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DETAILS OF EXPERIMENTAL MEASUREMENTS

A detailed sketch of the experimental setup is depicted in Fig. 1. It consists of a passive fibre cavity from the 102
m long dispersion shifted fibre (DSF) (βDSF2 = 0.5 ps2/km at the pump wavelength, γ = 2.5/W/km), an isolator and
a fibre Bragg grating (FBG) acting as a notch filter in transmission and a 90/10 coupler. The total cavity length is
104.2 m (coupler+fibre). The reflected light by the FBG is blocked by the isolator. The cavity is driven by a train
of square shaped pulses of 1.5 ns duration. The configuration allows to avoid Brillouin scattering and to get high
peak power pulses to trigger the parametric processes. Pulses are generated from a continuous wave (cw) laser at
1545 nm intensity modulated by an electro-optical modulator (EOM). The repetition rate is set to match with the
repetition rate of the cavity (1.96 MHz) to get one pulse per round-trip. Pulses are then amplified by an erbium-
doped fibre amplifier (EDFA) and pass through a thin filter (BPF, 1 nm width) to remove amplified spontaneous
emission (ASE) in excess. At the output of EOM1, a weak part of the pulse train is collected by means of a 80/20
coupler, and then combined with the powerful pulse train using a 50/50 polarisation maintaining coupler. The weak
and the strong pulse trains are cross polarised and are interleaved in the time domain to not interact. Both trains are
then launched in the cavity in the anti-clockwise direction. At the cavity output, the spectrum is analysed with an
optical spectrum analyser (OSA) and the weak pulse train is isolated from the strongest one in two stages. First by
using a polarisation beam splitter and then with EOM2 that is synchronised with EOM1. Finally, the weakest signal
experiences an isolation of more than 60 dB from the strong one and can be used as a reference signal to stabilise
the cavity. We used a feedback loop system (proportional-intergral-derivative-controller) to keep both the driving
frequency of the pump laser and the overall cavity length stable. The setup is very similar to schemes implemented
in Refs. [1, 3, 4] except that the probe signal is co-propagating because of the use of an isolator inside the cavity. All
spectra shown in this paper were recorded from this stabilisation scheme because in this way the cavity detuning can
be precisely determined [1, 3, 4] (Oscillo. 1). In the time domain, a commercial time lens system (Picoluz ultrafast
temporal magnifier, Thorlabs) connected to a high band-pass oscilloscope (Oscillo. 2) and photo-detector (70 GHz
bandpass each) is used to get a temporal resolution of 300 fs over 50 ps with a magnification factor of 57. This
resolution is good enough to analyse the temporal patterns associated with the modulation instability whose period
of modulation is about 1/588 GHz'1.7 ps. The time lens system is pumped by an ultra-stable laser (MENLO)
at 100 MHz repetition rate. Note that it is not necessary to synchronise the time lens pump with the pulse launched
inside the cavity as we did not aim at performing round trip to round trip measurements. We analysed output traces
when the cavity reached its steady state by recording a large set of data and by selecting those for which the time
lens pump and the cavity output pulses temporally overlap. A single example is shown in Fig. 4 of the paper, but
many similar recordings were obtained which proves that the cavity had indeed reached its steady state. Excellent
cavity stabilisation is required to get clean time traces. Thus, we slightly modified the experimental setup for these
time measurements to improve the stabilisation accuracy. Rather than using an error signal co-propagating with the
pump, we maximised the power of one of the parametric sidebands as in Ref. [6]. We used a bandpass filter (BPF2,
1 nm bandpass at FWHM) to select the frequency of the sideband we wanted to destabilise. We fixed it exactly at
the frequency shift we had in Fig. 2, 588 GHz. Hence, as the cavity detuning is automatically set by the system, we
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can fairly assume that it is close to the value measured with the other stabilisation system, i.e. φ = −0.04 rad. The
system is much more stable in this way and we have been able to record very clean temporal traces.

Laser EOM1
BPF1

EDFA

90/10

Cavity

EOM2

PD

Oscillo. 1

PD
EBPFPID

Piezo Tuning D
elay

50/50

90/10

EDFA

PBS

PC1

PC2

PC3

PC4

FB
G

1FB
G

2

OSA
Time
LensPDOscillo. 2

PD

50/50
BPF2

PC5
PC6

femto.
Laser

Detuning

Temporal trace

80/20

FIG. 1. Experimental setup. PC1−6, polarisation controllers; STR, stretcher; PD, photo-detector; EOM1,2, electro-optic 
modulators; OSA, optical spectrum analyser; EDFA, erbium-doped fibre amplifier; FBG1,2, fibre Bragg grating; BPF1,2, band-
pass filters; PID, proportional-integral-derivate controller; EBPF, electronic band-pass filter.

TEMPORAL AND SPECTRAL EVOLUTION OF THE INTRACAVITY FIELD

In this section we report the evolution of the intracavity field (as a function of the roundtrip number) calculated form 
numerical solution of the Ikeda map, and corresponding to the output fields reported in Figs. 2 and 4 of the main paper. 
The parameters used for the simulations are reported in the Methods section of the Manuscript. Figure 2(a) shows the 
building of the frequency comb in time domain starting from an empty cavity. After a few roundtrips, the cw steady 
state of the cavity is reached. GTF mechanism amplifies the noise and produces an exponentially growing modulation. 
Due to the dissipative character of the resonator, the growth saturates towards a periodic train of pulses, which becomes 
stable after around 150 roundtrips. The negative group velocity of the pattern is caused by the odd part of the overall 
dispersion [1], which is a combination of the third order dispersion of the fibre and the odd part of the filter phase. Figure 
2(b) shows the evolution of the spectrum. At roundtrip 80 two symmetric sidebands at ±580GHz from the pump start 
to become visible and correspond to the peak of GTF gain. Then, several lines are generated through multiple four-wave 
mixing, until a stable comb is obtained after around 250 roundtrips. Figures 2(c-d) show a zoom on the dynamics along 
the fibre (inside the cavity) when a stable comb is reached (roundtrips 300 and 301 are showed). A significant reshaping 
in time domain is showed in Fig. 2(c) from z = 0 to z = L = 104.2m (roundtrip 300). The field regains the initial shape 
after the injection of the pump and the action of the filter. The evolution during roundtrip 301, indexed by fibre length 
from L to 2L in our representation, is essentially identical. The power spectrum showed in Fig. 2(d) does not show any 
significant modifications, meaning that the deformation seen in time domain are mainly caused by a different phase 
acquired by each spectral line during the propagation along the fibre.
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FIG. 2. Temporal and spectral evolution of the intracavity field. Power (a) and spectrum (b) at the position of the coupler (z = 0) 
as a function of roundtrips. Intracavity field power (c) and spectrum (d) as a function of the position in the fibre for two successive 
roundtrips (300 and 301). The following parameters has been used: β2 = 0.5 ps2/km , β3 = 0.12 ps3/km, γ = 2.5 W−1km−1, L = 
104.2 m, km−1, ρ2 = 0.5940 (cavity finesse F = 12) , θ2 = 0.1, φ0 = − arg[H(0)] (the measured total cavity detuning is zero), input 
power PIN = 6.6 W , frequency shift of the filter ωf /(2π) = 399 GHz.

ANALYTICAL CALCULATION OF THE PARAMETRIC GAIN AND PHASE MATCHING CONDITION

Statement of the problem

The starting point of our theoretical treatment is the following Ikeda map in dimensional units

i
∂An
∂z
− β2

2

∂2An
∂t2

+ γ|An|2An = 0, 0 < z < L, (1)

An+1(z = 0, t) = θEin + ρeiφ0An(z = L, t). (2)

All the losses (except the filter) are lumped in ρ, so that 1−ρ2 measures the total power loss per round trip. φ0 is the
linear phase shift per round trip. Third order dispersion has been neglected because it does not affect the parametric
gain. The filter located at the position z = zF acts in the following way:

An(z+F , t) = h(t) ∗An(z−F , t), (3)

Ân(z+F , ω) = H(ω) Ân(z−F , ω), (4)

where h(t) is the filter response (causality imposes h(t) = 0 if t < 0), ∗ denotes convolution and H(ω) = ĥ(ω) =∫ +∞
−∞ h(t) exp[iωt]dt is the filter transfer function. For simplicity, the filter is assumed to be placed just before the

coupler (zF = L). This way, the boundary conditions and filter can be conveniently combined in the single equation:

An+1(z = 0, t) = θEin + ρeiφ0h(t) ∗An(z = L, t) (5)
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Steady state

We search for the stationary (∂t = 0 or equivalently ω = 0) field inside the fibre as

An(z, t) = Ase
iγPz, P = |As|2.

The relation between the field circulating into the cavity and the pump is (for complex field and power)

As =
θ

1− ρeiφH(0)
Ein, (6)

Ps =
θ2

1 + ρ2|H(0)|2 − 2ρ|H(0)| cos(φ+ ^H(0))
Pin (7)

where the total phase shift imposed by the cavity is φ = φ0 + γPL.

Linear stability analysis

In order to study the stability of the steady state defined by Eq. (6) we consider the following perturbation

An(z, t) = [
√
P + η(z, t)]eiγPz, |η| �

√
P .

For simplicity we have assumed the intracavity field to be real (the phase can be accounted for in the pump field).
By linearisation we obtain the equation governing the evolution of the perturbations:

iηz −
β2
2
ηtt + γP (η + η∗) = 0.

We split perturbations in real and imaginary parts η = a + ib (a, b ∈ R), to get the following system in frequency
domain

âz(z, ω) = −β2ω
2

2
b̂(z, ω), (8)

b̂z(z, ω) =

(
β2ω

2

2
+ 2γP

)
â(z, ω). (9)

The solution of the system from z = 0 to z = L gives the perturbations after one pass in the fibre as:[
â(L)

b̂(L)

]
=

[
cos(kL) −βω

2

2k sin(kL)
2k
βω2 sin(kL) cos(kL)

] [
â(0)

b̂(0)

]
, (10)

where k2 = β2ω
2

2

(
β2ω

2

2 + 2γP
)

describes the dispersion relation of the small harmonic perturbations which propagate

on top of the stationary field.
The combined action of the filter and the coupler on the perturbations can be written as follows:[

ân+1(0)

b̂n+1(0)

]
= ρ

[
cosφ − sinφ
sinφ cosφ

] [
He(ω) −Ho(ω)
Ho(ω) He(ω)

] [
ân(L)

b̂n(L)

]
, (11)

where we have defined the even and odd part of the transfer function as

He(ω) = F{Re[h(t)]} =
1

2

(
H(ω) +H∗(−ω)

)
,

Ho(ω) = F{Im[h(t)]} =
1

2i

(
H(ω)−H∗(−ω)

)
.

Note that the coupler and filter matrices commutes, as expected intuitively: for the stability analysis it doesn’t matter
if the filter is placed just before or just after the coupler.
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By combining Eqs. (10-11) we get the total effects accumulated by the perturbations over one round trip as[
ân+1(0)

b̂n+1(0)

]
= M

[
ân(0)

b̂n(0)

]
. (12)

The eigenvalues of M reads as

λ1,2 =
∆

2
±
√

∆2

4
−W (13)

where

W = ρ2
(
He(ω)2 +Ho(ω)2

)
, (14)

∆ = ρ

[
2 cos(kL) (He(ω) cosφ−Ho(ω) sinφ)− β2ω

2 + 2γP

k
sin(kL) (Ho(ω) cosφ+He(ω) sinφ)

]
.

Whenever |λ1,2| > 1 the cw solution Eq. (6) is unstable and the perturbation grows as exp[g(ω)z], with MI gain 
g(ω) = ln(max{|λ1|, |λ2|})/L.

The spectral response of the filter is taken here to be H(ω) = exp[α(ω) + iψ(ω)], where |H(ω)| = 1 − R exp(−(ω − 
ωf )

4/(σ)4) and the filter phase is computed from the Bode’s magnitude-phase relation: ψ(ω) = arg[H(ω)] = −H[α(ω)], 
being H[.] the Hilbert transform. By using R = 0.96, ωf = 399×2π rad/ns, σf = 160×2π rad/ns we get a satisfactory 
approximation of the filter used in the experiments (see Fig. 2 of the main paper).

Analytical estimation of comb tuneability and instability threshold

In order to provide a clearer understanding of the comb repetition rate tuneability and of the threshold of the 
parametric oscillation, we have plotted the maximum GTF power instability gain (max{2g(ω)}) obtained from Eqs.
(13-14) (see also Eq. (2) in Methods section of the main paper). Figure 3(a) shows the maximum gain versus the input 
pump power for three different filter frequency shifts, while keeping the remaining parameters constant and consistent 
with the experimental ones. The input power threshold for GTF instability is ≈ 1.25 W for both the filters shifted 300 
and 400GHz from the pump, whereas is substantially higher (≈ 2.2 W) for the 500 GHz filter. As a general remark, the 
higher the frequency shift, the lower is the gain, as intuitively expected. By increasing the input power above the 
threshold, after a first monotonic increase, the gain saturates, which partially explains why stable combs are observed 
well above the instability threshold. For higher input powers (not considered here), the gain eventually rises again, but 
in this region other competing instabilities may appear [9] and the dynamics is expected to turn rapidly into chaos, as 
the cavity is driven far beyond the instability threshold. Figure 3(b) shows the maximum gain versus filter
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FIG. 3. Theoretical maximum GTF gain as a function of input power (a) and frequency shift of the filter (b). The following 
parameters has been used: β2 = 0.5 ps2/km , β3 = 0.12 ps3/km, γ = 2.5 W−1km−1, L = 104.2 m, km−1, ρ2 = 0.5940 (cavity finesse 
F = 12) , θ2 = 0.1, φ0 = − arg[H(0)] (zero cavity detuning).

frequency shift for three different input powers. As expected, the gain decreases for large filter frequency and GTF
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instability is turned off for detunings higher than ≈ 500 GHz (for input powers in the order of 10 W). When the filter is 
moved close to the pump, the gain grows up to a maximum, then it starts to decrease. The filter considered here has a 
quite large stop-band (FWHM transmission ≈ 300 GHz), then for frequencies lower than ≈ 200 GHz it starts to affect 
the pump itself, reducing the nonlinear effects in the cavity. This eventually explains the low frequency cut-off for the 
GTF instability observed here. Figure 3(c) reports the frequency of the most unstable mode as a function of the filter 
frequency shift for three different input power. For the example considered here, the comb repetition rate is tuneable in a 
range spanning 600 GHz (480 − 1080 GHz from the pump). In our experimental setup we could access only filter 
frequency shifts higher than 300 GHz due to the tuneability range of the laser. In this region, the repetition rate of the 
comb grows almost linearly as a function of the filter frequency (see Fig. 3(b) of the main paper). For filter frequency 
shift less that ≈ 300 GHz the pump itself is affected by the phase of the filter. Since in this example (and in the 
experiments) we are keeping the overall cavity detuning equal to zero, the linear phase shift φ0 acquired during the 
propagation along the fibre gets bigger as the filter approaches the pump in order to compensate for the filter phase 
contribution to the pump. This fact substantially affects the cavity phase, pushing the phase matching towards higher 
frequencies (see Fig. 5 below).

Approximations and phase matching condition

Equations (13,14) give the exact parametric gain, however they do not allow for a straightforward physical inter-
pretation. We then proceed to obtain an approximated formula. By exploring the parameters’ space, we have noted that 
the position of the unstable bands is mainly fixed by the filter phase. Figure 4 shows the relative impact of the filter 
amplitude, phase and both combined on the GTF instability gain spectrum. The red curve, accounting for only |H(ω)|, 
shows that the threshold of GTF instability is not reached. The most unstable band mimics the shape of the filter 
response, as expected for gain-through-loss mechanism. Additional bands are seen at around 1500 GHz, which 
correspond to boundary condition induced modulation instability [9]. The black curve accounts only for the filter phase, 
it gives a reasonable prediction of the frequency of the unstable bands and slightly overestimates the gain.
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FIG. 4. Instability gain 2g(ω) calculated from Eqs. (13-14) revealing the effect of magnitude and phase of the filter transfer 
function. The following parameters has been used: β2 = 0.5 ps2/km , γ = 2.5 W−1km−1, L = 104 m, km−1, ρ2 = 0.5940 (cavity 
finesse F = 12) , θ2 = 0.1, φ0 = − arg[H(0)] (zero cavity detuning), ωf /(2π) = 399 GHz, intracavity power P = 2.2 W (input power 
PIN = 6.6 W).

In order to predict position of the unstable band, we then assume the following form for the filter transfer function 
(unitary modulus)

H(ω) = exp[iψ(ω)]. (15)

The even and odd part of the filter transfer function read as

He(ω) = eiψo(ω) cos[ψe(ω)], (16)

Ho(ω) = eiψo(ω) sin[ψe(ω)], (17)
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where the even and odd part of the filter phase are defined as

ψe(ω) =
(ω) + ψ(−ω)

2
, (18)

ψo(ω) =
(ω)− ψ(−ω)

2
. (19)

The assumption of unitary modulus, permits to greatly simplify Eqs. (14) as follows

W = ρ2ei2ψo , (20)

∆ = ρeiψo

[
2 cos(kL) cos(φ+ ψe)−

β2ω
2 + 2γP

k
sin(kL) sin(φ+ ψe)

]
, eiψo∆̃,

which gives the following expression for the eigenvalues

λ1,2 = eiψo

[
∆̃

2
±

√
∆̃2

4
− ρ2

]
. (21)

A part from the exponential factor, Eq. (21) has been obtained before for the description of a standard cavity (i.e.
without filter) [8, 9]. The exponential factor does not change the modulus of the eigenvalues, hence it does not affect
the GTF gain. We have instability if |∆̃| > 1 + ρ2.

In order to find a phase matching relation, we expand the dispersion relation for the perturbations k as follows

k =

√
β2ω2

2

(
β2ω2

2
+ 2γP

)
≈ β2ω

2

2
+ γP, if |ω| �

√
γP

β2
(22)

In this way we have

∆̃ ≈ 2ρ cos[kL+ ψe(ω) + φ].

The potentially unstable frequencies maximise |∆̃|, and thus satisfy the following equation:

k(ω)L+ φ+ ψe(ω) = mπ, m = 0,±1, . . . (23)

The solutions of Eq. (23) for m 6= 0 correspond to parametric resonances (PRs) induced by the periodic forcing
represented by the injection of the pump at each round trip. For the range of parameters used in the experiments,
these PRs bands appear, if they exist, at much higher frequencies with respect to GTF band.

We then concentrate on the m = 0 band and use the expansion (22), to get the following simple phase-matching
relation:

β2ω
2

2
L+ 2γPL+ φ0 + ψe(ω) = 0 (24)

Equation (24) has a straightforward physical meaning: the phase acquired by the perturbations propagating in the
fibre (kL) plus the total phase shift of the cavity (linear+nonlinear: φ = φ0 + γP ) plus the even part of the phase of
the filter (ψe(ω)) must be zero to have parametric amplification. Equation (24) is a generalisation Eq.(8) of Ref. [9],
including the dispersion induced by the filter.
In order to demonstrate the exactness of our treatment and the accuracy of the approximated phase-matching relation,
we report in Fig. 5 a numerical example. Figure 5(a) shows the magnitude an phase of the filter transfer function
H(ω) = exp[α(ω) + iψ(ω)] described above (see also Methods section in the Manuscript), which is shifted 399 GHz
from the pump. Figure 5(b) shows the phase-matching curve from Eq. (24) (dashed red curve), together with the
different terms composing the equation: cavity-induced phase (solid blue curve) and even part of filter phase (solid
green curve). Figure 5(c) shows the gain spectrum after 50 round trips obtained from theory [Eqs. (13-14), solid
blue curve] and numerical solution of Ikeda map Eqs. (1-5)(dashed red curve). The following parameters has been
used: β2 = 0.5 ps2/km , β3 = 0.12 ps3/km, γ = 2.5 W−1km−1, L = 104.2 m, km−1, ρ2 = 0.5940 (cavity finesse
F = 12) , θ2 = 0.1, φ0 = − arg[H(0)] (the measured total cavity detuning is zero), intracavity power P = 2.2 W,
which corresponds to input power PIN = 6.6 W . The black dashed vertical line in Figs. 5(a-c) denotes the phase
matching frequency from Eq. (24). From Fig. 5(a) we can note that the phase matching frequency is very different
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FIG. 5. (a) Amplitude and phase of the filter with supergaussian shape. (b) Phase-matching curve from Eq. (24) (dashed red
curve). The different terms composing the equation are also showed: cavity-induced phase (solid blue curve) and even part of
filter phase (solid green curve). Gain spectrum after 50 round trips from theory [Eqs. (13-14), solid blue curve] and numerical
solution of Ikeda map (dashed red curve).

from the centre of the filter, as it is the case for the standard gain-through-loss where filter dispersion does not play
any role [7]. From Fig. 5(c) we can appreciate that (i) numerical solution of Ikeda map agrees perfectly with the
calculated MI gain and (ii) the frequency position of the maximum gain from theory and numerical simulation is well
approximated by the simple phase matching formula Eq.(24).
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