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We investigate the generation of symmetric and asym-
metric pairs of breathers from localized disturbances
in the nonlinear stage of modulational instability gov-
erned by the nonlinear Schrödinger equation. An
asymptotic matching approach allows us to predict
with great accuracy how their emergence and their evo-
lution depend on the parameters of the perturbation.
The same approach turns out to be applicable to other
classes of perturbations, which, due to their different
decay in time, do not give rise to breathers.

http://dx.doi.org/10.1364/XX.XX.XXXXXX

Modulation instability (MI) involves the exponential growth of
perturbations with sufficiently low frequency on top of a strong
background (pump) [1–3]. Establishing how induced MI evolves
past the initial amplification stage of the perturbation is the ob-
ject of current intense efforts with main focus on experiments,
which can be successfully described by the integrable nonlinear
Schödinger equation (NLSE). For purely periodic perturbations,
usually produced in experiments by seeding a pair of unstable
sidebands, the nonlinear stage is characterized by longitudi-
nal recurrences (cycles of conversion and back-conversion to
the initial condition), which are a manifestation of the general
scenario discovered by Fermi-Pasta-Ulam-Tsingou [4–8]. Such
recurrences are, however, highly non-trivial, reflecting a break-
ing of symmetry and a consequent phase-space structure of the
NLSE associated with the continuation of MI into the fully non-
linear regime [9, 10]. Such features have been recently revealed
in a fiber optics experiment [6, 7] as well as in a spatial experi-
ment performed in regime of Kerr nonlinearity [8]. Importantly
for what follows, a quantitative description of the recurrences
can be obtained through asymptotic matching expansion as pro-
posed by Grinevich and Santini [11], and fully justified by the
application of rigorous finite-gap method under the only as-
sumption of small input modulation [12]. Such result constitutes
the proper generalization of a previous approach [13] that in-
volves matching the exponentially growing modulation to the
so-called Akhmediev breather (AB) [9].

Conversely, when the periodic perturbation is weighted by a
bell-shaped envelope, thereby being localized, the multiple recur-
rence scenario breaks down. In this case, as discussed recently
in [14], MI is responsible for the onset of an auto-modulation, i.e.

a modulated structure similar to a dispersive shock wave [15],
in a wedge-shaped region [16–19]. For perturbations decaying
exponentially in time, this structure may coexist with a pair of
breathers, i.e. solitons on background with internal breathing,
also called Tajiri-Watanabe [20] or super-regular breather pairs
[21–24]. In terms of the inverse scattering transform of the NLSE,
auto-modulations and breathers are associated with continuous
and discrete (point) spectrum of the direct scattering problem
with non-zero boundary conditions, respectively [14, 16, 22].

In fiber optics, the breather pairs have been observed under ad
hoc excitation (initial datum that fits the soliton pair interference
pattern [23]), while the automodulation has been recently ob-
served in the limit of zero central frequency of the perturbation
[19]. Conversely the most general scenario of coexistence was
not observed yet. In order to properly design the next generation
of experiments it is of crucial importance to be able to predict
with simple formulas how the distance of appearance of the
breather pairs and their asymptotic velocities depend on the spe-
cific parameters of a sufficiently wide class of perturbations. In
this Letter, we show that a sufficiently accurate answer in a wide
range of parameters can be given by generalizing the asymptotic
matched expansion of Ref. [11] to localized perturbations which
decay slowly in time. Not only the method allows to predict
with good accuracy the parameters of the emerging breathers,
but gives also the correct description of the first appearance
of coherent (rogue-wave like) structures for non-exponential
perturbation which do not support the formation of breathers.

We consider the following NLSE conveniently written in
dimensionless notation valid for fiber optics

iψz + ψtt + 2|ψ|2ψ = 0, (1)

and investigate the evolution on top of a constant solution
(pump) ψcw = ψ0 exp(i2|ψ0|2z) of a localized modulation per-
turbation δψ(z, t) that initially possess the form

δψ(0, t) = [x1(0, t) exp(iωt) + x−1(0, t) exp(−iωt)] , (2)

where ω is the modulation frequency, and x±1(0, t) =
a±1 exp(−iφp) fp(t/t0) describe weighting localized envelopes
with duration t0, peak amplitude a±1, relative phase φp, and
shape fp(t/t0), with fp(t/t0) ≥ 0, max( fp) = 1, and fp(±∞) =
0. Henceforth, without loss of generality, we take ψ0 = 1,
which amounts to express real-world propagating field, dis-
tance, and time in terms of real-world pump power P = |E|2
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as E(Z, T) = ψ(z, t)
√

P, Z = 2z(γP)−1 and T = t
√
|β2|/(γP),

β2 < 0 and γ being dispersion and effective nonlinear coefficient,
respectively.

The physical idea behind the extension of the asymptotic
matching to localized non-periodic perturbations is as follows.
We assume the envelope to vary slowly compared to the modula-
tion period (i.e., t0 � 1/ω) so that the input modulation grows
locally (in time) due to MI according to its frequency ω, phase
φp and local instantaneous amplitude a±1 fp(t/t0) at each time
t. In order to determine at which distance for each t, say z1(t),
such growth arrives at its apex, we match the linearized solution
to a family of ABs having a slow dependence of the arbitrary
shifts on local time t. Formally, the starting point is the fol-
lowing linearized equation obeyed by the perturbation δψ(z, t),
obtained by retaining linear terms in Eq. (1) after substitution of
the ansatz ψ = [ψ0 + δψ(z, t)] exp(i2|ψ0|2z)

i δψz + δψtt + 2ψ2
0δψ∗ + 2|ψ0|2δψ = 0. (3)

We solve Eq. (3) with initial condition (2) by neglecting the time
derivatives of the envelope fp(t/t0), which reflects the assump-
tion of slowly varying envelope, valid for t0 � 1/ω. Under such
conjecture the solution can be easily calculated and depends on
two eigenvalues λ± = ±g(ω), g(ω) = ω

√
4−ω2 being the MI

amplitude gain, which are real in the MI bandwidth |ω| ≤ 2.
Instead of dealing with ω as a parameter, it is convenient to ex-
press the solution in terms of the angle φω such that cos φω = ω

2 .
The linear solution of the initial value problem [Eqs. (3-2)] then
reads as

ψ(z, t) = ei2z
[
1 + x1(z, t)eiωt + x−1(z, t)e−iωt

]
, (4)

x1(z, t) = +
1
ig

eiφω

[
α∗+(t)e

iφω egz + α−(t)e−iφω e−gz
]

, (5)

x−1(z, t) = − 1
ig

e−iφω

[
α+(t)eiφω egz + α∗−(t)e

−iφω e−gz
]

,(6)

where α±(t) represent the local projection of the initial con-
dition (2) over the growing and decaying eigenvectors corre-
sponding to eigenvalues λ±, say e± = [exp(±i2φω), 1]T , with

exp(±i2φω) =
ω2−2±ig(ω)

2 . Explicitly α±(t) read as follows

α±(t) = x∗±1(0, t)− e±i2φω x∓1(0, t). (7)

Note that Eqs. (4-7) represents essentially the three-wave lin-
earized solution obtained in the context of standard MI analysis
(i.e., in the limit t0 → ∞), except for an additional parametric
dependence on time appearing through the terms α±(t) which
contain the information on the input envelope shape.

The subsequent stage which involves saturated growth to the
apex and following decay can be described by matching to the
following AB solution of Eq. (1)

ψAB(z, t) =
sin θ cos[ω(t− t1)] + cosh[g(z− z1) + i2θ]

cosh[g(z− z1)]− sin θ cos[ω(t− t1)]
ei2z+iρ,

(8)
characterized by the parameter θ, with 0 ≤ θ ≤ π/2 (g =
2 sin 2θ, ω = 2 cos θ), and by the arbitrary shifts t1, z1, ρ. The
AB is well known to describe a heteroclinic orbit connecting
the background with different phase ±2θ at z = ±∞ passing
through apex of growth at z = z1. Matching with the linearized
solution, requires to consider the asymptotic limit of Eq. (8) for
z− z1 → −∞, which yields

ψAB ' ei2z
{

1 + geg(z−z1)eiθ cos [ω(t− t1)]
}

e−i2θ+iρ. (9)

Due to the form of Eq. (9), it is convenient to cast (with straight-
forward algebra) the growing part of the solution in Eq. (4-5-6)
in the following form

ψ ' ei2z
{

1 +
2
g
|α+(t)|egzeiφω

[
ω(t− Tshi f t(t))

]}
, (10)

where Tshi f t(t) ≡
arg[α+(t)]−φω+π/2

ω . Finally, comparing Eq. (10)
with Eq. (9), we obtain that a family of AB is needed to describe
the growth process, which has fixed parameters θ = φω and
ρ = 2θ, and slowly varying in time shifts t1 and z1 which are con-
trained to satisfy t1 = Tshi f t(t) and g exp(−gz1) = 2|α+(t)|/g.
In particular, the latter relation gives

z1(t) =
1
g

log
[

g2

2|α+(t)|

]
, (11)

which is main result of this paper, representing an analytical pre-
diction of the general locus of apex growth in the plane t− z. For
symmetric sidebands, i.e. a perturbation of the form δψ(0, t) =
ap exp(−iφp) fp(t/t0) cos(ωt) with peak amplitude ap = 2a1 =
2a−1, we obtain α+(t) = exp(iφω)iap fp(t/t0) sin(φp − φω), and
hence a constant t1, either t1 = 0 for −π < φp − φω < 0 or
t1 = π/ω for 0 < φp − φω < π (more generally, t1 may vary
locally with time if the input phase φp becomes time depedent),
whereas Eq. (11) yields

z1(t) =
1
g

log
[

g2

2ap fp(t/t0)| sin(φp − φω)|

]
. (12)

Since breathers traveling at constant velocity requires a linear
asymptotic dependence of z1 on t, Eqs. (11-12) quantitatively
justify the fact that breathers require perturbation envelopes
with exponential decay, e.g. fp = sech(t/t0) or exp(−|t|/t0),
as conjectured in [14]. Remarkably Eq. (12) describes the full
dynamical stage from the first local apex appearance occurring
at minimal distance zmin = min[z1(t)] to their asymptotic sepa-
ration with velocities ±Vs, which are determined by the decay
law exp(±t/t0) of envelope tails. From Eq. (12), we easily find

Vs = g(ω)t0; zmin =
1
g

log
[

g2

2ap| sin(φp − φω)|

]
. (13)

In order to check the validity of Eqs. (11-12-13), we com-
pare with numerical simulations of the NLSE. Figure 1 reports
a typical example of false color plot of the NLSE evolution
obtained for symmetric sidebands and sech-shaped envelope
( fp = sech(t/t0), parameters as reported in the caption). One
clearly sees that a symmetric pair of breather is emitted, which
coexists with an automodulation building up at larger distances
and developing inside the wedge-shaped region delimited by
the maximal group velocities ±Vw = ±4

√
2ψ0 [14, 16, 18]. Su-

perimposed to the false color plot we report the locus of peak
amplification of the breathers predicted by Eq. (12), see dashed
white curve. As shown, the asymptotic matching perfectly fit
with the local maxima of the breathers, in particular giving the
correct minimal distance zmin and asymptotic velocities ±Vs,
both well approximated by Eqs. (13). Here zmin is defined as
the distance the modulation pattern undergoes the first peak
(observed at t = t1 = 0 in Fig. 1). Such agreement is obtained in
a wide range of the parameters of the input modulation, with
appreciable deviations appearing only for narrow envelopes
such that t0 ∼ 2π/ω (e.g. t0 ∼ 3 for ω =

√
2). In Fig. 2(a), we

summarize the dependence of the minimum distance zmin on
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Fig. 1. Numerical solution of NLSE (1) with input (2), ψ0 = 1,
sech-shaped envelope with parameters: ap = 0.01, φp = −π/2,
t0 = 10, ω = ωpeak =

√
2. The dashed cyan lines stand for

velocities V = ±Vw delimiting the automodulation wedge.
The dashed white line stands for z1(t) from Eq. (12).
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Fig. 2. Formation distance zmin (a) vs. peak modulation am-
plitude ap, at fixed phase φp = −π/2, for frequencies ω = 1,
ωpeak =

√
2; (b) vs. phase φp with fixed amplitude ap = 0.01,

ω =
√

2. Here the envelope is sech-shaped with t0 = 10. The
asymptotic formula is compared with data from NLSE simula-
tions (open dots).

the perturbation amplitude ap for two different modulation fre-
quencies (ω = 1, ωpeak =

√
2), and fixed phase φp = −π/2. The

two lines with different slopes, which correspond to zmin in Eq.
(13), are found in excellent agreement with values extracted from
numerical solution of the NLSE (open dots) over a range that
spans nearly three orders of magnitude (ap = 10−3 − 0.8). Note-
worthy, the agreement remains reasonably good (error being
less than 6%) even when ap = 0.8, i.e. sidebands with amplitude
comparable to the pump, where the theory is expected to loose
accuracy. Moreover we have verified that the velocities ±Vs are
unaffected by the change of amplitude over such a large span,
as predicted by Eq. (13). Importantly, also the perturbation
phase of the modulation is found to have a strong impact on
the breather pair formation. This is shown in Fig. 2(b) where
we compare zmin vs. perturbation phase φp from Eq. (12) to the
NLSE numerics (open dots). The agreement is clearly excellent.
In particular, there are two notable value of perturbation phase
φp = ±φω [φω = π/4 for ω = ωpeak as in Fig. 2(b)], which
correspond, in the framework of the three-wave description of
MI for periodic perturbation [6, 10], to evolution along the unsta-

ble (φp = −φω) or stable (φp = φω) manifold of the separatrix,
which represent the continuation into the fully nonlinear stage
of the linear instability. The unstable manifold is characterized
by the fastest growth to the apex and hence yields the absolute
shortest distance zmin, as obtained in Fig. 2(b) consistently with
Eq. (12). Conversely, for φp = φω , zmin → ∞ [see Eq. (12)]
since the stable manifold is characterized by the modulation con-
verting asymptotically its energy to the pump, thus requiring a
virtually infinite distance to grow again. The NLSE simulations
show that the distance zmin increases by following the predicted
trend as φp approaches φω . However, the numerics indicates
that it never really diverges, rather saturating around the typ-
ical distance where the auto-modulation appears [e.g. around
zmin ∼ 4.5 for the amplitude considered in Fig. 2(b)] thus acting
as a seed for breather formation.

Fig. 3. As in Fig. 1, zoom on breathers emergence for asym-
metric sidebands giving rise to a temporal shift t1 of the first
peak. Here ω = 1, φp = −π/2, a1 = 0.1, a−1 = 0.001, sech-
shaped envelope with t0 = 10. The insets show how the shift
t1 and minimal distance zmin depend on the sideband imbal-
ance 20 log10 a1/a−1 (decibel units), with fixed a1 = 0.1. The
theoretical prediction (solid line) is compared with NLSE sim-
ulations (open dots).

Let us consider next the case of asymmetric sideband ampli-
tudes a1 6= a−1. In the periodic case, this introduces a net drift
velocity of the AB [25]. However, for localized perturbation, as
discussed before, the velocities ±Vs are unaffected by variations
of sideband amplitudes. Hence, the theory still predicts emer-
gence of breathers (provided that fp decays exponentially) with
opposite asymptotic velocities ±Vs , as observed numerically
[see Fig. 3]. However, in this case, the broken sideband sym-
metry reflects itself in a shift t1 which is no longer zero or π/ω,
but rather varies continuously with the imbalance between the
sidebands. The typical scenario is illustrated in Fig. 3. The first
peak emerges with a shift t1 from the peak of the initial perturba-
tion (at t = 0). The smooth variation of t1 over large variation of
sideband imbalance is well described by the theory as shown in
the left inset in Fig. 3. The sideband imbalance has also a slight
impact on the formation distance zmin (see right inset in Fig. 3),
which, again, turns out to be well predicted by Eq. (11).

In order to have asymmetric breathers traveling with differ-
ent velocities one needs to break the parity of the modulation
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envelope in Eq. (2). Maintaining exponential decay, this is ob-
tained, for instance, for fp(t) = exp(−|t|/t0±), with t0+, t0−
(t0+ 6= t0−) being durations for t > 0 and t < 0, respectively.
An example is shown in Fig. 4, where t0+ = 10 and t0− = 5 are
such that both breathers travel with different velocities outside
the wedge. By choosing t0± such that |Vs| < |Vw|, one can also
observe interaction between breathers and auto-modulation as
demonstrated in [14] (not shown here).

Fig. 4. Asymmetric breather pair generated with non-even
envelope fp(t) = exp(−|t|/t0±). Here t0+ = 10, t0− = 5,
ω = 1, ap = 0.1, φp = −π/2. Cyan dashed lines stand for
velocities ±Vw.

So far we have examined cases where the exponential decay
of the perturbation supports breather pair formation. How-
ever, we emphasize that Eq. (11) has more general validity,
describing the locus of the apex growth due to localized MI
also for envelopes with decay laws such that no breathers are
formed. We have tested such an idea for different envelope
shapes, e.g. Gaussian pulses (as reported in [14]) or power-law
decay fp(t/t0) = 1/[1 + (t/t0)

n], always finding good agree-
ment. As an example, we display in Fig. 5 the evolution relative
to a Lorentzian pulse envelope, i.e. n = 2 in the power-law
decay. As shown, the dashed white line, which stands for the
locus in (t, z) plane corresponding to Eq. (12), suitably describes
the peak conversion locus obtained from the numerics. Here
the pulses have no soliton features and slightly broaden while
exhibiting strong bending upon propagation. Despite its evident
non-soliton character, Eq. (12) is still accurate, and in particular
gives a quantitative description of the early formation point,
which is still described by zmin(t) in Eq. (13). As a consequence,
also in this case zmin(t) follows the dependence on perturbation
amplitude and phase already discussed for the breather case,
and summarized in Fig. 2.

In summary, by extending the asymptotic matching approach
[11] to localized perturbations, we have shown that the emer-
gence of breather pairs can be predicted with high accuracy by
means of simple closed formulas. Such formula allows also for
predicting the locus of pulse formation for perturbations which
do not support breathers.
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Fig. 5. Evolution of a localized perturbation with Lorentzian
envelope. Here the parameters are ω = 1, t0 = 5, φ1 = −π/2,
ap = 0.1. Dashed white line stand for z1(t) from Eq. (11). Cyan
dashed lines stand for velocities ±Vw. The inset shows a zoom
around zmin(t).
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