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Most condition-based imperfect maintenance models developed over the last few decades are memoryless in the sense that maintenance efficiency is completely s-independent of previous interventions. However, many maintenance activities exhibit their past dependency in engineering practice, and this significant property should not be ignored in maintenance modeling. In this spirit, our aim is to develop a condition-based maintenance model for continuously deteriorating systems subject to a special kind of past-dependent imperfect repairs. Such a repair can put the system back to a deterioration level better than the one at just before the current repair, but worse than the one reached at the last repair. Besides, inspection and replacement are memoryless actions available for the system. They result in different effects on the system deterioration, and incur different costs. To achieve high economic performances in the long-term, these actions are coordinated into a control-limit deteriorationbased maintenance policy. Its long-run maintenance cost rate is analytically evaluated using the semi-regenerative process theory.

Numerous sensitivity studies to maintenance costs and to system characteristics give a thorough understanding about the policy behavior. Furthermore, comparisons with more classical policies justify the importance of incorporating the past dependency in maintenance modeling.

I. INTRODUCTION

With usage and age, most industrial systems suffer gradual deterioration leading eventually to random failure. Maintenance policies are thus vital for keeping their long-term operation at low costs. Among existing maintenance policies (see e.g., [START_REF] Ahmad | An overview of time-based and condition-based maintenance in industrial application[END_REF] for a recent overview), the condition-based imperfect maintenance (CBIM) proved to be highly relevant by two main reasons. Firstly, the policy utilizes the advance of condition monitoring technologies to assess the health state of a system, and thence carries out adequate and timely maintenance actions [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. This allows avoiding inopportune interventions and saving maintenance costs, especially when compared with more classical policies such as run-to-failure maintenance and time-based maintenance [START_REF] Kim | A comparative study of time-based maintenance and condition-based maintenance for optimal choice of maintenance policy[END_REF]. Secondly, imperfect maintenance, which restores a badly deteriorated system to a condition between asgood-as-new (AGAN) and as-bad-as-old [START_REF] Pham | Imperfect maintenance[END_REF], can characterize a large kind of realistic actions whose imperfectness may be caused by various factors such as human errors, spare parts quality, the lack of materials, lack of maintenance time, etc.

Over the last few decades, a great deal of effort has been put into the modeling of CBIM for continuously deteriorating systems (see e.g., [START_REF] Castanier | A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear[END_REF]- [START_REF] Chen | Imperfect maintenance policy considering positive and negative effects for deteriorating systems with variation of operating conditions[END_REF] among others). Most of these models are memoryless in the sense that maintenance efficiency is completely s-independent of previous interventions. This property leads to some simplifications in the mathematical development of CBIM policies. For instance, the classical renewal theorem (see e.g., [START_REF] Wang | A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure[END_REF]) or the dynamic programming (see e.g., [START_REF] Newby | A bivariate process model for maintenance and inspection planning[END_REF]) could be used to derive analytical maintenance cost models. Nevertheless, many maintenance activities exhibit their past dependency in engineering practice [START_REF] De Toledo | Ara and ari imperfect repair models: Estimation, goodness-of-fit and reliability prediction[END_REF]. Memoryless CBIM models are therefore no longer suitable for such maintenance activities.

Motivated by this practical need, we consider in the present paper a special past dependency characterized by the phenomenon that the improvement due to an imperfect repair just can bring a system back into a deterioration level worse than the one returned by the last repair. Such a phenomenon can be found in the deterioration paths of draught fans and of gyroscopes provided in [START_REF] Wang | Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans[END_REF] and in [START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF], [START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF] respectively. Our aim is to model this kind of past-dependent imperfect repairs in the context of condition-based maintenance applied to continuously deteriorating systems. To the best of our knowledge, three main modeling approaches have been used to deal with this problem in the literature.

1) Repairs number-based modeling. The first approach considers that the system residual damage after each imperfect repair exhibits an increasing trend with the sequence of repairs. Since the number of repairs increases over time until the next perfect replacement, their ability to improve the system deterioration weakens. As a result, the dependency between past and current repairs can be modeled via the repairs number. Based on this approach, Liao et al. proposed in [START_REF] Liao | Maintenance of continuously monitored degrading systems[END_REF] a so-called condition-based availability limit model for continuously monitored systems subject to gamma deterioration process. Guo et al. developed a similar model in [START_REF] Guo | A maintenance optimization model for mission-oriented systems based on wiener degradation[END_REF] for a mission-oriented system based on a Wiener deterioration process. More recently, the repairs number-based modeling approach has been also applied in estimating the remaining useful life of condition-based maintained systems (see e.g., [START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF], [START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF]).

2) Virtual age-based modeling. The second approach links the virtual age of a system to its deterioration level. When an imperfect repair removes a portion of virtual age accumulated since the last repair, it also puts the system back to a deterioration level where it was some time before. In this spirit, Ahmadi used the Kijima's type I model [START_REF] Kijima | Some results for repairable systems with general repair[END_REF] to develop CBIM policies for periodically and non-periodically inspected deteriorating systems in [START_REF] Ahmadi | A new approach to modeling condition-based maintenance for stochastically deteriorating systems[END_REF] and [START_REF]Scheduling preventive maintenance for a nonperiodically inspected deteriorating system[END_REF] respectively. The well-known renewal reward theorem was applied to compute their long-run maintenance cost rate. Meanwhile, based on the arithmetic reduction of age with memory 1 (ARA 1 ) model [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF], Mercier and Castro proposed in [START_REF] Mercier | On the modelling of imperfect repairs for a continuously monitored gamma wear process through age reduction[END_REF] a deteriorationbased maintenance policy for a continuously monitored deteriorating system. The reliability and availability functions, as well as the expected maintenance cost of the maintained system were evaluated in the short-term using the Markov renewal theory.

3) Deterioration level-based modeling. Unlike the two above approaches, the third one enables a connection to the past by assuming that each imperfect repair can directly reduce a part of the deterioration accumulated by the system from the last repair. To describe such a past dependency, Ponchet et al. mimicked the ARA 1 model to build in [START_REF] Ponchet | Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements[END_REF] a so-called arithmetic reduction of deterioration with memory 1 (ARD 1 ) model. The model was further used to minimize the average maintenance cost of a maintained system operating over a finite time span. Also relied on the ARD 1 model, Castro and Mercier described in [START_REF] Castro | Performance measures for a deteriorating system subject to imperfect maintenance and delayed repairs[END_REF] the behavior of a deteriorating system subject to imperfect and delayed repairs. The interval reliability of the system was defined as a performance measure, and was evaluated by the Markov renewal theory.

Since the higher the repairs number or the higher the virtual age, the more the system is deteriorated, the above approaches can be connected to each other. For a suitable choice among them, some comparative works have been done. For instance, Mercier and Castro [START_REF] Mercier | Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system[END_REF] performed stochastic comparisons between the ARA 1 and ARD 1 models under the assumption of a Gamma deteriorating system. Based on a system subject to the Wiener deterioration process, Kahle [START_REF] Kahle | Imperfect repair in degradation processes: A kijima-type approach[END_REF] recently compared Kijima's type models [START_REF] Kijima | Some results for repairable systems with general repair[END_REF] applied for both the system virtual age and the system deterioration.

Considering a single-unit system subject to a gamma deterioration process, this paper applies the third approach to take into account directly the system deterioration levels revealed by periodic inspections in past-dependent imperfect repair modeling.

An imperfect repair is done on a working system as soon as the system deterioration level exceeds a given preventive threshold.

Meanwhile, a replacement is carried out to restore a failed system to an AGAN condition. The economic performance of the maintained system is assessed via its long-run maintenance cost rate. Such a CBIM model differs from similar existing works (see e.g., [START_REF] Ponchet | Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements[END_REF]- [START_REF] Mercier | Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system[END_REF]) at two major points. Firstly, to express the dependency of the repair efficiency on the past, we just rely on a truncated probability distribution. After a repair, the restarting deterioration level of the system is sampled from a probability distribution truncated by the deterioration levels just before a current repair and just after the last repair/replacement. Unlike arithmetic reduction type and Kijima's type models, this simple model allows breaking the memory assumption: the system after a repair is put back to an exact deterioration level where it was in the past, which is not easily verified in practice due to the stochastic nature of deterioration process. Secondly, the long-run cost rate of the considered CBIM model is analytically derived using the semi-regenerative theory. Even though this approach has now become rather classical in reliability literature [START_REF] Bérenguer | On the mathematical condition-based maintenance modelling for continuously deteriorating systems[END_REF], its development in the context of past dependency is still very meaningful, especially in terms of numerical computation and Monte Carlo simulation.

The remainder of the paper is structured as follows. Section II describes the characteristics of the condition-based maintained system. Section III is devoted to the development and validation of mathematical cost model for the system evaluation and optimization. Numerous sensitivity studies to interventions costs and system deterioration characteristics are provided in Section IV. In Section V, comparisons with more classical benchmark policies are done. Finally, the paper ends with some conclusions and perspectives in Section VI.

II. DESCRIPTION OF CONDITION-BASED MAINTAINED SYSTEM

We describe in this section a gradually deteriorating system subject to past-dependent imperfect repairs and memoryless actions such as inspections and replacements. A model characterizing the system deterioration and the system failure is first introduced. Next, a control-limit deterioration-based imperfect maintenance policy is implemented to coordinate the available maintenance actions. Its performance is assessed via a long-run maintenance cost rate. Finally, the practicality of the maintained system is illustrated by a real-world example.

A. Stochastic Deterioration Process-Based Failure Model

Let consider a system which starts working at time t = 0 and is subject to a stochastic deterioration phenomenon leading eventually to random failures. From the maintenance point of view, a system, even if multiple components, can be considered as a single-unit consisting of one critical component or one group of connected components [START_REF] Grall | Continuous-time predictive-maintenance scheduling for a deteriorating system[END_REF]. Therefore, the system deterioration state at time t ≥ 0 can be summarized by a scalar random variable X t ≥ 0. We assume that the system is initially new (i.e., X 0 = 0), then evolves following an underlying deterioration process {X t } t≥0 toward the failure. Between two successive repair/replacement actions, the system deterioration increases continuously, monotonically and stochastically over time. Such a deterioration path can be approximated by a sequence of infinite number of random and positive tiny increments. This property leads us to apply a Gamma stochastic process to the system deterioration evolution {X t } t≥0 . In reality, the relevance of Gamma process to deterioration modeling has been justified by diverse practical applications [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF] and considered appropriate by experts [START_REF] Bousquet | Bayesian gamma processes for optimizing condition-based maintenance under uncertainty[END_REF]. In the present paper, a homogeneous version of Gamma process is chosen. This choice facilitates mathematical developments while satisfying a wide rank of applications (e.g., pressure vessel corrosion [START_REF] Kallen | Optimal maintenance decisions under imperfect inspection[END_REF], actuator performance loss [START_REF] Langeron | A modeling framework for deteriorating control system and predictive maintenance of actuators[END_REF], stress corrosion cracking [START_REF] Huynh | Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decisionmaking of systems subject to stress corrosion cracking[END_REF], etc.). As such, without any repair or replacement action, {X t } t≥0 is assimilated by a homogeneous Gamma process with shape parameter α > 0 and scale parameter β > 0. The random deterioration increment X t -X s , for all 0 ≤ s < t, is Gamma distributed with probability density function (pdf)

f α•(t-s),β (x) = 1 Γ (α • (t -s)) β α•(t-s) x α•(t-s)-1 e -βx 1 {x≥0} , (II.1)
and survival function

Fα•(t-s),β (x) = P (X t -X s ≥ x) = Γ (α • (t -s) , βx) Γ (α • (t -s)) , (II.2)
where 1 {•} stands for the indicator function which equals 1 if the argument is true and 0 otherwise,

Γ (α) = ∞ 0 z α-1 e -z dz and Γ (α, x) = ∞ x z α-1 e -z
dz denote respectively the complete and upper incomplete Gamma functions. The couple of parameters (α, β) can be estimated from deterioration data by statistical methods [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF]. Different values of the couple (α, β)

give different kinds and different variabilities of deterioration behaviors with average deterioration rate µ = α β and associated variance σ 2 = α β 2 . In engineering practice, a critically deteriorating system is generally unacceptable due to economic reasons (e.g., high consumption of raw material, poor products quality, etc.) or safety reasons (e.g., high risk of hazardous breakdowns) [START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF]. This is why a system is usually declared as "failed" as soon as its deterioration level exceeds a fixed critical threshold L, even if it is still functioning. The system failure is thus non-self-announcing and cannot be detected without an inspection.

Its random failure time τ L is the first hitting time of the failure threshold L by the deterioration process

{X t } t≥0 τ L = inf t ∈ R + , X t ≥ L .
(II.

3)

The value of L can be provided by experts [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF], or estimated from lifetime data by inverse first passage transform [START_REF] Deng | Calculation of failure level based on inverse first passage problem[END_REF].

Statistical characteristics of τ L can be found in [36, pages 97-109].

B. Control-Limit Deterioration-Based Maintenance Policy

Inspection, perfect replacement and imperfect repair are the three maintenance actions available for the system. The inspection and replacement are assumed memoryless, while the imperfect repair is past-dependent via the deterioration level given at the last repair. Since these actions are costly, a control-limit deterioration-based maintenance policy with an inspection period δ and a preventive maintenance threshold ζ has been proposed to organize them in a proper manner. Let R 0 , R 1 , . . . , R j-1 , R j , . . . , with R 0 = 0, be the successive repair/replacement times of the system, the j-th repair/replacement cycle, j ∈ N * , is thus the time interval

[R j-1 , R j ). If X R + j-1
= 0, the system has been perfectly replaced at R j-1 ; otherwise, it has been partially repaired. Under the considered maintenance policy, the deterioration evolution of the maintained system on the cycle [R j-1 , R j ) is as follows.

1) The system is periodically inspected at times

T j,k = R j-1 + k • δ, with k = 1, 2, . . ., until X T j,k ≥ ζ with a constant unit cost C i > 0.
The inspection is assumed perfect in the sense that it takes negligible time, reveals the exact deterioration level of the system without impacting on its deterioration behavior. Such an assumption is widely used in the literature (see e.g., [START_REF] Meier-Hirmer | Maintenance optimization for a system with a gamma deterioration process and intervention delay: application to track maintenance[END_REF], [START_REF] Huynh | Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decisionmaking of systems subject to stress corrosion cracking[END_REF]). We also note that the inspection may be imperfect due to e.g., the measurement noise [START_REF] Huynh | Maintenance decision-making for systems operating under indirect condition monitoring: value of online information and impact of measurement uncertainty[END_REF], the detection errors [START_REF] Yang | A two-phase preventive maintenance policy considering imperfect repair and postponed replacement[END_REF], etc. However, the inspection imperfectness is omitted here because it is out of the paper scope.

2) At an inspection time T j,k , a control-limit rule based on the detected deterioration level

X T - j,k is adopted. a) If X T - j,k
≥ L, a corrective replacement (CR) with constant cost unit cost C c is immediately carried out on the failed system. It takes negligible time, and brings the system back to an AGAN condition (i.e., X T + j,k = 0). Thus, the next repair/replacement cycle begins at R j with initial deterioration level X R + j = 0. Furthermore, before the CR starts at T j,k , a failure has been occurred in the time interval (T j,k-1 , T j,k ], that makes the system unavailable until T j,k . Such a system downtime incurs a constant cost rate

C d > 0. b) If ζ ≤ X T - j,k
< L, a preventive imperfect repair (PIR) with constant unit cost C r ∈ (C i , C c ) is immediately carried out on the repairable badly deteriorated system. Just after an instantaneous PIR, the system deterioration is put back to a level

X T + j,k ∈ X R + j-1 , X T - j,k
sampled from a pdf truncated by X R + 

X T + j,k ∼ g (y | x, z) , (II.4)
where x is a realization of the deterioration level X R + < ζ , no further intervention is needed at T j,k , so the system deterioration is let unchanged (i.e.

X T + j,k = X T - j,k
). The decision is postponed to the next inspection at T j,k+1 = T j,k + δ. we still believe that the following two-steps procedure could be applied. For some conjectured parametric forms of g

(• | •, •)
(see e.g., [START_REF] Johnson | Continuous univariate distributions[END_REF], [START_REF]Wiley Series in Probability and Mathematical Statistics[END_REF]), classical methods (e.g., maximum likelihood method, method of moment, etc.) are used to estimate the model parameters from deterioration and maintenance data. Next, we perform goodness-of-fit tests to find the best fit of the data. For this estimation-testing procedure, the deterioration and maintenance data are obviously prerequisite. This is why building such a data-set is recognized as a key perspective of the paper. Finally, the inspection period δ, and the PIR threshold ζ are decision variables to be jointly optimized. To highlight the importance of these two variables, we call the policy (δ, ζ).

C. Cost-Based Performance Criterion

This paper chooses the well-known long-run maintenance cost rate as a criterion to assess the economic performance of the (δ, ζ) policy. As argued by Wagner in [41, chapter 11], this choice is well adequate because of two main reasons.

First, in making repeated investment decisions, it is better to employ an unbounded horizon model than to simply ignore the future. Second, the mathematical models are less complex while providing reasonable answers in practice. Mathematically, the long-run maintenance cost rate is defined as

C ∞ (δ, ζ) = lim t→∞ C (t) t , (II.5)
where C(t) stands for the cumulative maintenance cost including the downtime cost up to time t. Under the (δ, ζ) policy, C(t) is expressed as

C (t) = C i • N i (t) + C r • N r (t) + C c • N c (t) + C d • W (t) , (II.6)
where N i (t), N r (t) and N c (t) are the number of inspections, the number of PIR and the number of CR in the time interval [0, t] respectively, and W (t) denotes the system downtime interval in [0, t]. Optimizing the (δ, ζ) policy returns to find the couple of decision variables

(δ opt , ζ opt ) that minimizes C ∞ (δ, ζ) C ∞ (δ opt , ζ opt ) = min (δ,ζ) {C ∞ (δ, ζ) , δ ≥ 0, 0 ≤ ζ ≤ L} . (II.7)
The optimization procedure is performed through an analytical evaluation of C ∞ (δ, ζ), which is the aim of Section III.

D. Practicality of The Proposed Condition-Based Maintained System

To illustrate the practicality of the proposed condition-based maintained system, let us introduce the gyroscope equipment represented by Hu et al. in [START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF], [START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF]. Gyroscope is a core component in inertial navigation systems. Due to the wear of rotor spin axis and the friction of gimbal bearings, the gyroscopic drift increases over time, and hence degrades the gyroscope performance. Therefore, the drift can be seen as a deterioration index of the gyroscope. In the experiment provided in [START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF],

[14], the gyroscope is periodically inspected for δ = 2.5h each time. Whenever the gyroscopic drift revealed by an inspection exceeds a threshold L = 0.37 • /h, the gyroscope is considered as failed and must be replaced. If the drift value is still less than We also note that the works of Hu et al. differ from ours at two points. Firstly, to model the efficiency of past-dependent imperfect repairs, they have based on the repair number-based approach rather than on the deterioration-level based approach (see also Section I). Secondly, the main aim of [START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF], [START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF] is to estimate the remaining useful life of condition-based maintained systems, while our aim is to evaluate and optimize the CBIM model.

L = 0.

III. MAINTENANCE COST EVALUATION AND OPTIMIZATION

This section aims at analytically evaluating the cost rate C ∞ (δ, ζ), thence finding the couple of decision parameters (δ opt , ζ opt ) that optimizes the (δ, ζ) policy. We find that after each PIR or CR at time R j , the evolution of the system depends only on the deterioration level X R + j at time R + j . The deterioration process {X t } t≥0 is therefore a semi-regenerative process with semi-regeneration times R j , j ∈ N. The length between two successive semi-regeneration times is called semiregenerative cycle. Embedded in {X t } t≥0 , there exits a discrete-time random process {Y j } j∈N , where Y j = X R + j , describing the system state at just after PIR or CR. {Y j } j∈N is a Markov chain with continuous state space [0, L) and with stationary law π. As such, the semi-regenerative cycle is also known as Markov renewal cycle (see Figure II.2). The study of asymptotic behavior of {X t } t≥0 can be restricted to a Markov renewal cycle, and we can use this property to compute C ∞ (δ, ζ) [START_REF] Bérenguer | On the mathematical condition-based maintenance modelling for continuously deteriorating systems[END_REF]. Let define ∆R 1 = R 1 as the length of the first "artificial" Markov renewal cycle 0 + , R + 1 under the (δ, ζ) policy. The notation 0 + here is not simply the initial time at which the system starts working, but rather indicates the beginning of a semi-renewal cycle. That is why the system deterioration level X 0 + is not always equal to 0, but X 0 + = x in general, where 0 ≤ x < L.

Using the result of semi-regenerative process, we can express (II.5) as

C ∞ (δ, ζ) = lim t→∞ C (t) t = E π C 0 + , R + 1 E π [∆R 1 ] = C i • E π N i 0 + , R + 1 E π [∆R 1 ] + C r • E π N r 0 + , R + 1 E π [∆R 1 ] + C c • E π N c 0 + , R + 1 E π [∆R 1 ] + C d • E π W 0 + , R + 1 E π [∆R 1 ] . (III.1)
where E π [•] denotes the expectation with respect to the stationary π. The proof of (III.1) is omitted here; interested readers are invited to refer [START_REF] Grall | Continuous-time predictive-maintenance scheduling for a deteriorating system[END_REF], [START_REF] Mercier | A condition-based imperfect replacement policy for a periodically inspected system with two dependent wear indicators[END_REF] for more details. Over the Markov renewal cycle 0 + , R + 1 , there is one and only one maintenance action (either a CR or a PIR at R 1 ); moreover,

∆R 1 = δ • N i 0 + , R + 1
. This is why, (III.1) is rewritten by

C ∞ (δ, ζ) = 1 δ C i + C r + (C c -C r ) E π N c 0 + , R + 1 + C d • E π W 0 + , R + 1 E π N i 0 + , R + 1 . (III.2)
Hereinafter, we focus on the mathematical formulation of π,

E π N i 0 + , R + 1 , E π N c 0 + , R + 1 and E π W 0 + , R + 1 .
The exactness of the formulation is justified by comparing the results obtained by numerical computation and by Monte Carlo simulation. Finally, the existence of optimal (δ, ζ) policy is proved through numerical experiments, and a derivative free algorithm are used to find the associated cost rate. Numerical examples in this section are experimented for two different configurations of maintained system:

1) small rate of deterioration variance:

α = 5, β = 5 (µ = 1, σ 2 = 0.2),
2) high rate of deterioration variance: needs to know analytical expression of P (x, dy) and a numerical method for Volterra integral equations of the second kind.

α = 0.2, β = 0.2 (µ = 1, σ 2 = 5). The function g (• | •, •) is a continuous uniform pdf,
1) Expression of Transition Kernel P (x, dy) : As shown in Appendix A, the transition kernel P (x, dy) can be expressed as follows

P (x, dy) = (ρ 1 (x) + ρ 2 (x)) • δ 0 (dy) + (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,x≤y<L} • dy • 1 {0≤x<ζ} + ρ 1 (x) • δ 0 (dy) + p 2 (y | x) • 1 {y =0,x≤y<L} • dy • 1 {ζ≤x<L} , (III.4)
where δ 0 (•) stands for the dirac delta function concentrated at 0, and

• for 0 ≤ x < ζ,
-the condition probability of a CR after one inspection period since

R + j ρ 1 (x) = Fαδ,β (L -x) , (III.5)
-the condition probability of a CR after multiple inspection periods since

R + j ρ 2 (x) = ζ x Fαδ,β (L -w) ∞ k=1 f αkδ,β (w -x) dw, (III.6)
the condition pdf of a PIR after one inspection period since

R + j p 1 (y | x) = L ζ g (y | x, r) f αδ,β (r -x) dr, (III.7)
the condition pdf of a PIR after multiple inspection periods since R

+ j p 3 (y | x) = ζ x L ζ g (y | x, z) f αδ,β (z -w) dz ∞ k=1 f αkδ,β (w -x) dw, (III.8) • for ζ ≤ x < L,
-the condition probability of a CR after one inspection period since R + j ρ 1 (x) = Fαδ,β (Lx) , (III.9)

-the condition pdf of a PIR after one inspection period since [START_REF] Botev | Kernel density estimation via diffusion[END_REF], while the dashed red curves are obtained by the numerical computation of (III.4). The identical results returned by both these approaches justify the exactitude of the formulation.

R + j p 2 (y | x) = L x g (y | x, r) f αδ,β (r -x)
2) Numerical Solution of The Stationary Law π (dy): Since the expression of P (x, dy) consists of a pdf and a Dirac mass function, the solution π (dy) of (III.3) is also in the form of a convex combination of a pdf and a Dirac mass function. By substituting this form in (III.3), we obtain, after some transformations given in Appendix B, the mathematical expression of π (dy) as follows

π (dy) = a • δ 0 (dy) + (1 -a) • b 1 (y) • 1 {0<y<ζ} dy + (1 -a) • b 2 (y) • 1 {ζ≤y<L} dy, (III.11)
where

a = 1 1 + ζ 0 B 1 (y) • dy + L ζ B 2 (y) • dy , b 1 (y) = a 1 -a • B 1 (y) and b 2 (y) = a 1 -a • B 2 (y) .
(III.12)

B 1 (y) and B 2 (y) are obtained by solving

B 1 (y) = p 1 (y | 0) + p 3 (y | 0) + y 0 B 1 (x) • (p 1 (y | x) + p 3 (y | x)) • dx, 0 < y < ζ, (III.13)
and 

B 2 (y) = p 1 (y | 0)+p 3 (y | 0)+ ζ 0 B 1 (x)•(p 1 (y | x) + p 3 (y | x))•dx+ y ζ B 2 (x)•p 2 (y | x)•dx, ζ ≤ y < L, (III.

B. Expectation Quantities With Respected to The Stationary Law π

Given the stationary law π of the Markov chain {Y j } j∈N , we continue formulating here the three important expectations of (III.2):

E π N i 0 + , R + 1 , E π N c 0 + , R + 1 and E π W 0 + , R + 1 .

1) Expected Number of Inspections Over

The First Markov Renewal Cycle: Let consider the first "artificial" Markov

renewal cycle 0 + , R + 1 with X 0 + = y, then 1) the system is inspected only one time, if 0 ≤ X 0 + < ζ ≤ X R - 1 or ζ ≤ X 0 + < L, 2) the system is inspected (k + 1) times, k = 1, 2, . . ., if 0 ≤ X 0 + ≤ X R - 1 -δ < ζ ≤ X R - 1 .
Thus, the number of inspections over the first Markov renewal cycle 0 + , R + 1 can be expressed by

N i 0 + , R + 1 = 1 {0≤X 0 + <ζ≤X δ -,X 0 + =y} + 1 {ζ≤X 0 + <L,X 0 + =y} + ∞ k=1 (k + 1) • 1 {0≤X 0 + ≤X k•δ -<ζ≤X (k+1)•δ -,X 0 + =y} . (III.15)
As shown in Appendix D, the expected value of N i 0 + , R + 1 with respect to the stationary law π is given by

E π N i 0 + , R + 1 = a • Fα•δ,β (ζ) + (1 -a) • ζ 0 Fα•δ,β (ζ -y) b 1 (y) dy + (1 -a) • L ζ b 2 (y) dy + a • ζ 0 Fα•δ,β (ζ -w) × ∞ k=1 (k + 1) f αkδ,β (w) dw + (1 -a) • ζ 0 ζ y Fα•δ,β (ζ -w) ∞ k=1 (k + 1) f αkδ,β (w -y) dw b 1 (y) dy, (III.16)
where a, b 1 (y) and b 2 (y) are given in (III.12). Markov renewal cycle 0 + , R + 1 with X 0 + = y, then 1) the system is correctively replaced after one inspection period δ since 0 + (i.e., at

R 1 = δ), if 0 ≤ X 0 + < L ≤ X R - 1 ,
2) the system is correctively replaced after a multiple of inspection period (k + 1) δ, k = 1, 2, . . ., since 0 + (i.e., at

R j = (k + 1) δ), if 0 ≤ X 0 + ≤ X R - j -δ < ζ < L ≤ X R - j .
Thus, the number of CR N c 0 + , R + 1 over the semi-renewal cycle 0 + , R + 1 can be expressed by

N c 0 + , R + 1 = 1 {0≤X 0 + <L≤X δ -,X 0 + =y} + ∞ k=1 1 {0≤X 0 + ≤X k•δ -<ζ<L≤X (k+1)•δ -,X 0 + =y} . (III.17)
As shown in Appendix E, the expected value of N c 0 + , R + 1 with respect to the stationary law π is

E π N c 0 + , R + 1 = a • Fα•δ,β (L) + (1 -a) • ζ 0 Fα•δ,β (L -y) b 1 (y) dy + (1 -a) • L ζ Fα•δ,β (L -y) b 2 (y) dy + a • ζ 0 Fα•δ,β (L -w) ∞ k=1 f αkδ,β (w) dw + (1 -a) • ζ 0 ζ y Fα•δ,β (L -w) ∞ k=1 f αkδ,β (w -y) dw b 1 (y) dy, (III.18)
where a, b 1 (y) and b 2 (y) are given in (III.12).

3) Expected Length of System Downtime Over The First Markov Renewal Cycle: Let consider the first "artificial" Markov renewal cycle 0 + , R + 1 with X 0 + = y, 1) if 0 + , R + 1 corresponds to the first inspection period, then the system downtime W 0 + , R + 1 can be expressed by

W 0 + , R + 1 = δ 0 1 {0<τL<t,X 0 + =y} dt = δ 0 1 {0≤X 0 + <L<Xt,X 0 + =y} dt, (III.19)
2) if 0 + , R + 1 corresponds to (k + 1) first inspection period, k = 1, 2, . . ., then the system downtime W 0 + , R + 1 can be expressed by

W 0 + , R + 1 = (k+1)δ kδ 1 {kδ<τL<t,,X 0 + =y} dt = (k+1)δ kδ 1 {0≤X 0 + ≤X k•δ -<ζ<L≤Xt,X 0 + =y} dt, (III.20)
where τ L is the system failure time given from (II.3). In other words,

W 0 + , R + 1 = δ 0 1 {0≤X 0 + <L<Xt,X 0 + =y} dt + ∞ k=1 (k+1)δ kδ 1 {0≤X 0 + ≤X k•δ -<ζ<L≤Xt,X 0 + =y} dt. (III.21)
Its expected value with respect to the stationary law π is then

E π W 0 + , R + 1 = δ 0 a • Fα•t,β (L) + (1 -a) • ζ 0 Fα•t,β (L -y) b 1 (y) dy + (1 -a) • L ζ Fα•t,β (L -y) b 2 (y) dy + a • ζ 0 Fα•t,β (L -w) ∞ k=1 f αkδ,β (w) dw + (1 -a) • ζ 0 ζ y Fα•t,β (L -w) ∞ k=1 f αkδ,β (w -y) dw b 1 (y) dy dt, (III.22)
where a, b 1 (y) and b 2 (y) are given in (III.12). The proof of (III.22) is given by Appendix F.

4) Validation of Expectation Quantities and Cost Model:

To validate the mathematical formula of System parameters Approach 

E π N i 0 + , R + 1 , E π N c 0 + , R +
E π N i 0 + , R + 1 E π N c 0 + , R + 1 E π W 0 + , R + 1 C ∞ (δ, ζ) α = 5, β = 5 ζ = 4, δ = 7 Num.

IV. SENSITIVITY STUDIES FOR THE (δ, ζ) POLICY

To better understand how the (δ, ζ) policy behaves under the variation of maintenance costs and system deterioration characteristics, numerical sensitivity studies are proposed.

A. Sensitivity Studies to Maintenance Costs

We study at first the impact of maintenance costs on the performance of the (δ, ζ) policy. To this end, we fix the values of system characteristics (i. We find that the value of δ opt increases with respect to the increasing of C i . This means the (δ, ζ) policy requires to inspect the system less frequently to avoid expensive cost. Meanwhile, less frequent inspections also cause late detection of system failure, thence longer system downtime. This is why the (δ, ζ) policy adjusts ζ opt smaller to enable more often PIR.

The cost rate C ∞ (δ opt , ζ opt ) is thus a compromise between the gain and the loss of inspection and PIR. Notwithstanding, C ∞ (δ opt , ζ opt ) always increases for higher inspection cost. We remark that the optimal (δ, ζ) policy sets δ opt at a very small value when C d becomes important. The system state is thus followed very closely to trigger a timely CR and to shorten the system downtime. Accordingly, it does not need to set ζ opt at a small value, but rather at a high value to extend as most as possible the system lifetime. As such, both δ opt and ζ opt contribute to the optimal cost rate C ∞ (δ opt , ζ opt ), which becomes higher when the system downtime is costly. We can find that the optimal cost rate C ∞ (δ opt , ζ opt ) is a increasing function of the deterioration speed µ. When µ is relatively small, C ∞ (δ opt , ζ opt ) depends closely on both the values of δ opt and ζ opt , but it is almost independent of the ζ opt value when µ becomes higher. In all cases, δ opt decreases with respect to the increasing of µ. Under the optimal (δ, ζ) policy, δ opt and ζ opt tend to decrease and increase with respect to higher values of deterioration variance σ 2 . We find that these tendencies are similar to what observed in Figure IV.3. Accordingly, δ opt and ζ opt have the same meanings. Normally, when the deterioration behavior of the system is chaotic, we should follow closely the system state to be able to make a proper decision. Numerous numerical experiments also show that the optimal cost rate C ∞ (δ opt , ζ opt ) is a concave function of σ 2 . Moreover, the smaller values are concentrated at high values of σ 2 . In other words, the (δ, ζ) policy is especially suitable to systems with very chaotic deterioration process.

2) Sensitivity to Preventive Imperfect Repair Costs:

B. Sensitivity Studies to System Deterioration Characteristics

2) Sensitivity to

V. COMPARATIVE STUDIES FOR THE (δ, ζ) POLICY

To assess the performances of the (δ, ζ) policy, as well as the importance of incorporating the past dependency in maintenance modeling, comparative studies with two more classical benchmark policies are done. These policies share exactly the same inspection and maintenance decision structures as the (δ, ζ) policy (see Section II-B). The only difference is the efficiency and incurred cost of employed preventive maintenance actions.

1) (δ, λ) policy. At an inspection time T j,k = R j-1 + k • δ, if λ ≤ X T - j,k < L, a preventive perfect replacement (PPR) with constant unit cost C p ∈ (C r , C c ) is immediately carried out.
Just after an instantaneous PPR, the system is put back to an AGAN condition (i.e., X T + j,k = 0). Such a policy is called (δ, λ) policy because the inspection period δ and the PPR threshold λ are two decision variables to be optimized.

2) (δ, η) policy: At an inspection time

T j,k = R j-1 + k • δ, if η ≤ X T - j,k
< L, a memoryless PIR with the same constant unit cost C r as in the (δ, ζ) policy is immediately carried out. Just after an instantaneous memoryless PIR, the system deterioration is set to a level between 0 and X T - j,k independently of previous maintenance actions following the pdf

X T + j,k ∼ p (y | 0, z), where z is a realization of X T - j,k
. We call this policy (δ, η) because the inspection period δ and the PIR threshold η are two decision variables to be optimized.

An illustration of the deterioration behavior of the maintained system under the two benchmark policies is shown in Figures V.1a and V.1b respectively. We note that the (δ, λ) policy and the (δ, η) policy have been proposed in [START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF] and [START_REF] Meier-Hirmer | Maintenance optimization for a system with a gamma deterioration process and intervention delay: application to track maintenance[END_REF] respectively.

In this paper, the former stands for another choice of preventive actions (i.e., PPR instead of PIR), while the latter represents a wrong choice of PIR models (i.e., memoryless PIR instead of past-dependent PIR). compromise between the efficiency and incurred cost of maintenance actions. Especially, the PIR is more profitable than the PPR when C r is relatively smaller than C p . Comparing C ∞,opt of the (δ, ζ) policy and of the (δ, η) policy, we find that a mistake in PIR modeling will overestimate the benefit of PIR, hence a wrong choice between PIR and PPR.

VI. CONCLUSIONS AND PERSPECTIVES

This paper develops a deterioration-based maintenance model with past-dependent PIR for single-unit systems subject to stochastic continuous deterioration process. A complete procedure, including deterioration and failure modeling, maintenance policy elaboration, mathematical cost model formulation and validation, and sensitivity and comparative studies, has been made. Especially, the paper applies truncated probability distributions to describe the efficiency of past-dependent PIR on the system deterioration. Such a model is much more simple and can break the memory assumption existing in well-known arithmetic reduction type and Kijima's type models. Compared to many memoryless CBIM models in the literature, our model is more general and more realistic.

The work presented in this paper is merely theoretical; and even if the theoretical results are encouraging, we should validate the proposed CBIM model with real-world experiments. Building a deterioration and maintenance data-set, and estimating parameters of the CBIM model are recognized as key steps of this future work. Besides, proposing a new maintenance policy combining the advantages of imperfect repairs and perfect replacements for preventive actions could be an interesting perspective. For such a policy, how to switch from an imperfect repair to a perfect replacement and vice versa will be a main problem. Other perspective is to continue to work on other past-dependent effects of imperfect repairs.

APPENDIX

A. Proof of (III.4)

Considering the Markov renewal cycle R + j , R + j+1 and assuming that X R + j = x and X R + j+1 = y, the transition kernel of the Markov chain {Y j } j∈N is defined by

P (x, dy) = ∞ k=0 P X R + j+1 ∈ dy | X R + j = x . (A.1)
If a replacement is performed at R j+1 , then y = 0. If an imperfect repair is done, then y = 0 and x ≤ y < L. Hereafter, we consider different scenarios to compute P (x, dy) following the length to replacement/repair time since R j .

1) Replacement/Repair After One Inspection Period: Let consider the situation that the next replacement/repair on the system is performed after one inspection period δ since R j (i.e., R + j+1 = R + j + δ). We further then distinguish two cases 0 ≤ x < ζ and ζ ≤ x < L.

1) If 0 ≤ x < ζ, then the transition kernel P (x, dy) is expressed as

P (x, dy) = P X R + j+1 ∈ dy, L ≤ X R - j+1 | X R + j = x P1(x,dy) + P X R + j+1 ∈ dy, ζ ≤ X R - j+1 < L | X R + j = x P2(x,dy) . (A.2)
In (A.2), P 1 (x, dy) stands for the transition pdf associated with a CR (i.e., y = 0)

P 1 (x, dy) = P X R + j+1 ∈ dy | L ≤ X R - j+1 , X R + j = x P L ≤ X R - j+1 | X R + j = x = δ 0 (dy) P L -x ≤ X R - j+1 -X R + j = δ 0 (dy) Fαδ,β (L -x) , (A.3)
and P 2 (x, dy) stands for the transition pdf associated with a PIR (i.e., y = 0 and x ≤ y < L)

P 2 (x, dy) = P X R + j+1 ∈ dy, ζ -x ≤ X R - j+1 -X R + j < L -x | X R + j = x = L-x ζ-x P X R + j+1 ∈ dy | X R + j = x, X R - j+1 -X R + j = v f αδ,β (v) dv = L-x ζ-x P X R + j+1 ∈ dy | X R + j = x, X R - j+1 = x + v f αδ,β (v) dv = dy L-x ζ-x g (y | x, x + v) f αδ,β (v) dv = dy L ζ g (y | x, r) f αδ,β (r -x) dr, (A.4)
in which the change of variable r = x + v is used. Thus,

P (x, dy) = δ 0 (dy) • Fαδ,β (L -x) ρ1(x) +1 {y =0,x≤y<L} • dy L ζ g (y | x, r) f αδ,β (r -x) dr p1(y|x) , (A.5)
where 0 ≤ x < ζ.

2) If ζ ≤ x < L, then the transition kernel P (x, dy) is expressed as

P (x, dy) = P X R + j+1 ∈ dy, L ≤ X R - j+1 | X R + j = x P3(x,dy) + P X R + j+1 ∈ dy, X R - j+1 < L | X R + j = x P4(x,dy) . (A.6)
In (A.6), P 3 (x, dy) stands for the transition pdf associated with a CR (i.e., y = 0) P 3 (x, dy) = P 1 (x, dy) = δ 0 (dy) • ρ 1 (x) , (A.7) and P 4 (x, dy) stands for the transition pdf associated with a PIR (i.e., y = 0 and x ≤ y < L)

P 4 (x, dy) = P X R + j+1 ∈ dy, X R - j+1 -X R + j < L -x | X R + j = x = L-x 0 P X R + j+1 ∈ dy | X R + j = x, X R - j+1 -X R + j = v f αδ,β (v) dv = L-x 0 P X R + j+1 ∈ dy | X R + j = x, X R - j+1 = x + v f αδ,β (v) dv = dy L-x 0 g (y | x, x + v) f αδ,β (v) dv = dy L x g (y | x, r) f αδ,β (r -x) dr, (A.8)
in which the change of variable r = x + v is used. Thus,

P (x, dy) = δ 0 (dy) • ρ 1 (x) + 1 {y =0,x≤y<L} • dy L x g (y | x, r) f αδ,β (r -x) dr p2(y|x)
, (A.9)

where ζ ≤ x < L.

2) Replacement/Repair After Multiple Inspection Periods: We are in the situation that the next system replacement/repair is performed after a multiple of inspection periods since R j (i.e., R + j+1 = R + j + (k + 1) δ, where k ∈ N * ). For this situation, 0 ≤ x < ζ, and then the transition kernel P (x, dy) is thus computed as

P (x, dy) = ∞ k=1     P X R + j+1 ∈ dy, X Rj+1-δ < ζ < L ≤ X R - j+1 | X R + j = x P 5,k+1 (x,dy) + P X R + j+1 ∈ dy, X Rj+1-δ < ζ ≤ X R - j+1 < L | X R + j = x P 6,k+1 (x,dy)     , (A.10)
In (A.10), P 5,k+1 (x, dy) represents the transition pdf associated with a CR (i.e., y = 0) [START_REF] De Toledo | Ara and ari imperfect repair models: Estimation, goodness-of-fit and reliability prediction[END_REF] and P 6,k+1 (x, dy) represents the transition pdf associated with a PIR (i.e., y = 0 and x ≤ y < L)

P 5,k+1 (x, dy) = P X R + j+1 ∈ dy, X Rj+1-δ -X R + j < ζ -x < L -x ≤ X R - j+1 -X R + j | X R + j = x = ζ-x 0 P X R + j+1 ∈ dy, L -x ≤ X R - j+1 -X R + j | X R + j = x, X R - j+1 -δ -X R + j = u f αkδ,β (u) du = ζ-x 0 P X R + j+1 ∈ dy, L -x -u ≤ X R - j+1 -X R - j+1 -δ | X R + j = x, X R - j+1 -δ = x + u f αkδ,β (u) du = ζ-x 0 δ 0 (dy) Fαδ,β (L -x -u) f αkδ,β (u) du, (A.
P 6,k+1 (x, dy) = P X R + j+1 ∈ dy, X Rj+1-δ -X R + j < ζ -x ≤ X R - j+1 -X R + j < L -x | X R + j = x = ζ-x 0 P X R + j+1 ∈ dy, ζ -x ≤ X R - j+1 -X R + j < L -x | X R + j = x, X R - j+1 -δ -X R + j = u f αkδ,β (u) du = ζ-x 0 P X R + j+1 ∈ dy, ζ -x -u ≤ X R - j+1 -X R - j+1 -δ < L -x -u | X R + j = x, X R - j+1 -δ = x + u f αkδ,β (u) du = ζ-x 0 L-x-u ζ-x-u P X R + j+1 ∈ dy, | X R + j = x, X R - j+1 -δ = x + u, X R - j+1 -X R - j+1 -δ = v f αδ,β (v) f αkδ,β (u) dvdu = ζ-x 0 L-x-u ζ-x-u P X R + j+1 ∈ dy, | X R + j = x, X R - j+1 = x + u + v f αδ,β (v) f αkδ,β (u) dvdu = ζ-x 0 L-x-u ζ-x-u g (y | x, x + u + v) dyf αδ,β (v) f αkδ,β (u) dvdu. (A.12)
Thus,

P (x, dy) = ∞ k=1 δ 0 (dy) ζ-x 0 Fαδ,β (L -x -u) f αkδ,β (u) du +1 {y =0,x≤y<L} • dy ζ-x 0 L-x-u ζ-x-u g (y | x, x + u + v) f αδ,β (v) f αkδ,β (u) dvdu = ∞ k=1 ζ-x 0 δ 0 (dy) Fαδ,β (L -x -u) + 1 {y =0,x≤y<L} • dy× L-x-u ζ-x-u g (y | x, x + u + v) f αδ,β (v) dv f αkδ,β (u) du = ζ-x 0 δ 0 (dy) Fαδ,β (L -x -u) + 1 {y =0,x≤y<L} • dy× L-x-u ζ-x-u g (y | x, x + u + v) f αδ,β (v) dv ∞ k=1 f αkδ,β (u) du, (A.13)
Using the change of variables z = x + u + v and w = x + u, we obtain

P (x, dy) = ζ x δ 0 (dy) Fαδ,β (L -w) + 1 {y =0,x≤y<L} • dy L ζ g (y | x, z) f αδ,β (z -w) dz × ∞ k=1 f αkδ,β (w -x) dw = δ 0 (dy) ζ x Fαδ,β (L -w) ∞ k=1 f αkδ,β (w -x) dw ρ2(x) + 1 {y =0,x≤y<L} • dy ζ x L ζ g (y | x, z) f αδ,β (z -w) dz ∞ k=1 f αkδ,β (w -x) dw p3(y|x) , (A.14)
where 0 ≤ x < ζ.

By summarizing the above cases, we obtain (III.4)

B. Proof of (III.11)

The stationary measure π of {Y j } j∈N is the solution of the invariance equation

π (dy) = [0,L) P (x, dy) π (dx) , (B.1)
where P (x, dy), given by (III.4), is rewritten as

P (x, dy) = ρ 1 (x) • 1 {0≤x<L} + ρ 2 (x) • 1 {0≤x<ζ} • δ 0 (dy) + (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x≤y<ζ} • dy + (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x<ζ≤y<L} + p 2 (y | x) • 1 {y =0,ζ≤x≤y<L} • dy. (B.2)
We search a solution in the form 

π (dy) = a • δ 0 (dy) + (1 -a) • b 1 (y) • 1 {0<y<ζ} dy + (1 -a) • b 2 (y) • 1 {ζ≤y<L} dy, ( 
a • δ 0 (dy) + (1 -a) • b 1 (y) • 1 {0<y<ζ} • dy + (1 -a) • b 2 (y) • 1 {ζ≤y<L} • dy = [0,L) ρ 1 (x) • 1 {0≤x<L} + ρ 2 (x) • 1 {0≤x<ζ} • δ 0 (dy) + (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x≤y<ζ} • dy + (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x<ζ≤y<L} + p 2 (y | x) • 1 {y =0,ζ≤x≤y<L} • dy × a • δ 0 (dx) + (1 -a) • b 1 (x) • 1 {0<x<ζ} • dx + (1 -a) • b 2 (x) • 1 {ζ≤x<L} • dx . (B.4)
This leads to the three following equalities: 

1) when y = 0, a = [0,L) ρ 1 (x) • 1 {0≤x<L} + ρ 2 (x) • 1 {0≤x<ζ} × a • δ 0 (dx) + (1 -a) • b 1 (x) • 1 {0<x<ζ} • dx + (1 -a) • b 2 (x) • 1 {ζ≤x<L} • dx = a • ρ 1 (0) + a • ρ 2 (0) + ζ 0 (1 -a) • b 1 (x) • (ρ 1 (x) + ρ 2 (x)) • dx + L ζ (1 -a) • b 2 (x) • ρ 1 (x) • dx, (B.5) 2) when 0 < y < ζ, (1 -a) • b 1 (y) = [0,L) (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x≤y<ζ} × a • δ 0 (dx) + (1 -a) • b 1 (x) • 1 {0<x<ζ} • dx + (1 -a) • b 2 (x) • 1 {ζ≤x<L} • dx = a • (p 1 (y | 0) + p 3 (y | 0)) + y 0 (1 -a) • b 1 (x) • (p 1 (y | x) + p 3 (y | x)) • dx, (B.6) 3) when ζ ≤ y < L, (1 -a) • b 2 (y) = [0,L) (p 1 (y | x) + p 3 (y | x)) • 1 {y =0,0≤x<ζ≤y<L} + p 2 (y | x) • 1 {y =0,ζ≤x≤y<L} × a • δ 0 (dx) + (1 -a) • b 1 (x) • 1 {0<x<ζ} • dx + (1 -a) • b 2 (x) • 1 {ζ≤x<L} dx = a • (p 1 (y | 0) + p 3 (y | 0)) + ζ 0 (1 -a) • b 1 (x) • (p 1 (y | x) + p 3 (y | x)) • dx + y ζ (1 -a) • b 2 (x) • p 2 (y | x) • dx. (B.7) In these equalities, ρ 1 (•), p 1 (• | •), ρ 2 ( 
B i (•) = 1-a a b i (•), i = 1, 2 
, the above equalities become: 1) when y = 0,

1 = ρ 1 (0) + ρ 2 (0) + ζ 0 B 1 (x) • (ρ 1 (x) + ρ 2 (x)) • dx + L ζ B 2 (x) • ρ 1 (x) • dx, (B.8) 2) when 0 < y < ζ, B 1 (y) = p 1 (y | 0) + p 3 (y | 0) + y 0 + B 1 (x) • (p 1 (y | x) + p 3 (y | x)) • dx, (B.9)
3) and when ζ ≤ y < L, 

B 2 (y) = p 1 (y | 0) + p 3 (y | 0) + ζ 0 B 1 (x) • (p 1 (y | x) + p 3 (y | x)) • dx + y ζ B 2 (x) • p 2 (y | x) • dx. (B.
+ ζ 0 (1 -a) • b 1 (y) • dy + L ζ (1 -a) • b 2 (y) • dy = 1. (B.11) Since a • B i (•) = (1 -a) • b i (•), i = 1, 2, then a • 1 + ζ 0 B 1 (y) • dy + L ζ B 2 (y) • dy = 1. (B.12)
Thence,

a = 1 1 + ζ 0 B 1 (y) • dy + L ζ B 2 (y) • dy , b 1 (y) = a 1 -a • B 1 (y) and b 2 (y) = a 1 -a • B 2 (y) , (B.13)
where B 1 (y) and B 2 (y) are derived from (B.9) and (B.10).

C. Heun's Method for Solving (III.13) and (III.14)

This section aims at using the Heun's method presented in [45, pages 334-335] to approximate the solution B 1 (y) of (III.13), and B 2 (y) of (III.14). In fact, (III.13) and (III. The idea of the Heun's method is to approximate the integral part of (C.1) by the well-known trapezoid rule

y an K n (y, x) B n (x) • dx ≃ h • 1 2 K n (y, x 0 ) B n (x 0 ) + K n (y, x 1 ) B n (x 1 ) + • • • + K n (y, x N -1 ) B n (x N -1 ) + 1 2 K n (y, x N ) B n (x N ) , (C.2)
where h = y-an N is the mesh spacing given by dividing the interval of integration (a n , y) into N ≥ 1 equal sub-intervals,

x 0 = a n , x j = a n + j • h with j = 1, . . . , N , x j ≤ y. Dividing the interval (a n , b n ) by equal sub-intervals with length h (i.e., y 0 = a n , y N = x N = y = b n , y i = a n + i • h, i = 1, . . . , N ), and denoting B n,i = B n (y i ), q n,i = q n (y i ) and K n,i,j = K n (y i , x j ), we can recursively compute B n (y) of (C.1) from the following equalities B n,0 = q n,0 Rewriting the above equalities in matrix form, we have

B n,1 = q n,1 + h • 1 2 K n,
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q n,1

q n,2
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q n,N                        +                        0 0 0 0 0 0 0 h 2 K n,1,0 h 2 K n,
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B n,N                        . (C.

D. Proof of (III.16)

We have 

E π 1 {0≤X 0 + <ζ≤X δ -,X 0 + =y} = [0,ζ) P (ζ ≤ X δ -| X 0 + = y) π (dy) =

G. Expectation Quantities Evaluation By Monte Carlo Simulation Method

We propose here a simple way to deduce the value of E π N i 0 + , R + 1 , E π N c 0 + , R + 1 and E π W 0 + , R + 1 from the Monte Carlo simulation method.

1) Expected Number of Inspections Over

The First Markov Renewal Cycle: Using the semi-regenerative property of the maintained system state process, we have

lim t→∞ N r (t) + N c (t) t = E π N r 0 + , R + 1 + E π N c 0 + , R + 1 E π [∆R 1 ] = 1 δ • E π N i 0 + , R + 1 . Thus E π N i 0 + , R + 1 1 • lim t→∞ t N r (t) + N c (t) ≃ 1 δ • D N r (D) + N c (D) , (G.1)
where D is a large enough time duration.

2) Expected Number of Corrective Replacement Over

The First Markov Renewal Cycle: Using once again the semiregenerative property of the maintained system state process, we obtain 3) Expected Length of System Downtime Over The First Markov Renewal Cycle: Similarly, we have

lim t→∞ W (t) t = E π W 0 + , R + 1 E π [∆R 1 ]
.

Thus 

E π W 0 + , R + 1 = E π [∆R 1 ] • lim t→∞ W (t) t = lim t→∞ t N r (t) + N c (t) • W (t) t ≃ W ( 
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 11 Figure II.1: Illustration of past-dependent imperfect repair model

Figure II. 2 Figure II. 2 :

 22 Figure II.2 illustrates the deterioration evolution of the maintained system over three first repair/replacement cycles. For this

  37 • /h but greater than ζ = 0.30 • /h, the current in the torque coil of the gyroscope is adjusted to compensate the drift value. Such an adjustment is a imperfect repair action on the gyroscope. The evolution of the drift data of two maintained gyroscopes are plotted in Figure II.3. Obviously, such a system behavior can be completely described by our CBIM model.

Figure II. 3 :

 3 Figure II.3: Drift data of two maintained gyroscopes adapted from[START_REF] Hu | A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[END_REF],[START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF] 

  the failure threshold is L = 15, and maintenance costs are C i = 5, C r = 20, C c = 100 and C d = 25. A. Stationary Law of The Markov Chain {Y j } j∈N As aforementioned, {Y j } j∈N is a Markov chain with continuous state space [0, L) and Y 0 = 0. As {Y j } j∈N comes back to 0 (a regeneration set) almost surely, there exists a stationary measure π on [0, L) for {Y j } j∈N which is the solution of the following invariance equation π (dy) = [0,L) P (x, dy) π (dx) , (III.3) where P (x, dy) denotes the transition kernel of {Y j } j∈N from X R + j = x to X R + j+1 = y. Solving the integral equation (III.3)

  Figure III.1: Shapes of the transition kernel P (x, dy) of the Markov chain {Y j } j∈N when δ = 4.6 and ζ = 11

  14) in which p 1 (• | •) and p 2 (• | •) are given from (III.8) and (III.7). Solving analytically (III.13) and (III.14) being difficult, we propose to use the Heun's method to derive their numerical solutions (see Appendix C). Let continue with the example introduced in Subsection III-A1, we sketch the shapes of B(y) and the stationary law π (y) in Figure III.2. As above, the results are given by both the numerical computation of (III.13), (III.14) and (III.11) (i.e., dashed red curves) and the Monte Carlo simulation and kernel density estimation [43] (i.e., solid black curves). The identical results justify the exactitude of the formulation.

Figure III. 2 :

 2 Figure III.2: Shapes of B(y) and π (y) when δ = 4.6 and ζ = 11

1 and E π W 0 + , R + 1 , 1 ,

 1011 as well as the cost rate C ∞ (δ, ζ), we effectuate the numerical comparison between (III.16), (III.18), (III.22) and (III.2) and the results given by Monte Carlo simulation. A simple way to derive the valueof E π N i 0 + , R + E π N c 0 + , R + 1 and E π W 0 + , R + 1by the Monte Carlo simulation method is proposed in Appendix G. As an illustration, the results given by the two above approaches for the two system configurations introduced at the beginning of Section III are shown in TableI., The duration for Monte Carlo simulation has been chosen by D = 10 7
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 2324 Figure III.3: Shapes of C ∞ (δ, ζ) for L = 15, C i = 5, C r = 20, C c = 100 and C d = 25.

Figure IV. 1 :

 1 Figure IV.1: Sensitivity to inspection costs when C r = 30, C c = 100 and C d = 25

  Figure IV.2 is obtained when C i = 5, C d = 25 and C r varies from 5 to 47 with step 14. Its meanings are the same as Figure IV.1.
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 2 Figure IV.2: Sensitivity to preventive imperfect repair costs when C i = 5, C c = 100 and C d = 25

Figure IV. 3 :

 3 Figure IV.3: Sensitivity to downtime cost rate when C i = 5, C r = 30 and C d = 25

  Figure IV.4.
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 4 Figure IV.4: Sensitivity to system deterioration speed when C i = 5, C r = 19, C c = 100 and C d = 25

Figure IV. 5 :

 5 Figure IV.5: Sensitivity to system deterioration variance when C i = 5, C r = 19, C c = 100 and C d = 25

Figure V. 1 :Figure V. 2 :

 12 Figure V.1: Schematic evolution of the maintained system state under benchmark maintenance policies

B. 3 )

 3 where 0 < a < 1 and b (y) = b 1 (y) • 1 {0<y<ζ} + b 2 (y) • 1 {ζ≤y<L} is a pdf on (0, L) (i.e., L 0 b (y) dy = ζ 0 b 1 (y) dy + L ζ b 2 (y) dy = 1). Substituting (B.2) and (B.3) in (B.1), we obtain

  •) and p 2 (• | •) are given from (III.6), (III.8), (III.5) and (III.7) respectively. Let

0 (p 1

 01 [START_REF] Pei | A multi-stage wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[END_REF] share the same form of a non-homogeneous linear Volterra integral equation of the second kind, which can be generally expressed byB n (y) = q n (y) + y an K n (y, x) • B n (x) • dx, a n < y < b n ,(C.1)where 1) when n = 1, thena n = 0, b n = ζ, K n (y, x) = p 1 (y | x) + p 3 (y | x) , q n (y) = p 1 (y | 0) + p 3 (y | 0) ,2) when n = 2, thena n = ζ, b n = L, K n (y, x) = p 2 (y | x) , q n (y) = p 1 (y | 0) + p 3 (y | 0) + ζ (y | x) + p 3 (y | x)) • B 1 (x) • dx.

M 2 • 2 •

 22 • B n = q n , (C.[START_REF] Pham | Imperfect maintenance[END_REF] whereB n = B n,0 • • • B n,N T , q n = q n,0 • • • q n,N T, and M is a lower triangular matrix such thatM i,i = 1 -h K n,i,i , i = 1, . . . , N, M i,j = -h • K n,i,j , 1 ≤ j < i ≤ N, M i,0 = -h K n,i,0 , i = 1, . . . , N, M 0,0 = 1.Solving (C.4), we obtain B n , an approximation of B n (y) for a n < y < b n , n = 1, 2.

1 = δ 0 a0 0 Fαf

 100 ,β (ζy) π (dy) , (D.1)E π 1 {ζ≤X 0 + <L,X 0 + =y} = [ζ,L) π (dy) , (D.2)Substituting π (dy) in (F.3) by its expression (III.11), we obtainE π W 0 + , R + • Fα•t,β (L) + (1a) • ζ Fα•t,β (Ly) b 1 (y) dy + (1a) • L ζ Fα•t,β (L -y) b 2 (y) dy + a • ζ αkδ,β (wy) dw b 1 (y) dy dt. (F.4)

N c 0 + , R + 1 E 1 =

 11 π [∆R 1 ] . Thus E π N c 0 + , R + E π [∆R 1 ] • lim t→∞ N c (t) t = lim t→∞ t N r (t) + N c (t) • N c (t) t ≃ N c (D) N r (D) + N c (D) . (G.2)

  D) N r (D) + N c (D) . (G.3) ACKNOWLEDGMENT This research benefited from the support of the FMJH Program PGMO and from the support of EDF-Thales-Orange.

  [START_REF] Newby | A bivariate process model for maintenance and inspection planning[END_REF] Solving (B.9) and (B.10) gives the expressions B 1 (y) and B 2 (y). Moreover, since

L 0 π (y) dy = 1, from (B.3), we have a

  1,0 B n,0 + 1 2 K n,1,1 B n,1 B n,2 = q n,2 + h • 1 2 K n,2,0 B n,0 + K n,2,1 B n,1 + 1 2 K n,2,2 B n,2 B n,0 + K n,N,1 B n,1 + • • • + K n,N,N -1 B n,N -1 + 1 2 K n,N,N B n,N

	. . .	. . .	
	B n,N = q n,N + h •	1 2	K n,N,0

and

Substituting π (dy) in (D.4) by its expression (III.11), we obtain

E. Proof of (III.18)

We have

and

From (III.17), the expected number of CR N c 0 + , R + 1 over the semi-renewal cycle 0 + , R + 1 can be given by

Substituting π (dy) in (E.3) by its expression (III.11), we obtain

F. Proof of (III.22)

We have

and