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ABSTRACT Various models of fatigue crack growth in different scenarios have been proposed in the 
literature. Here, we propose a general prognostic framework for tracking crack evolution in equipment 
undergoing fatigue and predicting the Remaining Useful Life (RUL). The main contribution of this work is 
to integrate Particle Filtering (PF) and a new ensemble model which combines diverse physical degradation 
models with respect to their accuracy performance in previous time steps, in order to maximize the overall 
prediction capability. To validate the effectiveness of the proposed framework, a case study concerning 
multiple fatigue crack growth degradations is extensively investigated. 

INDEX TERMS fatigue crack growth, multiple stochastic degradation, prognostics and health management, 
remaining useful life, particle filter, dynamic ensemble 

Nomenclature 
 
Abbreviations 
BWWV Best-Worst Weighted Vote 
EOP End-Of-Process 
IMMPF Interacting Multiple Model Particle Filter 
MAPE Mean Absolute Percentage Error 
MC Monte Carlo 
MSE Mean Square Error 
PBM Physics-Based Model 
PDF Probability Density Function 
PF Particle Filtering 
PPI Prognostic Performance Indicator 
RMSE Root Mean Square Error  
RUL Remaining Useful Life 
SMC Sequential Monte Carlo 
SME Sample Mean Error 
SMeE Sample Median Error 
TWEB Timeliness Weighted Error Bias 
 
Latin symbols 
a constant of polynomial crack growth model 
b constant of curve fitting model 
C material constant 
d width of the specimen undergoing fatigue 

crack (mm) 

f state transition function 
g measurement function   
h(x) geometric factor 
m material constant  
N number of fatigue load cycles (cycle) 
NM number of degradation models 
NP number of particles 
NS number of units under test 
p probability distribution 
q importance sampling distribution   

 actual RUL at time t (cycle) 

 estimated RUL of the ith degradation model 
at time t (cycle) 

 estimated RUL of the ensemble at time t 
(cycle) 

t time (cycle) 
 estimated failure time of the ith degradation 

model at time t (cycle) 
 previous estimation accuracy-based output 

weight of the ith degradation model in the 
ensemble at time t 
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i
t

ˆRUL

t
ˆRUL

i
tT

i,t
estw



 

VOLUME XX, 2017 9 

 previous prediction accuracy-based output 
weight of the ith degradation model in the 
ensemble at time t 

 overall output weight of the ith degradation 
model in the ensemble at time t 

 normalized overall output weight of the ith 
degradation model in the ensemble at time t 

x degradation state (mm) 
xth failure threshold (mm) 

 estimated degradation state of the ensemble 
at time t (mm) 

 estimated degradation state of the ith 
degradation model at time t (mm) 

 predicted degradation state of the ith 
degradation model at time t with 
measurements that are available up to time 
tp (tp < t) (mm) 

z measurement (mm) 
 
Greek symbols 

 geometric coefficient of fatigue crack 
 time horizon for previous estimates 

considered (cycles)  
 time horizon for previous predictions 

considered (cycles)  
 stress intensity factor (MPa ) 
 cyclic stress amplitude (MPa)  

 time interval (cycle)  
 weight coefficient of individual degradation 

model 
 measurement noise 
 state noise 

 
 
I. INTRODUCTION 
The rapid development of technology and computer science 
is bringing opportunities for industrial systems to evolve 
smarter and faster, but also more complex. In this fast-
changing environment, unanticipated risks and failures 
which may cause large-scale breakdowns with significant 
losses in both production and economics, have also increased 
[1]. To cope with this challenging situation, the development 
of reliability and health management strategies for 
preventing components and systems from such unexpected 
failures are urgently required. Specifically, these strategies 
aim to monitor health conditions of engineering components, 
predict their Remaining Useful Lives (RULs) and, 
ultimately, enable optimal maintenance decisions before the 
breakdown of the components [2], [3]. In practice, the 
reliability of equipment usually starts decreasing due to 
gradual degradation, e.g., delamination [4], fatigue crack 
[5]–[8], corrosion [9], [10], etc., under periodic cyclic loads 
and eventually leading to failures. Fatigue crack growth is 

one of the most frequent degradations leading to components 
and systems failures in several major industries, including 
energy [6], [11], automotive [7], aerospace [8], etc. 
Therefore, the demand of prognostic systems for dealing 
with fatigue crack growth has recently increased. 

To address this issue, Physics-Based Models (PBMs), 
which utilize the physical knowledge of the degradation for 
constructing a quantitative analytical model of the equipment 
behavior, have gained significant attention for fatigue crack 
growth prognostics [12]–[14]. In [13], a failure prognostic 
scheme for fatigue crack growth prediction was introduced, 
which employed a stochastic crack growth model and a 
Bayesian technique to timely update the equipment 
degradation state from a sequence of monitored 
measurements. Other Bayesian-based prognostic approach 
was presented to estimate the stress intensive range of the 
degradation model in an online manner [14]. The capability 
of Bayes theorem was fully exploited for updating 
knowledge about the current degradation state of the target 
equipment and the unknown parameters in physical models, 
when a new measurement becomes available.  

Among Bayesian-based prognostic techniques, a 
sequential Monte Carlo (SMC) method, known as Particle 
Filtering (PF) method, has become very popular due to its 
capability of effectively handling non-linear systems and 
non-Gaussian noises. The key idea behind this method is to 
represent the posterior distribution of the equipment state by 
a random set of weighted samples, also called particles, and 
then compute the estimated state based on the particles and 
their associated weights. This methodology has been widely 
adopted for state estimation and prediction of crack growth 
[15]–[17], Lithium-ion batteries [18], [19], PEM fuel cells 
[20], bearings [21], etc. 

On the other hand, the performance of model-based 
prognostic frameworks for fatigue crack growth largely 
depends on the choice of the adopted physics-of-failure 
model [22], [23]. Numerous research on modelling fatigue 
crack growth have been extensively investigated and 
developed [5], [24]–[26]. In [24], a comprehensive 
comparison of stochastic models for fatigue crack growth, 
including the Markov chain model, the Yang’s power law-
based model, and a polynomial model, was carried out. The 
results indicated that each degradation model has its own 
specific range of applicability, that is, each model is only 
appropriate to certain degradation processes under certain 
conditions. To the best knowledge of the authors, there is no 
general consensus on a prognostic model for fatigue crack 
growth under different degradation processes. Recently, 
hybrid and multi-degradation model ensembles have 
attracted the attention of industrial practitioners and 
researchers due to their superiority over individual 
degradation models in terms of higher accuracy and better 
generalization capability [19], [27]. The fundamental idea of 
these empirical frameworks is to exploit the diversity of 
different degradation models, which can offer 
complementary information about the degradation states to 
be estimated. In an application of Lithium-ion battery 
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prognostics, an Interacting Multiple Model Particle Filter 
(IMMPF) has been presented to combine the estimations 
from three different battery capacity degradation models 
[27]. The results experimentally indicated that the ensemble 
approach can yield a promising performance in terms of 
smaller estimation errors and more accurate predictions than 
single models. 

In this paper, an ensemble-based prognostic approach is 
presented for predicting the evolution to failure and the RUL 
of an equipment undergoing fatigue crack growth. To 
maximize the diversity property of the proposed framework, 
four stochastic degradation models of fatigue crack growth 
are considered in this work. Moreover, PF is used to track 
the crack propagation process with nonlinear and non-
Gaussian characteristics and eventually to predict the RUL 
of the equipment before breakdowns. To further enhance the 
performance of the proposed framework, a dynamic 
weighted ensemble strategy is proposed in this paper, based 
on the previous accuracy performance in degradation state 
estimation and RUL prediction of each single model in the 
ensemble. Finally, a set of prognostic performance indicators 
(PPIs) is employed to validate the prediction capability of the 
proposed framework. 

The rest of this paper is organized as follows. Section 2 
introduces the degradation models for fatigue crack and details 
the proposed prognostic framework. Section 3 describes the 
illustrative case study and the experimental results of the 
proposed framework in comparison with individual models. 
Finally, Section 4 concludes the study. 
 
II. ENSEMBLE-BASED FRAMEWORK FOR FATIGUE 
CRACK PROGNOSTICS 
This section presents the proposed ensemble-based 
framework for fatigue crack prognostics. Three key issues 
are addressed: how to select the degradation models for the 
ensemble; how to use the degradation models for estimating 
the degradation states and predicting the RUL of the 

equipment; how to combine the outputs of the individual 
models for achieving maximum accuracy. Fig. 1 illustrates 
the flowchart of the proposed prognostic model; more details 
are given in the following sections. 

A. DEGRADATION MODELS FOR FATIGUE CRACK 
Diversity is an important aspect to consider in the design of 
an ensemble modeling framework. To address this issue, 
four stochastic fatigue crack degradation models are selected 
for exploiting their diversity in the ensemble: Paris-Erdogan, 
polynomial, global function-based, and curve fitting models. 
 

1) PARIS-ERDOGAN MODEL 
The popular Paris-Erdogan model describes the dynamic 
evolution of the crack depth  as a function of the load cycle 
number  as follows [28]:  

 , (1) 

where  and  are constants related to the material 
properties, and  is the Irwin’s stress intensity factor 
defined by [29]: 
 , (2) 
where  is the cyclic stress amplitude. In practice, the 
statistical variability of the crack growth rate can be 
addressed by modifying (1) with an intrinsic process 
stochasticity [30]: 

 , (3) 

where  is a white Gaussian noise. For a 
sufficiently small , the Markov chain state-space model 
of the degradation state  in (3) can be discretized as 
follows: 
 . (4) 

 

 
FIGURE 1.  Flow diagram of the proposed prognostic framework. 
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2) POLYNOMIAL MODEL 
The polynomial models were first introduced for fatigue 
crack growth in order to solve the mismatch between the 
traditional power function-based models, i.e. Paris-Erdogan, 
and the practical median crack growth curves [24], [31]: 

 , (5) 

where  are the second-degree polynomial 
parameters. Indeed, various works showed that the 
polynomial models are able to yield the best fit of the linear 
stage of a degradation process, compared to conventional 
models [19], [31]. Specifically, the Markov process 
representation for a polynomial crack growth model can be 
given as follows: 
 . (6) 

3) GLOBAL FUNCTION 
Considering again the Paris-Erdogan model (4) and the fact 
that fatigue crack growth generally depends not only on 
material properties but also on equipment geometry, a so-
called global function was introduced by reformulating the 
stress intensity factor  [32]:  
 , (7) 

where  denotes the geometric factor of fatigue crack, 
defined by:  

 , (8) 

where  and  are geometric coefficients 
and the width of the specimen, respectively. The global 
function-based model for fatigue crack growth can be, 
then, written as follows:  
 . (9) 

4) CURVE FITTING FUNCTION 
In [32], an empirical crack growth model based on a curve 
fitting function was presented, which was shown to 
outperform the conventional models, such as Paris-Erdogan 
and polynomial models, in terms of higher prediction 
accuracy and lower computational cost:  

 , (10) 

where ,  are model constants. The discretized Markov 
process representation for the model can be given as follows: 

 . (11) 

B. DEGRADATION STATE ESTIMATION AND RUL 
PREDICTION BY PF 
In this work, PF is employed to estimate the current 
degradation state of the equipment and to predict its future 
evolution until failure. The key idea of PF is based on 
Bayesian filtering and Monte Carlo (MC) simulation [33]. 
The basics of the method are recalled in the following 
sections.   

1) CURRENT DEGRADATION STATE ESTIMATION 
PF assumes that the state model can be represented as a first-
order Markov process, where the current degradation state 

 at time depends only on its previous state . The 
dynamic system process can be described by the following 
equations: 
 , (12) 
 , (13) 
where  denotes the measurement,  is the state noise 
sequence, and  is the measurement noise sequence at the 

inspection time . 
In a Bayesian framework, the system state  can be 

estimated by constructing its posterior probability density 
function (pdf), , via two consecutive steps, namely 
prediction and update. In the prediction step, the previous 
state estimation  and the state transition model  are 
utilized to obtain the prior distribution of the system state  
at current time t via the Chapman-Kolmogorov equation: 
 , 

 (14) 
where  is the conditional probability distribution 
and is defined by the state model in (12). As a new 
measurement  is collected, the required posterior 
distribution of the current state  can, then, be obtained by 
updating the prior distribution via Bayes theorem as follows: 

 , (15) 

where  is the likelihood function defined by the 
measurement model in (13) and  is a normalizing 
constant given by: 
 , (16) 

However, there is usually no analytical solution to (14) and 
(15) [19]. To address this issue, PF utilizes MC simulation to 
approximate the true probability distribution with a set of 
weighted random particles , where  is 
the total number of particles. In fact, these particles evolve 
statistically independently of each other, according to the 
probabilistic state model (12). In this regard, the posterior 
distribution at time  can be approximated as: 
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 , (17) 

where  is the Dirac Delta function, often used to 
represent a discrete distribution as a continuous probability 
density function : 

 , (18) 

where  is a discrete distribution with 
corresponding probabilities . 

In particular, the particle  is sampled from the 
importance sampling distribution  and its 

associated weight  is given by:  

 . (19) 

By setting  defined in (12), the 

particle weight  can be updated with a new collected 
measurement  as follows: 
 , (20) 

where  is the likelihood of measurement  given 

the particle . Note that the weights are normalized as 

 

2) FUTURE DEGRADATION EVOLUTION PREDICTION 
Once the posterior distribution  of the current 
degradation state is estimated, it is possible to predict the 
future degradation evolution and the RUL of the equipment. 
However, note that there is no available information for 
estimating the likelihoods of the future degradation states, 
because future measurements , where  is 
the time horizon of interest for the analysis, have not been 
collected yet. The only available information is the dynamic 
state model (12). Then, the l-step ahead posterior distribution 

 can be written as follows:    

. (21) 

The numerical evaluation of the integrals in (21) requires 
significant computational effort. In this paper, an approach 
presented in [34] is adopted with the assumption that the 
particle weights do not change from time  to time , 
i.e., . Accordingly, the predicted 
distribution at time  is given by:  

 , (22) 

where the particle  is obtained by iteratively applying the 

state model (12) to the corresponding particle of the current 
state . 

Finally, the RUL associated to each particle at the present 
time  can be calculated with reference to the earliest time 
that the degradation state exceeds the failure threshold : 

  (23) 
where  is obtained by simulating the particle evolution via 
the state model (12). The predicted RUL distribution is, then, 
given by: 

 . (24) 

More details can be found in [35], [36]. 

C. SELECTIVE ENSEMBLE BASED ON PREVIOUS 
ESTIMATION AND PREDICTION ACCURACIES 
With respect to the way of calculating the weights of the 
models in an ensemble, the existing ensemble methods can 
generally be divided into three categories: (a) simple vote 
ensemble [37], where all individual models outputs are given 
the same weight coefficients in the voting strategy; in this 
scheme, majority vote is the most popularly used rule; (b) 
weighted ensemble [27], which combines individual models 
with different weight coefficients: each individual is 
assumed to have a different contribution to the performance 
of the ensemble model; (c) selective ensemble [38], which 
includes only an optimal subset of models. This latter 
method has recently attracted increasing interest, due to its 
capability of significantly reducing the bias and variance in 
the ensemble estimation [38].  

In this section, we present a selective ensemble approach 
for prognostics of fatigue crack growth based on a best-worst 
weighted vote (BWWV) strategy [39]. A novel ensemble 
weight constructed by using both previous estimation and 
prediction accuracies of each individual model in the 
population is proposed. 

1) PREVIOUS ESTIMATION ACCURACY-BASED OUTPUT 
WEIGHT CALCULATION 
Suppose that we have a sequence of measurements collected 
until the current time , . The degradation 
states described by the individual models, 

, where  is the number of 
individual models in the population (  in this study), 
can be estimated by using the PF described in Section 2.2. A 
weight coefficient of the ith model, based on the Root Mean 
Square Error (RMSE) of its previous estimates with respect 
to the corresponding measurements, can be calculated as 
follows: 

 , (25) 
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considered (  load cycles in the case study that 
follows). 

The previous estimation accuracy-based output weight of 
each single model is, then, obtained based on the BWWV as 
follows:  

 , (26) 

where  and . By using the 

BWWV strategy, a maximum weight, = 1, is assigned to 
the model in the ensemble with highest accuracy at the 
present time t, and a null weight, = 0, is given to the 
model with least accuracy, which is equivalent to removing 
the model from the ensemble for the estimation at time t.  

2) PREVIOUS PREDICTION ACCURACY-BASED OUTPUT 
WEIGHT CALCULATION 
Due to the fact that there is no available information from 
observations to predict the future equipment RUL, the 
prediction accuracy of each model in the ensemble for the 
previous time steps is used to calculate the corresponding 
output weight. 

We first identify a time instant  before the present time 

 in the time horizon, where    (  load 
cycles in the following case study), as illustrated in Fig. 2. 
The state prediction  (the dashed line) of one model at 

time  is obtained by iteratively applying the system model 

to the estimated state , which is set to  in this study. 
We can now calculate the weight coefficient of the ith model, 
based on the RMSE of its predictions for degradation states 
between time  and , with respect to the measurements:  

 . (27) 

Subsequently, the previous prediction accuracy-based output 
weight of each single model is computed as:  

 , (28) 

 

 
 
FIGURE 2. Sketch of the previous prediction accuracy-based output 
weight calculation approach. 
 

3) OUTPUT WEIGHT CALCULATION 
Finally, the complete output weight of the ith model in the 
ensemble at time  is calculated as an average of the 
previous estimation accuracy-based and the previous 
prediction accuracy-based weights: 

 . (29) 

The output weight is, then, normalized as: 

 , (30) 

Once the output weights for all models are updated, a 
weighted-sum strategy is used to obtain the degradation state 
estimation and the RUL prediction of the ensemble as 
follows:  

 , (31) 

 , (32) 

where  and  are the degradation state estimation and 
the RUL prediction of the proposed ensemble at the present 
time , respectively;  is the RUL prediction of the ith 
model in the ensemble. 

III. CASE STUDY 
A case study of fatigue crack growth is carried out in this 
work to demonstrate the effectiveness of the proposed 
method, including crack depth measurements of 100 
simulated degradation trajectories, as shown in Fig. 3. The 
common Paris-Erdogan model in (4) is adopted for 
describing the evolution of the crack depth with the 
parameters predefined as follows: 
• The model constants are  and ; 
• The state and measurement noise variances are 
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 and , respectively. 
The crack depths, with a 10-4 mm initial length, are 

recorded every load cycle. The failure threshold is 
mm. And the fatigue simulation for each degradation 
trajectory is performed with a total 800 load cycles. 
 

 
FIGURE 3. 100 fatigue crack growth degradation trajectories. 

 

1) PERFORMANCE EVALUATION 
In this section, the robustness of the proposed ensemble-
based prognostic framework is exploited for tracking a 
fatigue crack growth trajectory and, then, predicting the 
equipment RUL. The results are compared with four models 
of fatigue crack growth to validate the improved 
performance in terms of degradation state estimation and 
RUL prediction. To evaluate the prognostic framework, five 
widely used PPIs are considered: a) Timeliness Weighted 
Error Bias (TWEB); b) Sample Mean Error (SME); c) Mean 
Absolute Percentage Error (MAPE); d) Mean Square Error 
(MSE); e) Sample Median Error (SMeE). Details of their 
definitions are given in Appendix.  

When a new measurement is collected, the estimation of 
the current degradation state for each individual model is 
also timely updated by using PF as described in Section 2.2. 
Fig. 4 illustrates the estimation results of four single models 
over the lifetime of the considered degradation trajectory. 
The first degradation trajectory from the simulated crack 
depth dataset described in Section 3.1 is taken. Each model 
shows a distinctive characteristic in different stages of the 
degradation evolution of the fatigue crack, which is perfectly 
suitable for diversity in the proposed ensemble. 

  

FIGURE 4. Degradation state estimation for the considered degradation trajectory using individual models.

Based on the estimations of the individual models, the 
output weights can be determined and used to update the 
results of the state estimation and RUL prediction by the 
proposed ensemble, as shown in Figs. 5 and 6, respectively. 
As can be seen in Figs. 5 and 6, the individual fatigue crack 
growth models do not perform very well in the RUL 

prediction throughout the time horizon considered because 
of their low accuracy in estimating the current degradation 
state. In contrast, the proposed approach has a performance 
which is superior to any individual model throughout the 
entire life of the equipment, yielding a RUL prediction close 
to the true RUL. 

2 1.10ws = 2 2.25vs =

100thx =
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To further investigate the performance of the proposed 
method, four different randomly chosen scenarios are 
considered, whose results are depicted in Figs. 7 and 8. As 
shown in these figures, the proposed ensemble method 
consistently exhibits satisfactory performance in estimating 
the equipment crack growth trend and accurately predicting 
the RUL. This is due to the proposed prognostic approach 
which benefits from the diverse accuracy of the individual 
models by a weighting scheme that can adaptively select the 
best set of models. Furthermore, in Fig. 8, the confidence 
intervals show that the RUL prediction accuracy of the 
proposed method is improved with more available data.  

 
FIGURE 5. Degradation state estimation for the considered degradation 
trajectory using the proposed ensemble. 

FIGURE 6. RUL prediction for the considered degradation trajectory 
using the proposed ensemble. 

 
   
Tables I and II present the average performances in terms 

of degradation state estimation and RUL prediction, which 

have been calculated based on 100 crack depth growth 
scenarios. The results clearly show that the proposed 
prognostic approach consistently outperforms the individual 
models for all of the prognostic metrics. 

 
TABLE I 

PERFORMANCE COMPARISON IN TERMS OF MSE OF DEGRADATION STATE 
ESTIMATIONS 

 Paris-
Erdogan 

Poly-
nomial 

Global 
function 

Curve 
fitting 

Proposed 
ensemble 

Avg. MSE 
(std) 

117.72 
(102.68) 

166.30 
(80.39) 

138.64 
(74.91) 

102.90 
(69.38) 

8.85 
(5.04) 

 

 
TABLE II 

PERFORMANCE COMPARISON IN TERMS OF PPIS OF RUL PREDICTIONS 

 TWEB SME MAPE MSE SMeE 

Paris-Erdogan 0.09 115.25 0.62 18.28 103 114.63 

Polynomial 0.07 85.68 0.37 11.56 103 85.43 

Global function 0.02 45.79 0.20 3.11 103 45.86 

Curve fitting 0.03 65.18 0.23 7.01 103 64.18 

Proposed 
ensemble 0.01 29.41 0.16 3.03 103 31.81 

 
 

IV. CONCLUSIONS 
In this paper, a prognostic modelling framework for fatigue 
crack growth is proposed. The main original contribution of 
the work is to combine the PF and a new adaptive ensemble 
approach, which integrates models of diverse accuracies in 
previous estimations and predictions for maximizing the 
generalized prediction performance. The proposed 
framework is, then, applied to track the degradation 
evolution and predict the equipment RUL. Various 
prognostic metrics are employed to evaluate the prediction 
performance. The results indicate that the proposed 
ensemble-based prognostic framework outperforms 
conventional models and is a powerful tool for prognostics 
of fatigue crack growth. 
A limitation of the study is the lack of a real application for 
validation. Even though several simulation tests were 
performed to prove the effectiveness of the proposed 
approach in terms of different PPIs, a real case study of 
fatigue crack growth is still needed. Further research on 
addressing this issue with practical applications of fatigue 
crack can be considered in future work.   
  

´

´

´

´

´
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FIGURE 7. Degradation state estimation using the proposed ensemble with different available measurements. 

 

  

  
FIGURE 8. RUL prediction using the proposed ensemble with different available measurements 
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APPENDIX 
Detailed definitions of the PPIs 

Formula Description 
1. Timeliness weighted error bias (TWEB) 

 

 

Measure the weighted prediction error over the lifetime Tj by using a 
penalty function and a weighting function .  is defined as 

a Gaussian kernel function with a mean value Tj and a standard deviation 
0.5Tj. The optimal value for TWEB is 0, which indicates that the predicted 
RUL is centered on the true one. Higher values of TWEB indicate a great 
discrepancy between the predicted RUL and the true one.   

2. Sample mean error (SME) 

 

Calculate the average errors of all sample points during the lifetime Tj. The 
optimal value for SME is 0, which indicates that the average errors of all 
samples is 0, that is, the predicted RUL is centered on the true one. Higher 
values of SME indicate a great discrepancy between the predicted RUL 
and the true one. 

3. Mean absolute percentage error (MAPE) 

 

Measure the average absolute percentage error of all samples throughout 
the lifetime Tj. The optimal value for MAPE is 0, which indicates a 
negligible error for all samples during their lifetime. Higher values of 
MAPE indicate a great discrepancy between the predicted RUL and the 
true one. 

4. Mean square error (MSE) 

 

Take into account the average quadratic error of the predicted RUL of all 
samples during the lifetime Tj. The optimal value for MSE is 0, which 
indicates that the predicted RUL is equal to the true one for all samples. 
Higher values of MSE indicate high errors in the predicted RUL. 

5. Sample median error (SMeE) 

 

Exploit the absolute median of average errors of all samples over the 
lifetime Tj. The optimal value for SMeE is 0, which indicates that the 
median error of all samples is zero. Higher values of SMeE indicate that 
most predicted RULs are wrong. 
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