacy
separable. (CVA) is computed for each point. Ina&fold cross-validation
Consequently, slack variabfes; are introduced to cope with procedure, the training data are dividedirsubsets of equal
misclassified samples and prevent Equation 3 from being viosize. The classifier is trained an— 1 subsets and ran on the
lated. Another reason is the avoidance of over-fitting thegifier ~ remaining one. The CVA represents the percentage of samples
to the training samples, which would result in poor perfange  correctly classified averaged over all the subsets whenvieey
It becomes: used as the testing subset. Tli&+) grid is composed of expo-
nentially growing values of” and-~, for instance, in our study
V(ziyi) €A, yix Wea;—0) >1-& /Vie[I,N],& >0 ¢~y =2"1 2713 215 Afterthe coarse grid search, a finer
(4) one is computed in a smaller range around the optimal parame-
The final optimization problem is subsequently: ters found in the first step. Such grid search is necessarg e
CVA over (C',y) set is not convex.

N
| Iw]? -
min [T +C .E_ & | subject to (4) (5)

=1 4.4 Feature selection and relevancy

C'is a constant which determines the trade-off between margin

maximization and training error minimization. Our feature vector for each lidar point height components.

) o ) ) o Ar: difference between the pulse range and the highest range
Nonlinear SVMs When the classification problem is not lin- (lowest altitude) found in a large spherical environmefng2
early separable, one solution consists in changing thereapace. radius for instance),

The data is projected in a higher dimension space using &nronl
ear mapping functio® : D — H, in which the new distribution
of samples enables the fitting of a linear hyperplane. Kernel
methods provide nonlinear hyperplanes and improve cleasifi
tion abilities. The same margin optimization method cam the
performed.

Finding @ is a difficult problem. In practise, the; points are

e R: residuals computed from a plane estimated by a robust
L-estimators with norni.; » (p=1.2 is proved to be the opti-
mal value for thel,, estimator, see (Xu and Zhang, 1996) for
more details) on the points in a given neighbourhood (here
a spherical environment of 0.5 m radius),

e n.: the deviation of the local normal vector from the verti-

implicitly projected inH by defining a kerneK : D x D — R cal, ) ] )
o Azy: the altitude difference between the first and the last
1A slack variable is a nonnegative variable that turns anuakity into pulse of the waveform,

an equality constraint.

N the number of echoes in the waveform,



e A, o, a: the pulse amplitude, width, and shape respectively Area Biberach Le Brusquet

(extracted from the waveform processing step described in Urban specificity dense rural

Section 3). ) ) Flight height (m) 500 700
The three first parameters can be used with every 3D pointiclou Footprint size (m) 0.25 0.35
(only geometric information). The three last ones are @ekiv PRF (kHz) 100 111
by waveform modelling (amplitude can also be available with Pulse width (ns) >5
multiple-pulse point clouds). Tem : ~

. . . poral sampling (ns 1

e e ot o e T Tom ot around | Vertcalsecton (m) | 180136 24 0r48
poInts, Az71 serimi vegetation pol Pulse density (/) 25 5

ers. These two information are necessary because the number
of echoes alone is not sufficient. Multiple reflections canunc Table 2: Overview of the specification of the data sets.
when the laser beam hits a roof (due to superstructures)hend t

street (due to cars or building edge$. andn. values are also

affected by such data. The generalized Gaussian paranaeters more crucial in urban areas. Indeed, the benefits of fullef@m
introduced in the SVMs to see how significant they are for thed@t@ for building reconstruction or classification are éfioedl.
First, the GG model improves signal fitting. More relevannp®

segmentation between the four classes and especiallyahahd = X
are extracted. 5% additional pulses are found which coorasp

artificial grounds. : e
Table 1 summarizes the feature values for the differentisabe ©Weak pulsesin hedges, building edges and roof supetustesc
Furthermore, taking the 'ringing effect’ into account aloto ex-

Other features have been tested such as the altimetricréextu . - 9 - A .
and several moments of the three extracted parametersver gi ¢'ude artifactsi(e., non-existing points) during post-processing
neighbourhood (mean, standard deviation, and skewneg¢han (S€€ Figure 2). On ground and building regions, ringing fsoin

backscatter cross-section (Wagner et al., 2006) but they met ~ &r€ removedx 15% of the total number of points). ,
found relevant for our study. Furthermore, decomposing parametrically the wavefortieases

the accuracy of the signal maxima location along the lidane

| Feature | Building | Veget. | Art.grd | Nat. grd The target range detection is subsequently improved by thare
Ar variable | variable —0 —0 0.05 m on building roofs and ground.
R -0 high —0 —0 Finally and above all, the global fitting quality is incredsbe-
Nz [-45,45°] | variable | [-10,10°] | [-10,10°] : .
Azg 0 high 0 0 A
N ~1 zgl 1 1 b
A variable | medium low variable
o medium high variable | variable /
a [1.5,1.6] | variable | ~+/2 >2

Table 1: Empirical values of the selected features for SVadsi-
fication for the four labels\{eget: vegetationArt. grd: artificial
ground,Nat. grd natural ground).

Figure 2: Building point cloud without taking the 'ringindfect’
into account left, the black arrow shows the false point layer.).
The same data but after removal of artifaaigl{t). The roof

Two data sets are available for this study. The data acipuisit aPPears no longer doubled.

were performed respectively in September 2006 and May 200Z,,se flattened, narrow, and high pulses are now well detecte
with the RIEGL LMS-Q560 system over the cities of Biberach rjg, re 1 shows that since thevalues are in many cases larger
(Germany) and Le Brusquet (France). The main technicabehar /5 (mean valuet.52), waveforms are in reality flattened
teristics of this sensor are presented in (Wagner et al6)20the compared to Gaussian curves. Depending on the applicaitien,
specifications of each survey are described in Table 2. RIEGlg, ,ssian model can nevertheless be sufficient. For exainple,

full-waveform system allows to determine the vertical WiBl- ¢, o510 areas, waveforms are mainly composed of at least tw
tion of targets within the diffraction cone with a temporahs peaks. In such application, it is often not of interest taatta

pling of 1 ns. , 0i{hape parameter, which will depend both on the reflecteetarg
Each return waveform is composed of one or two sequences Qfny on the targets already hit by the laser beam. But, in urban
60 and 80 samples (for Biberach and Le Brusquet, respegiivel 5 055 the GG contribution is all the more significant sifiie t

For each recorded waveform, the digit!zed emit.ted pulsethed parameter provides a genuine information about the tatgetes
echoes found by the hardware detection algorithm are gigsen &4 reflectance.

well as their amplitude and width. In urban areas, the digiton

of vertical sections of around 30m is sufficient to recordksaat- 6.2 Behaviour of extracted parameters

tered signals both from the tree tops and the ground belom.the

The city of Biberach includes residential, industrial aetise ur- A morphological analysis of lidar waveforms is needed arida s
ban areas. The surveyed area of Le Brusquet consists adrszhtt ulation step is required to understand how the pulse intgreith

5 FULL-WAVEFORM LIDAR DATA

houses in an alpine rural region. the targets and to decorrelate geometric and radiometilie- in
ences. Amplitude and width values have also to be corrected a
6 RESULTS AND DISCUSSION cording to the waveform angle of incidence and the targgtesio
Analysis of the extracted point clouds revealed the follapgen-
6.1 Modelling raw signals eral behaviour of the three extracted parameters for difiietar-
gets in urban areas:
As described in details in (Chauve et al., 2007), it is stifbepri- e High amplitude values are found on building roofs, inde-

ate to model complex waveforms with the GG function and &l th pendent of the material (except metal), on gravel, on sand



and cars. The lowest values correspond to vegetation points P
due to a higher target heterogeneity and attenuation. Asphg.80 -+ o ¢
and tar streets have also low amplitude values, but despite o
low contrast it is possible to visually discriminate difet (.75 L o
kinds of surfaces. O

e \egetation spreads lidar pulses that is why the highedth .70 4
values are found in trees and hedges. Ground and building
surfaces coincide with low width values even if an increas- ' ' '
ing roof slope tends to increase pulse width. {parsRinz} +8zp N +A4 +0  +a

e Very low and highshapevalues are characteristics of build- Figure 3: Overall Accuracy evolution depending on the fea-
ing edges and vegetation. Building region corresponds wit%i

| . i bet 15and 1.6). Nat ures included in the SVM algorithm. Starting from the vecto
o values In a specific range (be ween 1.5 and L. )- Natural wuar; R;n:}, the other ones are added progressively (Biberach
ground (especially grass) and artificial ground surfaces ca

also be visually distinguished. However, vegetated aneas e area).

hibit comparable values (see Figure 1). (see part 4.4). Each new feature improves the classificagion

sults. A label-by-label analysis reveals that the ampétudiue
6.3 Classification allows to discriminate building and ground points; the fieat is

helpful to enhance the building/vegetation separatiorredtity,
Both data sets have been classified. Approximatively 0.8%ef results are slightly worse for ground points withthan without
pulses were used for the training step and 1% to find the optimahe integration of this parameter for the Biberach data(&88%
values ofC' and~. For all the tests carried out, the correct classi- success without for thenatural groundclass), whereas this pa-
fication rate for the training step oscillates between 80%0%. rameter visually improves the results over Le Brusquet figee
It illustrates that the SVM classifier does not over-fit, miable  ure 4, no ground truth available for this area). Another Sofu
to generalize and has been trained sufficiently. has to be found to discriminate ground surfaces better.
Table 3 gives the classification results over the city of Biloh The figures 4 and 5 give examples of classified point over the tw
using the vector composed of eight features. It shows that th
segmentation between different kinds of ground leads tora ce
tain rate of misclassification. The main reasons are, finstt t
only few grass or sand regions are present in Biberach aka an
therefore only limited numbers of samples are availabléréon-
ing and test. Moreover, the clusters in the feature spaceeskt
two classes are very close (see table 1). The results aefaher
very sensitive to the training step and the selected regiCns-
sequently, the SVM classification often fails when discriating
these two regions. Nevertheless, tests carried out on thefi
Le Brusquet (rural area) show that classification in fourlab
is still conceivable when enough training samples are alvksl
(Figure 4). Thebuilding andvegetatiorpoints are well classified.
As expected, some building points are classifiedrasind (their
values can be closeg, a flat dark roof close to the ground) and
asvegetationespecially superstructure and building edge points.
Vegetated points can also be labellecbagding when the laser
beam hits dense tree areas.

Area (number of | Buildings | Vege-| Art. Nat.
reference points) tation | ground | ground
Building (76593) 87.1 8.8 3.6 0.5
Vegetation (8943) 10.2 88.9 0.7 0.2
Art. ground (49048) 2.2 2.1 84.6 111
Nat. ground (1043) 4.1 ~0 33.2 62.7

Table 3: Confusion matrix computed with ground truth caotisis
of 6% of the whole data set of Biberach £ 0.81 and 135627
points).

Figure 4: Classification results in a scattered urban are®(us-
_ _ o _ ~quet area) Above: orthoimage of the region of interesBelow:
The Overall Accuracy is used as a quality criterion and iswefi  classified point cloud (yellow: buildings, red: vegetatidue:

as: Zdimy n artificial ground and green: natural ground).
_ i=1 51
p= Zqimly Zqimi/ As €[01] ) surveyed areas. Moreover, by merging the two terrain ctatise
i= j=

Overall Accuracy of the remaining three classes reachesfor9

] ] ) the Biberach area. It shows that the SVM method is suitable fo
whereA; ; gives the number of laser points labelledjaand be-  jigar point classification in dense build-up areas.

longing to the classin reality. p is equal to 1 when the classifica-
tion is perfect and 1/diry when the classifier randomly chooses
the class for each point with the same probability. Figure@s
the evolution of the classification accuracy depending enrth
put features, adding them by their historical 'order of sppace



Figure 5: Classification results in a dense urban area (Bébecity).Left: orthoimage of the region of intereRight: classified point
cloud (yellow: buildings, red: vegetation, blue: artifici@ound and green: natural ground).
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