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Abstract We propose a new phenomenological model

to represent the impact of wind-waves on the dissipa-

tion of turbulence kinetic energy near the sea surface. In

this model, the momentum flux at a given height results

from the averaged contribution of eddies attached to the

sea surface whose sizes are related to the surface geome-

try. This yields a coupling between long wind-waves and

turbulence at heights of about 10 m. This new wind-

and-waves coupling is thus not exclusively confined to

the short wave range and heights below 5 m, where most

of the momentum transfer to the waves is known to

occur. The proposed framework clarifies the impact of

wind-waves on Monin–Obukhov similarity theory, and

the role of long wind-waves on the observed variability

of momentum fluxes. This work reveals which state vari-

ables related to the wind-and-waves coupling require
more accurate measurements to further improve wind-

over-waves models and parametrizations.

Keywords Air–sea fluxes; Wall-bounded turbulence;

Wave boundary layer; Wind stress; Wind-waves

1 Introduction

Observing a windy sea immediately reveals that wind

and waves are strongly coupled. Yet, consistent physical
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mechanisms explaining this two-way coupling are still

elusive both to theory and observations (e.g. Soloviev

and Kudryavtsev 2010; Hristov 2018; Villas Boas et al.

2019). Of particular interest is the link between near-

surface momentum fluxes and waves, due to its impor-

tance in atmospheric models, from the synoptic to the

climate scale (e.g. Janssen and Viterbo 1996; Shimura

et al. 2017; Pineau-Guillou et al. 2018; Villas Boas et al.

2019). For a given near-surface mean wind speed, a

large source of variability in turbulent fluxes is atmo-

spheric stability (e.g. Geernaert 1990; Fairall et al. 2003),

consistently described by Monin–Obukhov Similarity

Theory (MOST, see the review by Foken 2006). How-

ever, for neutral atmospheric conditions, open-ocean

observations exhibit a variability around their mean

value for a given mean wind speed, which has been

attributed to waves (see e.g. Edson et al. 2013). The

mean value results from a local equilibrium between

short wind-waves and atmospheric turbulence. For low

wind speeds, swell and non-stationary wind conditions

have been suggested as possible reasons of its variabil-

ity (Drennan et al. 1999), whereas at moderate to high

wind speeds, the physical processes are still not clearly

determined.

Close to the surface, wave impact on atmospheric

turbulence has been accounted for through the so-called

wave-induced stress. Assuming that wind fluctuations

can be described as a linear superposition of a tur-

bulent and an ocean-wave induced component, wave-

induced stress results, for growing seas, from the trans-

fer of mean flow energy to the wave-induced compo-

nent (Janssen 1989). This energy is then transfered to

turbulent motions, which support the growth of wind-

waves (Plant 1982). In an equilibrium wind-over-waves

situation, i.e. for waves that equilibrated with a local

stationary airflow, wave-induced stress induces an en-
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hancement of turbulent motions compared to flow over

a smooth surface (Makin and Mastenbroek 1996). This

net enhancement occurs up to a height that defines

the wave boundary layer (WBL), above which wave-

induced stress vanishes. Wave-induced stress is mostly

correlated to the presence of short wind-waves, which

are thus strongly coupled to the low-level wind field and

receive most of the wind energy input. Conceptual mod-

els including this physical process were able to success-

fully predict measured open-ocean fluxes (Makin and

Kudryavtsev 1999; Hara and Belcher 2002; Kudryavt-

sev et al. 2014). These single-column models (called

wind-over-waves models in the following) couple a tur-

bulence kinetic energy (TKE) equation to a spectral

wave model through wave-induced stress, and predict

the equilibrated turbulent momentum flux and wind–wave

spectrum given a reference-height mean wind speed.

Following experimental and numerical studies, Kudryavt-

sev et al. (2014) included wave-breaking effects (i.e.

discontinuities in the surface slope) as an additional

source of wave-induced stress, and showed that this ef-

fect could be significant in explaining the observed mo-

mentum fluxes. Being mostly supported by short waves

(with wavelength of the order of 0.01 to 1 metres), both

processes act on a shallow atmospheric layer of height

one order of magnitude smaller than their wavelength.

This results in a height of the WBL of the order of 5 m

in the absence of swell.

While wave-induced contributions to atmospheric

variables are often reported as being particularly diffi-

cult to detect at higher altitudes from single-point mea-

surements (Soloviev and Kudryavtsev 2010), Edson et al.

(2004) mention that “field campaigns have shown that

some turbulent statistics, e.g., the pressure transport

term in the kinetic energy budget equation, are influ-

enced by waves up to heights where kpz ∼ 2, where kp
is the peak wavenumber of the dominant waves. The

latter findings suggest a thicker WBL for some charac-

teristics of the flow”. Hence the coupling between at-

mospheric turbulence and wind-waves could possibly

extend on vertical scales much above 5 m, suggesting

the existence of other processes beyond wave-induced

stress. Those processes, as wave-induced stress, result

from spatial correlations between atmospheric quanti-

ties on the scale of wind-waves, and should thus be more

easily observed if spatial statistics of the atmospheric

field (e.g., multiple-point measurements) are available.

In the absence of such measurements, a method extract-

ing those spatial correlations from single-point mea-

surements is necessary (as developed for wave-induced

stress in Hristov et al. 1998, 2003). The present study

is a first step towards such a method by revealing state

variables in which those processes might be buried.

More generally, the understanding of the local wind-

and-waves equilibrium is related to the longstanding

question of the influence of a structured boundary (both

in terms of geometry and of velocity) on the proper-

ties of turbulence at a certain distance from the bound-

ary (see the review by Belcher and Hunt 1998). Wave-

induced stress only accounts for the interaction of the

turbulent field with additional, wave-induced, fluctua-

tions. It does not represent the possible reorganization

of the turbulent fluctuations due to the presence of a

structured boundary (e.g. the formation of rolls pre-

sented by Phillips et al. 1996). This reorganization has

been shown to occur due to stratification effects for a

flat and non-moving boundary (in experiments, theory,

and numerical simulations respectively: Kaimal et al.

1972; Elperin et al. 2002; Li et al. 2018).

A phenomenological model enabling the inclusion

of organized turbulent structures near a wall has been

recently described in Gioia et al. (2010). The model as-

sumes that the turbulent fluxes at a given height are

driven by surface-attached eddies representing cross-

wind atmospheric turbulent structures in a convected

frame of reference (invariant in the spanwise direction),

and whose horizontal and vertical length scales are re-

lated to the height at which the flux is computed (dashed

line in Fig. 1). The reorganization of these attached

eddies due to stratification was then included in this

model by Katul et al. (2011) and Li et al. (2012). These

authors introduced an “eddy anisotropy” coefficient fa
(related to the eddies horizontal to vertical aspect ra-

tio), accounting for the deformation of attached eddies

due to buoyancy forces (Fig. 1a). As this deformation

can be linked to properties of the turbulence spectra (as

explained in Katul and Manes 2014), the authors cal-

ibrated eddy anisotropy based on measurements from

Kaimal et al. (1972). One of the main outcomes of Katul

et al. (2011) is to recover MOST universal functions,

which were obtained through measurements, using a

theoretical model based on a TKE balance. In this bal-

ance, the deformation of attached eddies translated into

a change in TKE dissipation.

In the presence of surface waves, the link between

the shape and spatial organization of the turbulent struc-

tures and the geometry of the surface is still an open

question. Hence, we (i) propose that wind-waves deform

attached eddies, inducing a change in TKE dissipation;

(ii) model this effect within the Katul et al. (2011)

framework; and (iii) evaluate the impact of this defor-

mation on turbulent momentum fluxes, and its ability

to explain the observed variability at moderate wind

speeds. The model assumes that the deformed surface

allows attached eddies of different sizes to contribute to

the momentum flux at a given height (Fig. 1b). The pro-
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Fig. 1 (a) State-of-the-art and (b) proposed attached-eddy model describing vertical turbulent fluxes through a surface at a
height z (dashed lines). (a) For wall-bounded turbulence (Gioia et al. 2010), the most energetic structure (i.e. inducing most
of the fluxes) has a vertical length scale 2sv equal to twice the considered height z. Its horizontal length scale 2sh varies with
stratification (Katul et al. 2011). The difference between the upward and downward vertical velocity of the structure w yields
the mean vertical turbulent motion. The structure can be notionally represented by an attached eddy (thin solid line). (b) In
the presence of a surface wave (thick solid line), depending on the relative phase between the eddy and the wave (denoted χ),
the height of the surface and thus the size of the attached eddy varies. We propose that multiple attached eddies contribute
to the flux (only three examples are drawn)

posed physical mechanism is mainly supported by long

wind-waves (wavelengths of the order of 10 m), and re-

sults in a modification of TKE dissipation at heights

above 5 m. This mechanism introduces a dependency

of the wind-and-waves local equilibrium to the local

spectral characteristics of long wind-waves and to the

intensity of the modulation mechanism. This variability

is then used to explain open-ocean measurements using

the wind-over-waves model of Kudryavtsev et al. (2014)

to obtain the mean observed wind-and-waves equilib-

rium.

The paper is organized as follows: the wall-bounded

model and the new physical mechanism are presented

in Sects. 2 (for a single wind wave) and 3 (for a real-

istic sea surface). The wind-over-waves model is briefly

summarized in Sect. 4. Section 5 focuses on the result-

ing impact of the coupling mechanism on near-surface

momentum fluxes for neutral conditions, allowing ex-

planation of their variability for a given wind in open

ocean measurements. Section 6 then studies the effect

of stability on near-surface turbulence, by linking the

model with MOST and comparing it to measurements.

Conclusions are presented in Sect. 7.

2 A Wall-Bounded Turbulence Model over a

Monochromatic Wave

In this section, we propose a new mechanism to model

the impact of a wave with a specific wavenumber on

TKE dissipation. To this end, starting from a model de-

veloped to describe wall-bounded stratified turbulence

(recalled in Sect. 2.1), an extension is proposed in or-

der to account for a periodic and undulating surface

(Sect. 2.2).

2.1 A Model for Wall-Bounded Stratified Turbulence

We first recall the framework presented in Gioia et al.

(2010), Katul et al. (2011) and Li et al. (2012) to de-

scribe a stratified surface boundary layer (SBL). The

framework models the SBL by means of a TKE bal-

ance equation. The mean wind shear and stratification

are specified, and the model predicts turbulent fluxes.

The key result of the framework is to derive a closure

for TKE dissipation by considering the shape of eddies

attached to the surface.

The SBL is defined as the lowest part of the surface

atmospheric boundary layer (adjacent to the surface)

where the flow is horizontally homogeneous and sta-

tionary, and with no subsidence. In what follows, the

dominant wind-waves are assumed to be aligned with

the mean wind direction (and the horizontal coordi-

nate x), so that we only consider perturbations in the

(x, z) directions (where z is the vertical coordinate).

The turbulent momentum flux normalized by air den-

sity (ul∗)
2 = −u′w′ is constant within the layer due

to horizontal homogeneity. Anticipating Sect. 4, ul∗ is

called the local friction velocity.

The TKE balance equation within this layer is as-

sumed to be a balance between mechanical (or shear)
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production, buoyancy production/destruction, and TKE

dissipation ε

−u′w′ ∂U
∂z

+
g

θh
w′θ′ = ε, (1)

where U is the mean wind speed and (·)′ denotes turbu-

lent fluctuations. In the following, water vapour effects

are omitted for the sake of simplicity. Defining H, the

sensible heat flux within the SBL, as

H = −ρCpw′θ′,

and using the definition of ul∗, the TKE balance can

been written as

(ul∗)
2 ∂U

∂z
− gH

ρCpθh
= ε, (2)

where g is the acceleration due to gravity, ρ isair density,

and Cp is the heat capacity of dry air.

We also introduce the Obukhov length,

L =
ρCpθh(ul∗)

3

κgH
, (3)

where κ = 0.4 is the von Kármán constant and θh is

a reference potential temperature. With this definition,

the stability parameter ζ is defined as ζ = z/L, being

negative for an unstable boundary layer and positive in

the stable case.

The TKE balance equation can then be rewritten in

dimensionless form from Eqs. 2 and 3, and the definition

of ζ (see e.g. Hogstrom 1996)

−κz
ul∗

∂U

∂z
+ ζ +

κz

(ul∗)
3
ε = 0. (4)

Following Katul et al. (2011), we further include the

first-order effect of the turbulent flux-transport and pres-

sure redistribution terms (which are neglected in Eq. 1,

and were shown to be significant for non-neutral condi-

tions) as a constant correction β2 to the buoyancy term,

yielding

−κz
ul∗

∂U

∂z
+ (1 + β2)ζ +

κz

(ul∗)
3
ε = 0, (5)

where β2 = 1 (Katul et al. 2011).

To solve this equation (i.e. to obtain ul∗ from given

values of ∂U/∂z, z, and ζ), a closure for TKE dissi-

pation ε is necessary. To this end, Gioia et al. (2010)

and Katul et al. (2011) proposed that turbulent fluxes

at a height z are determined by the mean difference

between vertical velocities w at x and x + 2sh (at the

same height z) corresponding to the edges of a turbu-

lent structure with given horizontal (2sh) and vertical

(2sv) length scales. In such a situation, the momentum

flux was estimated as

(ul∗)
2(z) = κT |w(x+ 2sh)− w(x)|[U(z + sv)− U(z − sv)]

∼ κT |w(x+ 2sh)− w(x)| ∂U
∂z

2sv, (6)

i.e., as the product between the turbulent structure

mean vertical velocity and the horizontal momentum

perturbation, assuming that momentum is transported

across the entire vertical extension of the structure (Gioia

et al. 2010). In the above expression, κT is a dimension-

less proportionality coefficient.

The vertical velocity differences were then estimated

using the Kolmogorov 4/5 law for the third-order veloc-

ity structure function (e.g. Monin and Yaglom 1975),

|w(x+ 2sh)− w(x)| = (κεεsh)1/3, (7)

where κε is a dimensionless proportionality coefficient.

Inserting (7) into (6) and after some algebra, the fol-

lowing expression results for dissipation,

ε = κ−4(ul∗)
6

(
∂U

∂z

)−3
s−3v s−1h , (8)

where κ = 23/4κ
3/4
T κ

1/4
ε is the von Kármán constant

(this matching is required to recover the law-of-the-wall

under neutral conditions).

In Eqs. 6–8 only the most energetic structure at a

height z is considered, i.e. corresponding to the lead-

ing order contribution to the third-order structure func-

tion and hence to the vertical momentum flux. It is the

structure whose half vertical length scales as the height

at which the turbulent flux is computed, i.e. sv = z. In

the absence of stratification, the horizontal length scale

is further assumed to be equal to the vertical length

scale (Gioia et al. 2010). Katul et al. (2011) showed

that stratification introduces an eddy anisotropy factor

fa in the horizontal length scale, such that

sh = fa(ζ)sv, (9)

where fa = 1 for neutral conditions (i.e. ζ = 0).

Figure 1a shows a conceptual representation of the

most energetic turbulent structure for a height z as an

ensemble-mean eddy in a convected frame of reference

(following Gioia et al. 2010; Katul et al. 2011). The

shape of the eddy depends on the horizontal and ver-

tical length scales of the turbulent structure. This con-

ceptual representation does not entail any velocity field

associated with the eddy, apart from the vertical ve-

locities at its upward and downward branches (black

arrows), corresponding to w(x) and w(x+ 2sh) respec-

tively.

The condition sv = z then yields that the eddies

associated with the most energetic turbulent structures
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(termed energy-containing eddies) are eddies attached

to the surface, reminiscent of the attached-eddy model

of turbulence introduced by Townsend (1980) (see also

the review by Marusic and Monty 2019). The spatial

aspect ratio of the energy-containing eddies, fixed by

relation (9), reflects their reorganization due to buoy-

ancy forces (through the stability parameter ζ).

2.2 Inclusion of a Single Wave within the

Wall-Bounded Model

We now propose an extension of the wall-bounded model

to include the reorganization of energy-containing ed-

dies due to a boundary with a spatial structure. Let us

first consider the impact of a wave of wavenumber k and

of height Hr(k) on an attached eddy driving the mo-

mentum flux at a height z. In the following, we derive

the horizontal extent of the eddy 2s̃h in the presence

of the monochromatic wave. More generally, we use the

notation (̃·) throughout to denote the contribution a

single wave of wavelength k to turbulent quantities.

The sea-surface height h varies around its refer-

ence value depending on the position along the wave,

measured by the relative phase (denoted χ) between

the wave and the eddy. The height variations follow

h(k, χ) = Hr(k) cosχ. Within the wall-bounded model

presented in Sect. 2.1, the vertical extent of the most

efficient eddy is twice the distance between the surface

and the height z (Fig. 1a). In the presence of a sur-

face wave, the now phase-dependent vertical extent of

the attached eddy driving the momentum flux s̃v varies

around its reference value z. Figure 1b shows the con-

figurations corresponding to χ = 0, π/2, and π.

Using (9), the horizontal length scale of the eddy

varies as a function of phase χ as

s̃h(z, ζ, k, χ) = fa(ζ)(z − h(k, χ)))

= zfa(ζ)[1− (Hr(k)/z) cosχ]. (10)

For a given wave, we further consider only the “outer

region” of the SBL (as defined in Belcher and Hunt

1993, 1998). Within this region, (i) the mean flow speed

is larger than the phase speed of the wave, and (ii) ed-

dies have a turnover time longer than the advection

time above the considered wave. Thus, during the eddy

lifetime and its advection above a wave, different con-

figurations (depending on χ, and shown in Fig. 1b) can

occur, which can all potentially contribute to the re-

sulting upward transport of momentum (Eq. 6) and to

TKE dissipation (Eq. 8).

We consider the most general form accounting for

the contribution of all possible configurations to the

eddy horizontal length scale, a weighted average over

all configurations

〈s̃h〉(z, ζ, k) =

∫ π

0

p(χ)s̃h(z, ζ, k, χ)dχ, (11)

where p(χ) is a weight, or the (normalized) probabil-

ity density function (p.d.f.) of the configurations, and

〈·〉 denotes the average over all configurations labeled

by χ. The average vertical extent of the attached eddy

is assumed to be unchanged by the presence of waves

(i.e. 〈s̃v〉 = sv = z). From Eq. 6 (see also Gioia et al.

2010), the vertical extent results from the Taylor expan-

sion of vertical wind variations (i.e. U(z + sv)− U(z −
sv) ∼ (∂U/∂z)2sv) and denotes the height over which

the eddy mixes momentum. The horizontal extent de-

notes the size and energy of the structure (through Kol-

mogorov’s law, Eq. 7). We thus consider that, on aver-

age, the presence of waves only affects the energy of the

horizontal structure.

If the p.d.f. p(χ) is not symmetric around χ = π/2,

then the wave-induced sea-surface height variation leads

on average to a variation of the eddy aspect ratio, affect-

ing TKE dissipation (Eq. 8). In particular, a compres-

sion (respectively a stretching) occurs for a distribution

where configurations around χ = 0 (resp. χ = π) are

dominant.

The different configurations in χ can also be inter-

preted as representing TKE bursts. From Kolmogorov’s

law (Eq. 7), a change in sh is related to a change in the

vertical velocity difference of the turbulent structure.

Increase or decrease in sh due to a change in the phase

χ can thus be interpreted as a increase or decrease in

the vertical velocity at the edges of the turbulent struc-

ture, and those variations associated with bursts. The
average horizontal length scale computed in Eq. 11 can

thus be interpreted as accounting for the contribution

of bursts to TKE dissipation in the SBL due to the pres-

ence of waves. Bursts were suggested as possibly sup-

porting a large fraction of open-ocean surface momen-

tum fluxes (Dorman and Mollo-Christensen 1973). Lab-

oratory measurements revealed that such events could

have an asymmetric p.d.f. (see Fig. 26 of Kawamura

and Toba 1988).

3 The Impact of Wind-Waves on Near-Surface

Turbulent Structures

Section 2 presented a wall-bounded turbulence model

where the effects of a single wave were included in TKE

dissipation through the stretching or the compression

of an attached eddy, i.e. the change in its horizontal

to vertical aspect ratio. We now generalize the model

to the case of a wave field (Sect. 3.1), while Sect. 3.2



6 A. Ayet et al.

then discusses the physical quantities modulating the

proposed mechanism.

3.1 Generalization of the Eddy-Stretching Process to a

Wind–Wave Sea

So far we discussed how a monochromatic wave could

impact a given turbulent structure. In the case of a wave

field composed of the sum of monochromatic waves of

different wavelengths and directions the question is to

determine which waves can potentially stretch or com-

press an attached eddy contributing to the momentum

flux at a height z (in the sense of changing its aspect

ratio). In the following, we make the assumption that

the deformation occurs mainly when wave and attached

eddy sizes are close, i.e. for a wave of wavelength k scal-

ing as the inverse of the height 1/z, with z roughly the

horizontal extent of the eddy (defined in Eq. 10).

The assumption can be made more precise by con-

sidering the physical mechanisms likely to cause eddy

deformation. The geometry of short wind-waves is mod-

ulated by the supporting longer waves. Hence, the re-

sulting surface roughness (due to wave-induced stress

from short wind-waves) varies horizontally following the

longer waves, on lengths of half the modulating wave

horizontal length scale (e.g. Kudryavtsev and Chapron

2016). This modulation has been shown to significantly

affect the near-surface atmospheric flow (Gent and Tay-

lor 1976; Kudryavtsev and Chapron 2016) and could

also impact attached eddies by inducing a roughness

variation on a scale resonant with that of the eddy. The

average deformation of an attached eddy by a wave, de-

scribed in Sect. 2.2, is thus assumed to be due to these

modulated shorter waves. Within this picture, modulat-

ing waves whose half horizontal length scale is shorter

than the horizontal eddy size are not capable of inter-

acting with both the upward and the downward branch

of the attached eddy. Moreover, among these longer

modulating wind-waves, we only consider the one ex-

periencing the longest interaction time with the eddy

advected above, i.e. the shortest (fastest) wind wave.

It is thus assumed that eddy stretching or compression

occurs for a resonant wave whose half-horizontal ex-

tent (π/kr) is equal to the horizontal length scale of

the wall-bounded attached eddy prior to deformation

(2zfa)

kr(z) =
π

2zfa(ζ)
. (12)

The horizontal extent of an energy-containing eddy at a

height z over a wave field, 2〈sh〉, is then expressed from

the individual contribution of monochromatic waves as

〈sh〉(z, ζ) = 〈s̃h〉[z, ζ, kr(z)]. (13)

Using Eqs. 10 and Eq. 11, it further reads

〈sh〉(z, ζ) = zfa(ζ)ge(z, ζ), (14)

where we defined the eddy-stretching factor ge as

ge(z, ζ) =

∫ π

0

{
1− Hr

z
cosχ

}
p(χ)dχ, (15)

where Hr is the height of the resonant wave.

For a sea surface described by a wave spectrum

S(k) (as a function of the isotropic wavenumber k),

Hr can be computed from contributions of a narrow

wave-packet around kr, of width ∆k as

H2
r (kr) =

∫ kr+∆k/2

kr−∆k/2
S(p)dp ≈ S(kr)∆k. (16)

Note that for the physical picture of Fig. 1 to hold, the

resonant wave height must be lower than the height z

at which fluxes are computed, restricting the physical

process to cases where Hr(kr) < z.

The width of the wavepacket ∆k is related to the

accuracy of the resonance condition (Eq. 12), since it

quantifies to what extent waves that are not exactly

of wavelength kr contribute to eddy stretching. It is

thus related to the magnitude of the physical mech-

anism causing eddy stretching, i.e. the modulation of

short wind-waves by long wind-waves, which is highly

variable (e.g. due to slicks, sea surface temperature,

and jointly varying surface currents and stability condi-

tions, see Vandemark et al. 1997; Grodsky et al. 2012;

Kudryavtsev et al. 2012). The wave-packet width is thus

considered as a model parameter, called ∆k. The re-

sulting form for the wave-packet width, including the

physical condition mentioned above is

∆k =

{
∆k for Hr(kr) < z

0 for Hr(kr) ≥ z
. (17)

For Hr(kr) ≥ z, or for no waves (i.e. S(k) = 0), Eq. 14

is reduced to the expression proposed by Katul et al.

(2011) (Eq. 9).

Eddy stretching accounts for the change in the shape

of an energy-containing eddy by interaction with a sur-

face wave of a size resonant with the size of the eddy.

Using Eq. 14 in Eq. 8, TKE dissipation including eddy

stretching reads

κz

(ul∗)
3
ε =

(ul∗)
3

(κz)3

(
∂U

∂z

)−3
fa(ζ)−1ge(z, ζ)−1. (18)

Due to the resonance condition between the wave and

the eddy (Eq. 12), the change in TKE dissipation due to

eddy stretching only occurs at heights he = π/[2fa(ζ)k] ∼
1/k, matching the heights suggested in Edson et al.

(2004) and also discussed in the introduction.
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For ge and fa equal to one (i.e. neutral conditions

and a flat boundary), we recover the expression of TKE

dissipation obtained for homogeneous and isotropic tur-

bulence (and used in the wind-over-waves model of Kudryavt-

sev et al. 2014, see Sect. 4).

3.2 Sources of Variability of Eddy Stretching

Eddy stretching is a new coupling mechanism between

the wave and the wind fields, whose magnitude can vary

for a given mean wind speed. In order to understand

the sources of this variability, the expression of eddy

stretching presented in Eq. 15 is rewritten in wavenum-

ber space, i.e. by defining g̃e such that

ge(z, ζ) = g̃e(kr, ζ). (19)

By further using the resonance condition (Eq. 12) and

the expression of the height of the resonant wave (Eqs. 16

and 15) yields

g̃e(kr, ζ) = 1−2∆k1/2
fa(ζ)

π
[k2rS(kr)]

1/2

∫ π

0

p(χ) cosχdχ.

(20)

In addition to stability, g̃e depends on the wavenum-

ber of the resonant wave (kr) through the spectrum

of the wave slopes (k2rS(kr)). Typical wind-wave-slope

spectra exhibit a peak depending on the degree of sea-

state development (e.g. spatial fetch, as modelled in

Donelan et al. 1985; Elfouhaily et al. 1997), and almost

vanish for waves below 1 m (corresponding to kr ∼ 10

m−1). For waves larger than the spectral peak (e.g. 60

m for a fetch of 100 km in the Donelan et al. 1985,

model), k2rS(kr) quickly vanishes. Eddy stretching thus

reflects the impact of intermediate to long wind-waves

(of the order of tenths of metres) on atmospheric tur-

bulence, through the increase of the air–sea interface

area (related to the sea surface mean slope). This is

consistent with remote sensing measurements indicat-

ing a sensitivity of air–sea fluxes to the air–sea interface

area (similar to radar backscatter, e.g. Kitaigorodskii

1973; Brown 1979; Vandemark et al. 1997). The range of

the spectrum contributing the most to sea-surface slope

(long wind-waves) can be highly variable for a given 10-

m mean wind speed, sensitive to fetch, rising/decaying

winds, surface currents, modulating longer swells, thus

introducing variability into the wind-and-waves equilib-

rium (e.g. see Zhang et al. 2009, where surface currents

caused long wind-waves to deviate from the mean wind

direction, impacting surface stress).

Eddy stretching also depends on the probability dis-

tribution of the different events p(χ) and the bandwidth

coefficient ∆k. Variations of p(χ) can induce an eddy

stretching smaller or greater than one. As shown in

Fig. 1, for probability distributions where predominant

configurations are for phases smaller than π/2, the hor-

izontal extent of the eddy is reduced with respect to the

wall bounded case, and hence eddy stretching is smaller

than one (see Eq. 14). Conversely, when predominant

configurations are for phases greater than π/2, eddy

stretching is larger than one. Both quantities p(χ) and

∆k are related to the physical process inducing eddy

stretching (the modulation of short wind-waves stress

by long wind-waves) whose magnitude can vary for a

given 10-m mean wind (Gent and Taylor 1976; Dulov

et al. 2013; Kudryavtsev and Chapron 2016).

For a given 10-m mean wind speed, eddy stretch-

ing can thus vary due to (i) variations of the wave-

slope spectrum, and (ii) variation of the magnitude

of the physical process causing eddy stretching. How-

ever, as described in Sect. 4, in order to obtain a re-

alistic wind–wave spectrum and the associated wind-

over-waves equilibrium (i.e. matching observations), we

use the wind-over-waves model of Kudryavtsev et al.

(2014). Within this particular model, the only parame-

ter controlling the long wind–wave spectrum is spatial

fetch, following the parametrization of Donelan et al.

(1985). To simply account for deviations from this parametriza-

tion, as well as for the sources of variability mentioned

above, Eq. 20 is rewritten as

g̃e(kr, ζ) =

1− γ fa(ζ)

π
[k2rS(kr)]

1/2 for Hr(kr) < z

1 for Hr(kr) ≥ z
,

(21)

where

γ = 2∆k
1/2

∫ π

0

p(χ) cosχdχ. (22)

The new parameter γ contains all the dependencies to

p(χ) and ∆k. Implicitly, it also contains variations in

the wind–wave slope spectrum not described by the

wind-over-waves model (e.g. non-stationary winds, sur-

face currents, etc.).

Variations of spatial fetch in the Donelan et al. (1985)

parametrization only change the spectrum of wind-waves

greater than about 60 m (by causing a shift of the peak

of the wind–wave slope spectra towards larger waves).

From Eq. 21, this induces a change in eddy stretching at

heights he (proportional to the wave size) too large to

impact the surface momentum flux u∗ (not shown). On

the other hand, variations of γ in Eq. 21 induce a global

change of eddy stretching magnitude. This includes a

change for eddy stretching magnitude corresponding to

10-m waves, describing a change in the waves energy
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not described by the Donelan et al. (1985) parametriza-

tion. This corresponds to changes in eddy stretching at

heights around 10 m having a significant impact on mo-

mentum fluxes as will be shown numerically in Sect. 5.

The condition Hr(kr) < z in Eq. 21 sets upper and

lower bounds on g̃e: since Hr(kr) is related to k2rS(kr),

this condition sets an upper bound on k2rS(kr), imply-

ing that g̃e cannot be too large or too small relative to

one for γ < 0 or γ ≥ 0 respectively. In practice, eval-

uating this condition would require evaluating Hr(kr)

through Eq. 16, and hence choosing a value for ∆k.

This is not compatible with the choice, made in this

work, to use only one free parameter in the description

of eddy stretching (the parameter γ). Hence, in the fol-

lowing, the condition Hr(kr) < z is replaced by setting

bounds on ge, i.e. by the condition that g̃e < 102 or

g̃e > 10−2 for γ < 0 or γ ≥ 0, respectively. This choice

of bounds covers two orders of magnitude of g̃e around

one. It also ensures that g̃e is positive, and hence that

the TKE dissipation is positive.

4 Wind-over-Waves Model

In the previous sections, we proposed a mechanism ac-

counting for the impact of long wind-waves on TKE dis-

sipation within an SBL model where a wave spectrum

was prescribed. We now briefly describe the wind-over-

waves model introduced in Kudryavtsev et al. (2014),

predicting the generation of wind-waves by turbulent

motions within a wind-and-waves equilibrium. This wind-

over-waves model is then used in the following sections

to explore the sensitivity of the wind-and-waves equi-

librium to the proposed mechanism.

The wind-over-waves model couples an atmospheric

TKE equation with an equation describing a wind–wave

field. Low-level turbulent motions lose energy to short

wind-waves, which in turn generate atmospheric fluc-

tuations enhancing TKE by extracting energy from the

mean flow. Wave-wave non-linear interactions then re-

sult in an equilibrium wind-and-waves state, where TKE

is enhanced with respect to flow over a smooth sur-

face, reproducing the mean observed momentum flux

in open-ocean measurements for a given mean wind un-

der neutral conditions. At the core of this coupling is

thus the transfer of energy between atmospheric turbu-

lent motions and atmospheric wave-induced motions,

the latter being coupled to the wind–wave field (e.g.

Makin and Kudryavtsev 1999; Hara and Belcher 2002;

Kudryavtsev et al. 2014). The atmospheric flow is thus

decomposed into a mean component, a turbulent com-

ponent and a wave-induced component which decays

with height.

The first implication of this triple decomposition

is that, as opposed to a standard SBL, the turbulent

momentum flux −u′w′ = (ul∗)
2 is no longer constant

with height, due to the presence of wave-induced stress

τw = ρ(uw∗ )2 associated to wave-induced motions. The

sum of both wave-induced and turbulent contributions

is however constant and equal to the square of the fric-

tion velocity u2∗, defined as the normalized turbulent

momentum flux on top of the WBL (defined as the

SBL sub-layer where wave-induced stress is non-zero,

e.g. Makin and Mastenbroek 1996)

(ul∗)
2(z) + (uw∗ )2(z) = u2∗. (23)

From this equation, we introduce the coupling coeffi-

cient

αc(z) =

[
uw∗ (z)

u∗

]2
, (24)

which quantifies the relative impact of wave-induced

stress in the SBL. Equation 23 can then be rewritten

as

ul∗ = (1− αc)1/2u∗. (25)

The second implication of the triple decomposition

is that the TKE balance in the presence of wave-induced

stress reads

[(uw∗ )2 + (ul∗)
2]
∂U

∂z
− (1 + β2)

gH

ρCpθh
= ε. (26)

With respect to the wall-bounded case (Eq. 1), the TKE

balance now contains an additional term (uw∗ )2∂U/∂z,

describing the extraction of energy from the mean flow

by its interaction with wave-induced stress. Equation 26

is a straightforward generalization of the Kudryavtsev

et al. (2014) balance (derived in, e.g., Kudryavtsev and

Makin 2004; Hara and Sullivan 2015) where stratifica-

tion has been included (through the term gH/Cpθh).

In this balance, the presence of waves enhances TKE

through the so-called wake production term, as found

in numerical simulations over idealized sinusoidal waves

Hara and Sullivan (2015) and over a breaking-wave field

Suzuki et al. (2013).

Note that other balances could be considered. In

particular, Janssen (1999) and Cifuentes-Lorenzen et al.

(2018) consider that (uw∗ )2∂U/∂z acts directly as a source

of wave energy (and hence does not appear in Eq. 26),

leading to a decrease in TKE in the presence of wind-

waves. This balance describes TKE decrease observed

very close to the surface in numerical simulations (Hara

and Sullivan 2015). This region is not described by the

Kudryavtsev et al. (2014) model, which is written in

Cartesian coordinates, hence losing validity when ap-

proaching wave crests.
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wave growth rate

- longwave spectrum

- shortwave spectrum

- eddy stretching : ge
- coupling parameter:  �c

Bulk parameters:

- Reference height wind: Uh

- heat �ux: H

- local momentum �ux: (u*
l)2

- mean wind pro�le : U(z)

Atmospheric model:

Wave model: 

Input parameters Wind-over-waves model

External parameters:

- eddy stretching parameter: �

- fetch

- P.d.f. of eddy horizontal extension: p(�)

- resonance parameter: �k

- non-parametrized variations of k2S(k)

TKE balance 

spectral balance 

Fig. 2 Flow chart of the wind-over-waves model. The left panel shows the input parameters of the model and how they
impact the different steps of model (dotted-dashed arrows). Note in particular the different quantities impacting the proxy
eddy stretching parameter γ (dashed box, Eq. 21). Right panel shows the structure of the wind-over-waves model. The
equilibrium solution is obtained by iteratively solving the two model components (Eqs. 28) and 34), given a first guess for the
momentum flux given by the bulk parameters

Using Eqs. 3 and 25 in Eq. 26, the TKE balance in

dimensionless form reads

−(1− αc)−1
κz

ul∗

∂U

∂z
+ (1 + β2)ζ +

κz

(ul∗)
3
ε = 0. (27)

The atmospheric component of the Kudryavtsev et al.

(2014) wind-over-waves model is recovered for a neutral

stratification (i.e. ζ 6= 0). The standard TKE equation

describing stratified turbulence in absence of waves is

recovered in its dimensionless form (Eq. 5) for αc = 0.

Using the expression for TKE dissipation Eq. 18 in

Eq. 27 further yields

− (1− αc)−1
κz

ul∗

∂U

∂z
+ (1 + β2)ζ

+
(ul∗)

3

(κz)3

(
∂U

∂z

)−3
f−1a g−1e = 0, (28)

where eddy anisotropy fa depends on stratification ζ,

and eddy stretching ge depends on γ, height z, and

the wave spectrum (through Eqs. 19 and 21). Equa-

tion 28 can thus be solved for the dimensionless shear

[(κz)/ul∗]∂U/∂z, given ζ, αc, fa, and ge.

Wave-induced stress τw, and thus αc, is required to

solve Eq. 28. As presented in Kudryavtsev et al. (2014),

the coupling parameter αc describes not only wave-

induced stress in the WBL resulting from the smooth

deformation of the airflow above waves (losely called

”form drag” in the following), but also stress induced

by airflow separation events on top of breaking waves

(Reul et al. 1999; Husain et al. 2019). For a given wave

of wavelength k, both these effects act over a shallow

atmospheric layer, up to heights h(k) ∼ 0.1k−1 and

ha(k) ∼ 0.3k−1 respectively. Note that this is at vari-

ance with eddy stretching, acting at greater heights (i.e.

he ∼ 1/k, see Sect. 3).

Furthermore, both form drag and airflow separation

are, unlike eddy stretching, mostly confined to the short

wind-waves range (waves of the order of 1 m, following

Plant 1982) and thus couple Eq. 28 to a stationary short

wind–wave spectrum (described by Eq. 34 in Appendix

1). The full wind–wave spectrum is described, in the

Kudryavtsev et al. (2014) model, as a superposition of

the aforementioned short wind-waves part and a pre-

scribed long-wave part, mostly governed by the degree

of sea-state development (i.e. fetch and wave age, fol-

lowing Donelan et al. 1985; Elfouhaily et al. 1997, and

discussed in Sect. 3.2). Details on both the wind–wave

spectrum and the parametrization of the coupling co-

efficient can be found in Appendix 1.

The resulting wind-and-waves equilibrium matches

atmospheric measurements (see Sect. 5.2) and wave mea-

surements (Yurovskaya et al. 2013). It is not sensitive

to variations in the long wind–wave spectrum (i.e. vari-

ations in fetch), since it does not contribute to form

drag nor airflow separation.

5 Momentum Fluxes Variability under

Moderate Wind Speeds

In this section, we first describe how the new physi-

cal mechanism (described in Sects. 2 and 3) can be in-

corporated in the wind-over-waves model described in

Sect. 4 (Sect. 5.1). The resulting new wind-and-waves

equilibrium is then compared to open-ocean measure-

ments (Sect. 5.2).
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5.1 The Coupled Model

As summarized in Fig. 2, the coupled wind-over-waves

model solves the TKE balance (28). The equation de-

pends on the short wind–wave spectrum (through αc)

obtained by solving a budget equation (Eq. 34 in Ap-

pendix 1). It also depends on the parameter γ through

ge, introduced in Eq. 21. The coupled system is solved

by iterations, given a 10-m wind speed U10, a heat flux

H, fetch (for the prescribed long wind–wave spectrum),

and the parameter γ. It returns a friction velocity on

top of the WBL (u∗), a mean wind profile U(z), and

a wind–wave spectrum S(k), characterizing the wind-

and-waves equilibrium. The inclusion of eddy stretching

introduces a sensitivity of the wind-and-waves equilib-

rium to long wind-waves, absent in the Kudryavtsev

et al. (2014) model and discussed below.

Note that even though Eq. 28 is valid for any sta-

bility condition, only unstable stratification conditions

can be simulated by the coupled model (i.e. when αc is

determined recursively by solving Eq. 34 in Appendix

1). When the atmosphere is stably stratified, the TKE

model yields unrealistically weak turbulence. It is out of

the scope of the present paper to describe the coupled

stably-stratified case, that would require the introduc-

tion of other physical processes such as gravity waves or

a total kinetic energy balance (e.g. Zilitinkevich et al.

2008).

5.2 Comparison to Experiments

Near-surface momentum fluxes (u2∗) from the wind-over-

waves model and its extension presented above were

compared to measurements presented in Edson et al.

(2013), compiling data obtained from different field cam-

paigns in open sea. The data were collected 50 km off

the southern Californian coast (Hristov et al. 2003), 10

km off the coast of Denmark (Mahrt et al. 1996), south

of Martha’s Vineyard (Edson et al. 2007), and on the

northern wall of the Gulf Stream (Marshall et al. 2009),

and were filtered to retain only young seas (i.e. with pre-

sumably no swell). This dataset covers a wide range of

winds speeds (up to 25 m s−1) and stability conditions

(stability parameter from −1.2 to 0.8). These observa-

tions are of particular relevance since they were used

to calibrate the COARE parametrization (e.g. Fairall

et al. 2003).

Figure 3a shows the observed bin-averaged values

of momentum fluxes as a function of the neutral 10-

m wind speed (U10N , black dots). In the observations,

neutral wind speed is obtained by applying a MOST

stability correction function to the wind extrapolated

Fig. 3 (a) Surface momentum fluxes (divided by air den-
sity) vs neutral 10-m wind speed. Dots indicate bin-averaged
measurements from Edson et al. (2013), vertical error bars
are the associated standard deviations, the dashed line is the
model result without accounting for the impact of waves on
the SBL, and the solid line is the model result with wave-
induced stress. Grey shading is the range of values obtained
varying eddy stretching around its neutral value of one (cor-
responding to γ = 0). (b) Maximal (i.e. surface) coupling
parameter αc (solid line), and wave age (dashed line) vs 10-
m neutral wind speed. For the range of observed winds, the
coupling parameter varies between 0 and 0.6

from direct measurements. It corresponds to the ex-

pected wind speed at equilibrium with the measured

momentum flux in neutral stability conditions (e.g. Liu

and Tang 1996). In the following, measurements will

be compared with the wind-over-waves model in neu-

tral conditions (ζ = 0) leading to an eddy anisotropy

factor fa = 1.

The solid line in Fig. 3a shows the equilibrium solu-

tion of the coupled model including wave-induced stress

and without eddy stretching (i.e. γ = 0), for a fetch of

100 km. As expected from Kudryavtsev et al. (2014),

the solution is in good agreement with observations. On

the contrary, without wave-induced stress (i.e. uw∗ = 0

or αc = 0), the modelled momentum fluxes are smaller

than those observed for wind speeds greater than about

10 m s−1 (dashed line in Fig. 3a). The effect of short

waves on the SBL (through form drag and airflow sep-

aration, which increase TKE) is thus an essential phys-

ical process to explain the mean dependency of wind

stress on U10N . In fact, for the considered range of

wind values, the coupling coefficient αc varies between

0 and 0.6, and increases with wind speed (solid line

in Fig. 3b, which shows the maximal coupling coeffi-
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Fig. 4 Magnitude of eddy stretching ge at its spectral peak
(from Eq. 21) as function of the coefficient γ and 10-m wind

cient for a given wind, located very near the surface).

For wind speeds above 15 m s−1, wave-induced stress is

larger than the turbulent momentum stress (i.e. αc >

0.5).

In the wind-over-waves model, to each value of U10N

corresponds a short wind–wave spectrum. Long wind-

waves depend on fetch and on wave age (u∗/cp, with cp
the phase speed of the spectral peak wave component),

following the parametrization of Donelan et al. (1985).

The correspondence between U10N and wave age in the

model is shown in Fig. 3b (dashed line). The modelled

range (between 0.6 and 1.2) is consistent with the range

of observed values in Edson et al. (2013), which are in-

terpreted as young seas. Note that even though there

is a one-to-one correspondence between U10N and wave

age, there is no reason for such a relation between wave

age and the near-surface momentum flux, which is dis-
cussed below by showing other sources of variability of

momentum flux independent of wave age.

The momentum fluxes measurements exhibit a sig-

nificant scatter (black error bars in Fig. 3a), which

may be attributed to the influence of local processes

on the wind-and-waves equilibrium (Edson et al. 2013).

In the present work we investigate the possibility that

this variability is caused by eddy stretching, through a

change in the long wind–wave spectrum (and particu-

larly 10-m waves), or through a change in the intensity

of the modulation of short wind-waves by long wind-

waves. To this end, we use the simplified expression of

eddy stretching (Eq. 21) in which a single parameter,

γ, is varied as a proxy for these two effects. Variation of

γ between −20 and 8 yields the grey shading in Fig. 3.

This corresponds to values of eddy stretching between

10−2 and 101, as shown in Fig. 4. The range of variation

in momentum flux resulting from the variation of eddy

stretching covers the scatter that is observed in the data

(compare shadings and error bars in Fig. 3). Note that

the lower part of the grey shading in Fig. 3 corresponds

to values of ge greater than one, and conversely. Other

factors could be invoked to explain the scatter in the

measurements, in particular fetch. To this end, fetch

was varied in the coupled model between 10 km and

1000 km, with fixed γ in Eq. 21. The resulting variabil-

ity was not sufficient to explain the observed scatter

(not shown). This is consistent with the fact that fetch

variations induce a change in eddy stretching at heights

which do not significantly affect the surface momentum

flux (as discussed in Sect. 3.2).

Wave-induced stress and eddy stretching were shown

above to have a significant impact on surface momen-

tum fluxes. Figure 5 further shows how both processes

change TKE dissipation (Eq. 18) at different heights.

As expected from the wind-over-waves model, TKE dis-

sipation is enhanced when waves are included in the

model (compare the dashed and the solid lines): the

additional TKE production arising from wave-induced

stress is locally balanced by an enhanced TKE dissipa-

tion. It is then interesting to focus on the sensitivity of

TKE dissipation to variations of eddy stretching (grey

shadings). The sensitivity of TKE dissipation to eddy

stretching first decreases with height for heights below

5 m (compare grey shadings between Figs. 5a and 5b),

and then increases with height above 5 m (compare grey

shadings between Figs. 5c and 5d). This highlights two

different causes of the sensitivity of TKE dissipation

to changes in eddy stretching. Let us first recall that

eddy stretching magnitude at a height z (g̃e) depends

on the slope of waves whose wavenumber kr is such

that kr ∝ 1/z, called “resonant waves”. This follows

from Eqs. 12 and 21, where the resonant waves slope

is k2rS(kr). Furthermore, the slope of wind-waves de-

creases with their wavenumber, since S(k) ∝ k−3 (in

the “saturation range” of wind-waves, see, e.g. Phillips

1977, p. 148). Hence, near the surface (below 5 m), the

resonant waves (which are small) are not steep, and

hence g̃e is close to one. At those heights, the observed

sensitivity of TKE dissipation to eddy stretching thus

results from the changes in the turbulent momentum

flux ul∗ (first factor in Eq. 18), caused by changes in

TKE dissipation over the whole atmospheric column.

As height increases, so does the slope of the resonant

waves, and hence for heights above 5 m, the sensitivity

of TKE to eddy stretching results from ge being signifi-

cantly different from one. Those two mechanisms show

that the impact of long wind-waves on TKE dissipa-

tion can both directly and indirectly affect the whole

atmospheric column.

Coming back to momentum fluxes, two effects can

be invoked to explain their sensitivity to eddy stretch-

ing. First, as discussed above, stretching ge could di-
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Fig. 5 TKE dissipation versus 10-m wind speed at different heights. Note the differences in vertical-axis ranges. The dashed
line is the model result without accounting for the impact of waves on the SBL and the solid line is the model result with
wave-induced stress. Grey shading is the range of values obtained varying eddy stretching around its neutral value of one
(corresponding to γ = 0)

rectly affect atmospheric turbulence through its (direct

or indirect) effect on TKE dissipation ε (Eq. 18). Sec-

ond, as the wave growth rate depends on atmospheric

turbulence through ul∗ (Eq. 35 in Appendix 1), the

aforementioned modification, through a change in the

wind–wave spectrum S(k), could affect wave-induced

stress τw, ultimately leading to a change in atmospheric

turbulence. Figure 6a shows three examples of modelled

wind–wave spectra for the same value of 10-m wind and

different values of γ. It reveals that the short wind–wave

spectrum on which wave-induced stress depends (i.e. k

of the order of 103 m−1) is not significantly sensitive to

variations in eddy stretching. To further assess if these

variations are significant, we quantified their impact on

atmospheric turbulence. Runs of an uncoupled version

of the wind-over-waves model were performed and com-

pared to coupled runs. A set of wave spectra were first

computed by running a coupled wind-over-waves model

with no eddy stretching (γ = 0) and different values

of U10N . The uncoupled model was then run, meaning

that the wind–wave dependent coupling variables αc
and ge in Eq. 28 were derived from the previous cou-

pled runs at the same wind. The resulting momentum

flux was then compared to the result of a coupled run

with the same values of γ and U10N . Over all the ranges

of U10N and γ, the relative difference between the mo-

mentum fluxes obtained from the coupled and uncou-

pled runs is lower than 0.4 %, as shown on Figure 6b,

indicating that the variations in wind–wave spectrum

due to eddy stretching do not significantly affect atmo-

spheric turbulence. Thus, variations in eddy stretching

do not significantly impact the short wind–wave spec-

trum, which was calibrated in Kudryavtsev et al. (2014)

to fit observations (Yurovskaya et al. 2013). The short

wind–wave spectrum is indeed determined by the cou-

pling between low-level winds and short waves, occur-

ring at heights where eddy stretching is negligible (i.e.

at around 1 m).

6 Effects of Stability on the Surface Boundary

Layer

As discussed in Sect. 4, Kudryavtsev et al. (2014) did

not include atmospheric stratification in their wind-

over-waves model. However, the atmospheric turbulence

model presented in Sect. 2.1 includes atmospheric strat-

ification effects in the TKE balance. In Katul et al.

(2011) it was further compared to Monin–Obukhov Sim-

ilarity Theory (MOST). Based on dimensional argu-

ments, MOST represents the impact of stratification

on near surface momentum fluxes by means of a uni-

versal function (called MOST momentum function), de-

termined from measurements. Katul et al. (2011) com-

puted an analytical form of the MOST momentum func-

tion matching measurements. In this section we dis-

cuss how inclusion of waves into the Katul et al. (2011)

framework changes the analytical MOST momentum

function (Sect. 6.1), and how this compares to mea-

surements (Sect. 6.2).
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Fig. 6 (a) Modelled saturation spectrum (k4S(k)) for a 10-m wind of 15 m s−1 and an eddy stretching parameter γ of
−10 (dashed line), 0 (solid line), and 5 (dotted line); (b) Relative impact on momentum fluxes of a change in the wind–wave
spectrum due to eddy stretching change represented as function of the coefficient γ and 10-m wind. Black dots indicate the
three values of U10 and γ presented in (a)

6.1 Dependence of Monin–Obukhov Similarity Theory

Momentum Function on Wind-Waves

One of the main outcomes of the Katul et al. (2011)

work was to recover the MOST universal momentum

function from the TKE budget (Eq. 5) and eddy anisotropy

(fa). The authors recovered the O’KEYPS equation

(Panofsky 1963; Businger 1988), which was originally

derived based on heuristic and dimensional arguments

to recover the empirical MOST momentum function

over land (see Foken 2006), such as the Businger–Dyer

function (Businger 1988, Eq. 39 in Appendix 2).

Defining the MOST momentum universal function

(or dimensionless shear) as

φm =
κz

ul∗

∂U

∂z
, (29)

Eq. 28 can be rewritten as

(1− αc)−1φ4m − (1 + β2)ζφ3m = f−1a g−1e , (30)

assuming that (1− αc)u4∗ 6= 0.

The resulting equation reveals that φm depends on

the wind-wave spectrum through αc and ge, unlike stan-

dard MOST which assumes that the universal momen-

tum function only depends on ζ. Furthermore, it ex-

tends the O’KEYPS equation and Katul et al. (2011)

who considered the case of a flat boundary (i.e. αc = 0

and ge = 1).

Equation 30 can be solved analytically (solutions,

presented in the Supporting Information of Katul et al.

2011, can be easily extended to the present case), yield-

ing the MOST momentum function φm. Note that in

the following, we take αc and ge as parameters of the

model, unlike the coupled case where they are deter-

mined recursively by the wave model (Sect. 5.1). This

allows exploration of all the range of stability conditions

(in particular stable conditions ζ > 0).

The inverse of the solution of Eq. 30 as a func-

tion of ζ, αc, and ge is shown in Fig. 7. The inverse of

the MOST momentum function is of particular interest

since it is proportional to the turbulent diffusion coeffi-

cient (K, defined as (ul∗)
2 = K∂zU). Note first that the

expected dependence of the turbulent diffusion coeffi-

cient with atmospheric stability is observed: turbulent

diffusion is higher for an unstable atmosphere (z/L < 0)

than for a stable atmosphere (z/L > 0). Second, an in-

crease in wave-induced stress (i.e. in αc in Fig. 7a) for

a fixed stability induces an increase in turbulent dif-

fusion. This is consistent with enhanced turbulent mo-

tions due to enhanced wake production. Third, eddy

stretching greater (respectively lower) than one causes

an increase (resp. a decrease) in turbulent diffusion, for

a given stability (Fig. 7b). Since eddy stretching larger

than one means reduced TKE dissipation, the observed

increase in turbulent energy is consistent with an in-

crease in the production term in the TKE equation,

balanced by a constant energy-transfer term from wave

motions and buoyancy, and a decreasing dissipation.

Figures 7a, b show how the sensitivity of atmo-

spheric turbulence (i.e. the diffusion coefficient) to sta-

bility is modulated by wave-induced stress and eddy

stretching. Figure 7a reveals that increasing wave-induced

stress causes an increase in this sensitivity. This is also

the case for ge < 1, while eddy stretching larger than

one causes a decrease in this sensitivity (Fig. 7b). The

sensitivity of atmospheric turbulence to stability is an

important feature since, as mentioned in the introduc-

tion, the first source of variability of turbulent momen-

tum fluxes is atmospheric stability. These results indi-

cate that short and long wind-waves play an important

role in this variability.

6.2 Comparison to Measurements

Figure 8 shows the bin-averaged MOST momentum

function as a function of stability for the measurements

over open ocean from Edson et al. (2013) described
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Fig. 7 Inverse universal momentum function φ−1
m (proportional to turbulent diffusion) as a function of (a) stability and the

coupling coefficient for eddy stretching set to one, (b) stability and eddy stretching for a coupling coefficient set to zero

Fig. 8 Monin–Obukhov momentum universal function as
a function of stability. Dots indicate bin-averaged measure-
ments from Edson et al. (2013) and vertical error bars are
the associated standard deviations. Red and black lines are
the Businger-Dyer function (Businger 1988) and the present
model result, respectively. Grey shading and dashed lines are
the range of values obtained varying the wave coupling pa-
rameter and eddy stretching respectively

in Sect. 5.2 (black dots). The measurements were per-

formed above or close to the expected height of the

WBL (of the order of 5 m) where MOST is expected to

work (since wave-induced stress vanishes).

The solid black line in Fig. 8 represents the solution

of Eq. 30 excluding the effect of waves (i.e. αc = 0 and

ge = 1) using the expression of eddy anisotropy fa from

Katul et al. (2011) (Eq. 40 in Appendix 2). The values

of fa are based on observed turbulent statistics over

land (Kaimal et al. 1972). There is a good qualitative

agreement between the model solution and the data,

consistent with the measurements being at the expected

height of the WBL. The Businger–Dyer function (red

line) is also shown in Fig. 8 and fits similarly to the

measurements, even though it differs from the Katul

et al. (2011) solution in the stable case.

The scatter observed in the measurements (black

error bars) contains contributions from both eddy co-

variance sampling uncertainties and variations in sur-

face wave conditions. To investigate the contribution of

the second effect on the scatter, Eq. 30 was solved for

different values of the coupling coefficient αc and eddy

stretching ge.

We first varied the coupling coefficient αc to test the

importance of wave-induced stress on atmospheric tur-

bulence (through its effect on MOST) at heights above

5 m. Even though it is usually assumed that this is not

the case, airflow separation events on top of breaking

waves could, for instance, extend higher in the SBL (see

e.g. the numerical simulations of Suzuki et al. 2013).

The range of variation of αc (between 0 and 0.6) is in-

ferred from the range obtained with the coupled wind-

over-waves model in Sect. 5.2, and shown in Fig. 3b. It

captures the range of observed short wind-wave condi-

tions, neglecting atmospheric stratification effects. The

resulting variation in modelled MOST functions (grey

shading) shows that αc might explain some scatter in

the data, but the scatter is smaller than that found

in observations. In particular, the data scatter in the

stable case (z/L > 0) is not explained. Provided that

waves are significant in explaining the measured scat-

ter, this result indicates that sources of variability of

φm other than short wind-waves variability should be

investigated, such as eddy stretching.

Eddy stretching impacts TKE dissipation at heights

above 5 m (being supported by 10-m waves, see Sect. 3.2),

and can thus impact MOST momentum function (from

Eq. 30). Variation of eddy stretching ge between 0.3

and 3 (dashed lines) covers the data scatter. This vari-

ation range is consistent with the one used in Sect. 5

(and shown in Fig. 4), showing that eddy stretching,

and thus long wind-waves variability, seems to be able

to explain the variability of MOST momentum func-
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tion. Note however that the variation range required to

explain the observed scatter is smaller than the one re-

quired to explain the scatter of momentum fluxes under

neutral conditions, and that this range could be even

smaller if eddy covariance sampling uncertainties are

deduced from the observed scatter.

Comparison of the wind-over-waves model with mea-

surements thus shows that (i) observed stratification ef-

fects on MOST momentum function are consistent with

the theoretical SBL model; (ii) Monin–Obukhov simi-

larity theory quantities are less sensitive to the pres-

ence of wind-waves than momentum fluxes, as found in

Hristov and Ruiz-Plancarte (2014) by only considering

wave-induced motions within the momentum WBL.

6.3 Dimensionless Dissipation

Similarly to Fig. 5, we now investigate the sensitivity

of TKE dissipation ε to stability. Following MOST, we

define dimensionless dissipation φε as

φε =
κzε

(ul∗)
3
, (31)

which can be computed from Eq. 28 and 29 as

φε = φm − (1 + β2)ζ. (32)

The solid black line in Fig. 9 is the dimensionless

dissipation computed with φm from Eqs. 30, excluding

the effect of waves (i.e. αc = 0 and ge = 1). As ex-

pected, there is a good agreement between this value

and the Businger–Dyer function (red line). Values of ge
larger (resp. smaller) than one cause a decrease (resp.

an increase) in φε, consistent with Eq. 18 (dashed lines,

which correspond to ge = 0.3 and 3 respectively). Fi-

nally, as also shown in Fig. 5 for neutral conditions,

an increase of wave-induced stress causes an increase

of TKE dissipation (grey shading), consistent with the

additional production term in the TKE balance equa-

tion. Overall, waves have a significant impact on the

dimensionless TKE dissipation, consistent with previ-

ous studies (e.g. Cifuentes-Lorenzen et al. 2018).

In deriving the dimensionless equations (30) and

(32), ul∗ has been chosen as the normalizing velocity

in the definition of φm, φε, and ζ. This choice is phys-

ically sound, since in this case φ−2m is proportional to

the turbulent diffusion. In measurements, however, it is

difficult to disentangle wave-induced stresses from tur-

bulent stresses (see e.g. Hristov et al. 2003), and the

only measurable quantity could then be u∗, the total

momentum flux. Hence, we must discuss the differences

between choosing u∗ instead of ul∗ as a normalizing ve-

locity in MOST, i.e. by considering the following al-

ternative forms of the universal momentum function,

Fig. 9 Dimensionless TKE dissipation as a function of sta-
bility. Red line is the Businger–Dyer function (Businger 1988)
and black line is the model result. Grey shading and dashed
lines are the range of values obtained varying the wave cou-
pling parameter or eddy stretching respectively. The inset
shows the same quantities, but for a different choice of nor-
malization velocity

dimensionless dissipation, and stability parameter

φtm =
κz

u∗

∂U

∂z
, φtε =

κzε

u3∗
, ζt =

κzgH

ρCpθhu3∗
. (33)

First, there is no qualitative difference in the be-

haviour of φtm with respect to φm (not shown). How-

ever, the behaviour of φtε, is qualitatively different from

φε. As shown in the inset of Fig. 9, an increase in

wave-induced stress now causes a decrease in dimen-

sionless dissipation (the grey shading is above the solid

black line in the inset), inconsistent with the conclu-

sions drawn earlier (in the main figure, the grey shad-

ing is below the black curve). This shows that MOST is

sensitive to the choice of the normalization in the pres-

ence of waves. This could have important implications

for the interpretation of measurements.

7 Conclusion

This study investigated the role of wind-waves and at-

mospheric stratification on atmospheric turbulence and

momentum fluxes. The geometry of the ocean surface,

resulting from the superposition of (periodic) surface

wind-waves, is assumed to change the shape of energy-

containing turbulent structures (conceptually viewed as

attached eddies). Extending a wall-bounded turbulence

model proposed by Katul et al. (2011) allowed the im-

pact of this deformation on TKE dissipation to be mod-

elled for a boundary whose height follows a wind–wave

spectrum.

It was further argued that for an attached eddy of a

given horizontal length scale, most of the deformation
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of its shape is due to surface waves with a similar wave-

length. This was based on the assumption that the eddy

deformation is caused by the surface wave periodically

modulating the surface roughness induced by shorter

waves, on a length scale resonant with that of the at-

tached eddy. The overall result is a modification of TKE

dissipation by long wind-waves (of the order of 10 m),

at heights above 5 m, where the impact of wind-waves

on atmospheric turbulence has been observed but was

unexplained by wind-over-waves models.

The impact of the new mechanism on surface mo-

mentum fluxes was quantified by its inclusion in a wind-

over-waves model (Kudryavtsev et al. 2014), which pre-

dicts a wind-and-waves equilibrium by coupling a TKE

budget to a wind–wave energy budget. The wind-and-

waves equilibrium, normally defined solely by 10-m wind

speed and atmospheric stability, is now also dependent

on a single parameter linked to the long wind-wave

spectrum and to the intensity of the modulation of

short wind-waves roughness by long wind-waves (i.e.

related to the deformation of attached eddies by wind-

waves). The variability observed over open ocean in

both momentum flux (for a given 10-m wind speed) and

MOST momentum function (for a given stability), was

explained by variation of this parameter. If existent,

the distortion of atmospheric eddies by the geometry of

10-m wind-waves is thus an important process in the de-

termination of surface momentum fluxes. This analysis

also revealed that the sensitivity of MOST momentum

functions to stability was impacted by the presence of

both short and long wind-waves. Both processes should

be included in momentum flux parametrizations.

wind-waves longer than 10 m were found to modify

TKE dissipation at a height too high to impact surface

momentum fluxes. However, if the assumptions of sta-

tionarity and horizontal homogeneity were relaxed (i.e.

the SBL is no longer a constant-stress layer, which can

occur, e.g., when the boundary layer height decreases

significantly), their impact on TKE could significantly

affect momentum fluxes in the whole surface layer. This

process could then play an important role in the cou-

pling of wind-waves with large scale atmospheric struc-

tures.

This theoretical work is based on the idea that sur-

face waves are able to distort atmospheric eddies. How-

ever it does not rely on experimental evidence, and the

expression of the distortion includes a free parameter.

Katul and Manes (2014) linked the shape of the at-

tached eddies to properties of the vertical turbulent ve-

locity spectra. This link could be further investigated

within open-ocean measurements in order to test the

present theory. The proposed framework thus opens

new paths for numerical and experimental investiga-

tions of turbulence on top a realistic sea surface. Those

would require the joint analysis of atmospheric vertical

velocity and sea surface elevation/slope signals to infer

the expected changes in turbulence spectral properties.

More generally, this work is a step towards a more

precise description of multi-scale interactions within the

WBL, linking the shape of large atmospheric structures

with macroscopic properties of the surface wave field.

By showing the importance of atmospheric eddy distor-

tions for air–sea fluxes, we emphasize that this descrip-

tion is essential in order to advance our understanding

of the wind-and-waves coupled system and to improve

air–sea fluxes parametrizations.
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Appendix 1: Coupling Between Short Wind-Waves and Atmospheric Turbulence

Details are provided on the coupling between short wind-waves and atmospheric turbulence, following the wind-

over-waves model presented in Kudryavtsev et al. (2014) and references therein. The short wind-waves model is

first described, and expressions for wave-induced stress are then presented.

Waves are described by their wavenumber k, frequency ω, phase speed c, and direction of propagation ψ,

and follow the dispersion relation ω2 = gk + Tswk
3 where Tsw is the dynamical surface water tension. The

wave field is specified by means of the directional spectrum Sd(k, ψ). We also introduce the saturation spectrum

B(k, ψ) = k4Sd(k, ψ), which will be used in the following.

As proposed by Kudryavtsev et al. (2014), the full wave spectrum can be defined as a composition of a short-

wave spectrum Bsw and a long-wave spectrum Blw (in this study, the fetch-dependent spectrum of Donelan et al.

1985, is used). The weighted sum between Blw and Bsw represents a wind-driven sea spectrum, without the

presence of non-local waves (swell). It is in a one-to-one relation with the local atmospheric state. The short-

wave spectrum is coupled to atmospheric turbulence through form drag, and further affects the momentum WBL

through airflow separation stresses. The long-wave part is prescribed given some parameters (here spatial fetch).

The short-wave component Bsw describes both gravity waves and parasitic capillary waves. The latter are

generated on the forward face of shorter gravity waves (in the wavelength range 0.03–0.3 m), as they approach

their maximum steepness, which, for longer gravity waves, would lead to breaking (Longuet-Higgins 1963).

The gravity short wind–wave spectrum results from a balance between wind forcing (β), non-linear energy

losses due to wave breaking (or generation of parasitic capillary waves for shorter waves), and generation of short

waves by large breakers (or of parasitic capillary waves by steep and shorter waves, Qb). The balance equation

reads

βv(k, ψ)B(k, ψ)−B(k, ψ)

(
B(k, ψ)

a

)ng

+Qb(k, ψ) = 0, (34)

with βv(k, ψ) = β(k, ψ)− 4νk2/ω the effective growth rate (with ν air viscosity), and a = 2.2× 10−3 and ng = 10

two tuning constants fitted to observations (from Yurovskaya et al. 2013). Expression for the source term Qb can

be found in Appendix A of Kudryavtsev et al. (2014).

The short parasitic capillary waves, corresponding to waves of wavelengths of 3 × 10−4 m or less, follow the

balance Eq. 34 without the wind input term, and with modified constants a and ng. For this range of waves

for which wave breaking does not occur, the non-linear term is associated to a non-linear saturation of the wave

spectrum.

Both equations are solved by iterations, given a wind forcing resulting from the WBL model (Eq. 28), and

expressed as

β(k, ψ) =

cβ
{
ul∗[h(k)]

c

}2

cosψ| cosψ| for U [h(k)] > c

0 for U [h(k)] < c

(35)

where cβ = 3× 10−2 is Plant’s constant and h(k) = 0.1k−1 is the inner region height. Note that since wind input

depends on the ratio between friction velocity and wave phase speed, it is supported mostly by slow (and short)

waves (Plant 1982).

To solve Eq. 28, wave-induced stress must be specified. Let T̃ and T̃a be the intensity of form drag and airflow

separation induced by a wave component of wavenumber k. Both these effects act over a shallow atmospheric layer,

up to heights h(k) ∼ 0.1k−1 and ha(k) ∼ 0.3k−1, respectively (Kudryavtsev et al. 2014). We further assume, for

simplicity, that form drag (respectively airflow separation) is constant up to h (resp. ha) and cancels for z > h

(resp. z > ha). This yields the following expression for the total wave-induced stress

(uw∗ )2(z) =

∫
T̃ (k)He[h(k)− z]dk

+

∫
T̃a(k)He[ha(k)− z]dk (36)

where He(x) is the Heaviside step function (He(x) = 1 for x > 0 and 0 otherwise). This expression couples the

short wind–wave model (Eq. 34) to the SBL model (Eq. 28).
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Form drag describes the impact of the wind-to-waves energy transfer on atmospheric turbulence, and is ex-

pressed as:

T̃ (k) =


cβ
k

ρw
ρa
{ul∗[h(k)]}2

∫
B(k, ψ) (cosψ)3 dψ for U [h(k)] > c

0 for U [h(k)] < c

, (37)

where ρw and ρa are the density of water and air respectively.

Waves of wavelength greater than 0.3 m generate an additional stress due to airflow separation on top of

breaking waves (Reul et al. 1999). The expression for airflow separation stress for a given wavenumber depends

on wave-breaking statistics. However, following Phillips (1985), wave-breaking statistics can be related to wave

energy dissipation (the second term from the left in Eq. 34). For waves in the equilibrium range, on top of which

most of airflow separation events occur, the spectral balance (Eq. 34) is further assumed to be reduced only to

a balance between wind input and dissipation. This results in the following expression for airflow separation for

u[h(k)] > c:

Ta(k) =
2cdbcβ
a

ha(k)kfg(k)

(
U [ha(k)]

c
− 1

)2 ∫
B(k, ψ)(cosψ)5 dψ (38)

where fg(k) is a cutoff function restricting airflow separation in the equilibrium range, and cdb is the local roughness

on top of breaking crests, which has a mean value of 0.35 (see Kudryavtsev and Makin 2001). For U [h(k)] < c,

airflow separation is assumed to vanish, which limits airflow separation to slow (short) waves (similar to form

drag).

Appendix 2: Expressions of Eddy Anisotropy and the Businger–Dyer Momentum Function

The Businger–Dyer universal momentum function (Businger 1988), derived from the Kansas measurements, reads

φBm(ζ) =

{
1 + 4.7ζ for ζ > 0

(1− 15ζ)
−1/4

for ζ < 0
. (39)

This empirical function was recovered by Katul et al. (2011), by considering an eddy anisotropy of the form

fa(ζ) =


(

1− 0.38

0.55
[1− exp(15ζ)]

)−1
for ζ ≤ 0(

1 +
1

0.55
ζ

)−6
for ζ > 0

. (40)

This expression was obtained from measurements of vertical turbulent velocity spectra (from Kaimal et al. 1972).
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