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Abstract

Prevention of cerebrovascular accidents (CVA) can be achieved by detecting their related precursor signs.
A new generation of transcranial Doppler (TCD) systems is presented for detecting the smallest possible
microemboli. However, many artefacts appear with these mono-gated Holter TCDs. Thus, the aim of
the method becomes achieving microembolic detection while rejecting artefacts. For the clinicians’ pro-
cedure, the detection proposed is based on an adaptive thresholding applied on the spectrogram of the
Doppler signal. The method required achieving three steps. First, the beginning of each cardiac cycle
is assessed from the spectrogram of the Doppler signal. Second, by assuming that the Doppler signal is
pseudo-cyclostationary, the spectrogram are segmented and time-normalised into sub-spectrograms for
each cardiac cycles. Two two-dimensional-adaptive (2D-adaptive) thresholds of detection for microemboli
and artefacts were statistically adjusted in both time and frequency. Third, the microembolus detection
consists in both detecting the over-intensities in the sub-spectrograms and checking if the detected signa-
tures are not artefacts. The ROC curve results show that the performances are 3.6 times higher compared
to those of the standard detection. The detection rate can be increased by 22% compared to standard
detection. Besides, the false alarm rate can be reduced by 28%. Using an 2D-adaptive threshold adjusted
in both time and frequency, microemboli of weaker intensity can be detected. The analysis of a long
acquisition could be possible, and better support of high-risk asymptomatic patient could be considered.
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Highlights

• Detection of weak Doppler microembolic signals

• Detector based on two-dimensional-adaptive threshold computed from time-normalised sub-
spectrograms of each cardiac cycle.

• Including an artefact rejection to take into account features of mono-gated Holter transcranial
Doppler system.

• Concept proof validated on clinical data.
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1. Introduction

Despite improvements in prevention, in risk fac-
tor management, in treatment and care, cerebrovas-
cular accidents (CVA) remain the second cause
of mortality in Europe, responsible for about 154
deaths per 100,000 inhabitants each year [1]. The
cost of direct healthcare and the indirect loss is es-
timated at around 45 billion euros in the European
Union [2]. One of the main reasons of ischemic
strokes is microemboli circulating in the cerebral
vascular system and originating from carotid and
aortic plaques or cardiac sources [3]. Therefore,
microembolus detection has become a public health
issue. In risk factor management and diagnosis, the
transcranial Doppler system (TCD) is the unique
non-invasive and non-irradiant device for detect-
ing the spontaneous circulating cerebral microem-
boli [4, 5]. From TCD systems, these microembolic
events appear as high-intensity transient signals
(HITS) superimposed on the backscattered TCD
signal. Therefore, it can help clinicians in monitor-
ing high-risk asymptomatic patients [6], [7]. Fur-
thermore, since small microemboli are precursors of
large embolus with more dangerous effects [8], early
detection of the smallest microemboli is a crucial
step.

Commercial TCDs for microembolus detection
are mostly based on Doppler energy. A constant
threshold is empirically set by a clinician over
the entire examination. Although such standard
detectors perform well for relatively intense em-
bolic signals, their performance in the detection
of low-intensity microembolic signals is unsatisfac-
tory. First, the clinician can detect microemboli
audibly, while the standard methods remain silent.
Second, all TCDs display the spectrogram to help
clinicians in manual detection. The clinician can
thus detect some inaudible microembolus signa-
tures through using the spectrogram. New detec-
tors should take into account this time-frequency
information. Moreover, to detect higher numbers
of small microemboli, the examination duration has
to be increased, due to the low number of events
occurring per hour. Unfortunately, commercially
used TCD systems have found several restrictions
including lengthy procedures for probe positioning,
unreliable microembolus detection, and short exam-
ination durations. To overcome these drawbacks,
new TCDs, such as Holter, have offered the possibil-
ity of servo-controlled positioning of the ultrasound
probe and prolonged patient monitoring (exceeding
several hours) [9], with the microembolus detection
performed offline. Note that Holter TCD can only

record data on a mono-gate. However, the servo-
controlled probe positioning results in a great in-
crease in the number of signal artefacts. These arte-
facts can be misinterpreted as true microembolic
signals and thus can greatly mislead the embolus de-
tection system. Therefore, the development of new
microemboli detectors should also take into consid-
eration the artefact features of Holter signals. Arte-
fact rejection becomes a necessary step engaged in
the whole detection process. To sum up, a good de-
tector should take into account the time-frequency
information in the cardiac cycle and should include
an artefact rejection technique.

Several methods have combined microembolus
detection and artefact rejection. Among the arte-
fact rejection methods, some of them are based on
features derived from detected patterns: time in-
terval and frequency of the detection [10], inten-
sity [11] or parameters of fractional Fourier trans-
form [12]. Other methods are based on multigate
systems [3, 13]. Instead of mixing artefact rejection
and microembolus detection, some methods have
been focused only on microembolus detection with-
out covering artefact rejection. The basic concern
related to all detectors is the separation of the in-
formation related to microemboli from the cardiac
flow information. Most of the microembolus detec-
tion can be separated into two main families. The
first one consists of filtering cardiac flow informa-
tion through a frequency decomposition. In [11, 14],
wavelet decomposition can solve the compromise
between temporal and frequency resolutions in the
detection. The second one consists of making a
time-varying threshold based on cardiac flow infor-
mation. In [15], the detection was improved by the
combination of an adaptive threshold and a neuro-
fuzzy detector. In [16], the adaptive threshold is
assessed from energy fluctuation. Note that other
solutions were proposed either based on the trans-
mitter coding of the Doppler system [17], or on
model breaking detection of Doppler signals [18] or
high order statistics [19]. However, since an arte-
fact rejection technique was not included in these
last methods, these automatic detection methods
are not implemented in commercial devices. Never-
theless, some detectors have improved the detection
rate by partially using the criteria of a good detector
previously explained (i.e. using time-frequency in-
formation). Thanks to the pseudo-cyclostationarity
properties of the blood Doppler signal [20], data
of each cardiac cycle have been segmented [21] or
the threshold can be adaptive with the cardiac cy-
cle [22]. Finally, an image processing approach has
been performed through the time-frequency repre-
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sentation of the Doppler signal [23]. However, this
technique requires guaranteeing the Gaussian prop-
erty of the Doppler speckle in the Doppler signal.
Moreover, the artefact rejection requires a machine
learning for the classification, which can be difficult
according to the data quality and the learning data
amount.

In this paper, we proposed an original offline de-
tection based on the time-frequency representation
of the Doppler signal and designed for features of
mono-gated TCD Holter system. The aim was to
detect microemboli combined with an artefact re-
jection. We merged the advantage of both the im-
age processing approach [23] and the segmented ap-
proach [21]. The novelty of this work lies in the
following items:

• the sensitivity of the detection varies with
the frequency and the position in the car-
diac cycle [24]. The method uses spectro-
gram segments (or sub-spectrograms) of the
same duration (time-normalisation with a re-
sampling step) and starting with the position
in the cardiac cycle (systolic peak for instance).
From these time-normalised sub-spectrograms,
a two-dimensional threshold can be adjusted in
time and frequency;

• the microembolus detection and the artefact re-
jection are self-adjusted for each patient and
every five minutes;

• in contrast with most previous methods, no
assumption on noise property is required and
artefact rejection (even simple) is included.

This study focuses on the feasibility of such detec-
tion. The detection method is applied to a signal
database acquired by a mono-gated Holter TCD in
patients with carotid stenosis. The first step is to
set the method in the first part of the database. The
second step was to check the detection performance
blindly in the second part of the database. Finally,
the detection results are compared to the standard
method.

2. Materials and Methods

As explained above, the detection method is
based on a two-dimensional-adaptive (2D-adaptive)
thresholding constructed from sub-spectrograms for
which the duration of the cardiac cycle are nor-
malised, following the flow chart shown in Fig.
1; a more detailed flow chart describing this pro-
cess is reported in the appendix. As a first step,

after computing the whole spectrogram from the
Doppler signal, the time boundaries of each car-
diac cycle are assessed. By assuming that the
Doppler signal is pseudo-cyclostationary, due to
the pseudo-regularity of the cardiac rhythm, sub-
spectrograms (i.e. segments of spectrogram) are
segmented and extracted following the duration
of the cardiac cycles. Then, they are normalised
in time to ensure that all sub-spectrograms have
the same number of samples. In the second step,
from all these time-normalised sub-spectrograms,
two 2D-adaptive thresholds of microembolus detec-
tion and artefact rejection were adjusted in time
and frequency from statistics derived from sub-
spectrograms. Finally, in the third step, the micro-
embolus detection consists in detecting the over-
intensities of the time-normalised sub-spectrograms
and in checking if the detections are not artefacts.

2.1. Clean Spectrogram

Following step 1 in the flow chart in Fig. 1, the
input of the detector is based on the spectrogram
S(y, n, f) of the Doppler signal y(n):

S(y, n, f) =

∣

∣

∣

∣

∣

N−1
∑
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y(k)g∗(n− k)e−j2πf k

N

∣

∣

∣

∣

∣

2

. (1)

where n is the discrete time, f the frequency, ∗ the
symbol of the complex conjugate, g(n) the Ham-
ming apodisation window of N -width. Note that
the Doppler signal y must be stationary in the
apodisation window. This hypothesis is considered
true for a duration of around 10 ms [25]. Therefore
N has to be set according to the sampling frequency.
As illustration, Fig. 2a shows an example of a spec-
trogram computed from a 3.5-second Doppler sig-
nal.

Furthermore, in order to determine the blood
flow direction, the Doppler signal y(n) is a com-
plex IQ signal where the signal of the positive fre-
quencies f⊕ (forward flow approaching the trans-
ducer) can be different from the signal of the neg-
ative frequencies f⊖ (backward flow moving away
from the transducer). Nevertheless, for strong over-
intensities (over-driving electronics) and/or because
of interference problems between the I and Q chan-
nels (e.g. crosstalk), I-channel can physically dis-
rupt Q-channel (and reciprocally Q-channel on I-
channel) on the electronic board. This disturbance
is observed at the same time by similar, even the
same, signatures on the spectrogram for the pos-
itive and negative frequencies (i.e. spectrum of
the positive frequencies ≈ spectrum of the negative
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Figure 1: Block diagram representing microembolus detection from the spectrogram. The process is divided into 3 steps:
(1) computing of the clean time-normalised sub-spectrograms IDEmb,segm (n, f) and the time-normalised sub-spectrograms
IDArt,segm (n, f), (2) computing the adaptive thresholds λEmb(n, f) and λArt (n, f) and (3) thresholding with equation 2.

frequencies). This could lead to creating artefacts
which mainly appear as bidirectional1 [14, 26, 27].

1Since an energy on positive (or respectively negative)
Doppler frequencies is associated when the blood flow ap-
proaches (or respectively moving away) the probe, a sig-
nature in both the positive and negative frequencies would
mean that an object is travelling in both opposite directions
at the same time. This event has no physical meaning, that
is why it is called bidirectional artefact.

Taking into consideration the mono-gate property
of the Holter TCD, an efficient solution to reduce
bidirectional artefacts simply consists in computing
a simple difference between the spectra from posi-
tive and negative frequencies (example in Fig. 2c).
Removing artefacts is equivalent to clean the spec-
trograms. However, this simple subtraction of the
spectra is valid only if no energy of blood flow exists
in the negative frequencies (example of spectrogram
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for negative frequencies in Fig. 2b). Therefore, in
this method, we assume that the clinician sets the
probe to obtain the blood flow in the positive fre-
quencies only (example of spectrogram for positive
frequencies in Fig. 2a). This implies that there
is no energy coming from the backward flow, i.e.

measured in the negative frequencies (example of
spectrogram for negative frequencies in Fig. 2b).
Thus, the signatures in the negative frequencies are
only related to artefacts, while the signatures in
the positive frequencies are related to both blood
flow and artefacts. Therefore, a clean spectrogram
IDEmb(n, f) for the microembolus detection and a
spectrogram IDArt (n, f) for the artefact rejection,
on which the thresholds will be applied, can be ob-
tained:
{

IDEmb(n, f) = |S⊕(y, n, f)| − |S⊖(y, n, f)| ;
IDArt (n, f) = |S⊖(y, n, f)| ,

(2)
with

S⊕(y, n, f) =

{

S(y, n, f) , ∀f > 0;

0 , ∀f < 0
, (3)

S⊖(y, n, f) =

{

0 , ∀f > 0;

S(y, n, f) , ∀f < 0.
. (4)

Note that if artefacts are mono-directional in
the backward flow, the method could be sightly
simplified by deactivating the subtraction such
IDEmb(n, f) = |S⊕(y, n, f)|.

2.2. Segmentation and Time Normalisation for

Each Cardiac Cycle

As shown in step 2 in the flow chart shown in
Fig. 1, by assuming that the Doppler signal y

is pseudo-cyclostationary [20] with the cardiac cy-
cles, then the spectrogram S⊕(y, n, f) is also con-
sidered pseudo-cyclostationary with the cardiac cy-
cles. Using the same reasoning, as the clean spectro-
gram IDEmb is made from pseudo-cyclostationary
S⊕(y, n, f), the clean spectrogram IDEmb is also
considered statistically pseudo-periodic with the
cardiac cycles (step 1 in Fig. 1). Therefore, in
order to compute the 2D-adaptive thresholds, the
clean spectrogram can be (i) segmented by splitting
into several sub-spectrograms, i.e. one spectrogram
segment for each cardiac cycle. Then, (ii) the sub-
spectrograms are normalised in time to ensure that
all sub-spectrograms have the same number of sam-
ples.

The first step of the sub-spectrogram calcula-
tion procedure consists in segmenting each cardiac

cycle, i.e. by finding the beginning and the end
of each cardiac cycle from the time-frequency in-
formation IDEmb(n, f) (white crosses in Figs. 2c
and 3a). This process is illustrated in Fig. 4.
This part consists in roughly assessing the maximal
Doppler frequency, on which the time boundaries of
each cardiac cycle will be assessed. For each spec-
trum of the spectrogram, the maximal Doppler fre-
quency is assessed by finding the highest frequency
among the frequencies for which the amplitude of
the spectrogram (as shown in Fig. 4a) is higher
than a one-dimensional threshold IDEmb . This one-
dimensional threshold IDEmb is computed (Fig. 4c)
as an average of the mean spectrum (Fig. 4b). Note
that this threshold is the same for all time position
n and all frequency f , but it does not allow us to de-
tect microembolus, since it is especially designed to
detect the maximal frequency. Therefore, a binary
spectrogram (Fig. 4d) can be obtained by thresh-
olding the spectrogram with IDEmb . For each time
n, the maximal positive Doppler frequency f+

max (n)
(white dotted lines in Figs. 4d) is assessed as the
maximal frequency where the binary spectrogram
is not equal to zero. To reduce high frequencies in
f+
max , a short-term average filter is applied on f+

max

with a window of Nsmooth = 8 samples (from our
experience). Note this simple process is similar to
a percentile method [28, 29] by using the backscat-
tered power as threshold. This was sufficient for our
database, since the main goal of that step is only
to extract the periodicity of f+

max . Then, the time
boundaries tHR of each cardiac cycle are extracted
by finding the local maxima (as for example the
white crosses on spectrograms shown in Figs. 2c,
3a 4d), using a peak detection algorithm2 applied
on f+

max (n) [30]. Note that the algorithm excludes
local peak if the duration between two successive
boundaries tHR is not physiologically realistic, i.e.

for a heart rate lower than 180 bpm [31]. However,
if a time boundary tHR of a cardiac cycle matches
with an artefact, i.e. if the median med(IDArt ) of
the spectrum IDArt (tHR, f) is higher than the con-
stant threshold λHR,Art , the cardiac cycle will be
excluded from the microembolus detection. Note
that, from our experience, this constant threshold
λHR,Art has been assessed as:

λHR,Art = P
(

IDArt (n, f), erf

(

1√
2

))

, ∀n, ∀f,
(5)

2The algorithm is based on looking for the highest point
for which there are points lower on both sides (left and right)
of this highest point.
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Figure 2: Example of a spectrogram computed from a Doppler signal y. (a) Spectrogram |S⊕| for the positive frequencies.
(b) Spectrogram |S⊖| for the negative frequencies. Note that this spectrogram IDArt is also the artefact rejection procedure.
(c) Clean spectrogram IDEmb for microembolus detection. As an illustration, from methods described in section 2.2, the
maximal Doppler frequency f+

max (n) is depicted by a white line, the time boundaries of cardiac cycles by white crosses.
Note also that the color map is the same for all graphs.

where P denotes the function percentile and
erf(x) = 2√

π

∫ x

0
e−t2 dt the error function. Note that

the definition of threshold based on the percentile
notion is more general than a simple “N times the
standard deviation”, since it is always true regard-
less of the distribution (not only for the normal
distribution). If the distribution of IDArt (n, f) is
Gaussian, the threshold would be equal to x times
the standard deviation. This property comes from
the “3 sigma law” [32], where erf(x/

√
2) is related to

x-standard deviation. Finally, the valid cardiac cy-
cles that are kept are those having time boundaries
without artefacts and those being physiologically re-
alistic.

In the second step of the sub-spectrogram extrac-
tion procedure, shown in Fig. 3, knowing the time
boundaries of cardiac cycles, a sub-spectrogram can
be extracted for each valid cardiac cycle (as for ex-
ample in Figs. 3b, d, f), i.e. a spectrogram lim-
ited by the systolic peak of the current cardiac cycle
and the systolic peak of the next cardiac cycle. If
the cardiac rhythm is constant, each cardiac cycle
would have the same number of samples (because of
the same duration) and the spectrogram would be
already normalised in time. However, as cardiac cy-
cles have variable durations but with the same size

in frequency, the sub-spectrograms have to be nor-
malised in time by resampling in time exclusively
(as respectively shown in Figs. 3c, e, g). Note
that this resampling is only applied in the time,
since every spectrum constituting the spectrogram
has the same size in frequency. For each frequency
f of a sub-spectrogram (a row of the spectrogram
matrix), the amplitude vectors are resampled one-
by-one in time. The missing samples are obtained
by finding the linear function between two time-
consecutive data samples, similarly a linear inter-
polation. Note that due to the linear interpolation
of the resampling, the time is normalised for each
sub-spectrogram, where 0 is the beginning of each
cardiac cycle and 1 is the end of each cardiac cycle.
This resampling ensures the same number of sam-
ples for each cardiac cycle and thus converts pseudo-
cyclostationary spectrogram into a cyclostationary
spectrogram. Therefore, for a frequency f of a sub-
spectrogram, only time is elongated by resampling
(for example in Figs. 3c, e, g). Note that, now,
the sample number in time is at least equal to that
of the longest cardiac cycle. However, if this resam-
pling changes the size of the cardiac cycle more than
100%, the cardiac cycle is removed. Moreover, if the
cardiac cycles are undetectable, as in an arrhyth-
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Figure 3: Example of segmentation and duration normalisation of the spectrogram following the cardiac cycles. (a) Non-
segmented clean spectrogram IDEmb(n, f). As an illustration, from methods described in section 2.2, the time boundaries
of cardiac cycles were depicted by white crosses and the number of cardiac cycles is written in the white boxes. (b), (d)
and (f) Sub-spectrograms segmented by the three respective cardiac cycles from the time boundaries of cardiac cycles. (c),
(e) and (g) Resampling of the three sub-spectrograms IDEmb,segm(n, f) shown respectively in (b), (d) and (f). These new
sub-spectrograms are now normalised in time. Note that they have the same duration to guarantee the cyclostationarity. (h)
Example of an amplitude extraction from time-normalised sub-spectrograms for a frequency and time position: amplitude
signal as a function of cardiac cycles. The example values from sub-spectrograms (c), (e) and (g) are extracted and depicted
respectively in pink, green and orange. (i) Histogram of the amplitude signal shown in (h). A threshold in red is deduced
as a percentile of this histogram. (j) 2D-adaptive threshold λEmb(n, f) obtained for all the time positions in the cardiac
cycle and for all frequencies. For example, the threshold deduced in (h) (for the region studied in the boxes in (c), (e) and
(g)) are reported in the red box. Note that the colormap is the same for all graphs as in Fig. 2.

mia phase, the Doppler signal is excluded over five
seconds (from our experience). Finally, the clean
spectrograms IDEmb(n, f) and the spectrograms
IDArt (n, f) of each cardiac cycle are thus segmented
and time-normalised: the new sub-spectrograms
IDEmb,segm(n, f) and IDArt ,segm(n, f) of each car-
diac cycle have the same duration and can be su-
perimposed.

2.3. Two-Dimensional-Adaptive Thresholding

As shown in step 3 in the flow chart shown in
Fig. 1, the process of microembolus detection con-
sists of (i) detecting the over intensities of the time-
normalised and clean sub-spectrogram IDEmb,segm

for each valid cardiac cycle (blue functions in Fig.
1) and of (ii) checking if the HITS is not an artefact

(yellow functions in Fig. 1), as follows:

(

IDEmb,segm

HEmb=1

≷
HEmb=0

λEmb

)

AND NOT

(

IDArt ,segm

HArt=1

≷
HArt=0

λArt

)

.

(6)
If the clean sub-spectrogram IDEmb,segm(n, f) is
higher than the threshold λEmb(n, f), then the
microembolus detector triggers (hypothesis where
HEmb = 1), otherwise no microembolus detection
takes place (hypothesis where HEmb = 0). The
same principle is applied to artefact rejection: if
the sub-spectrogram IDArt ,segm(n, f) is higher than
the threshold λArt (n, f), then the artefact rejec-
tion triggers (hypothesis where HArt = 1). Thus,
if the clean sub-spectrogram IDEmb,segm(n, f) trig-
gers the first detector without the sub-spectrogram
IDArt ,segm(n, f) triggering the second detector, a
microembolic event is detected. Note that the time-
normalised sub-spectrograms are used twice in or-
der to: (1) propose thresholds from all the collection
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Figure 4: Example of the process to find the time-boundaries of the cardiac cycles. (a) Non-segmented clean spectrogram
IDEmb(n, f). (b) Mean Spectrum: average of IDEmb(n, f) , ∀f . (c) Histogram of the mean spectrum. The threshold
IDEmb shown with the red line. (d) Binary spectrogram by thresholding IDEmb(n, f) with λEmb(n, f) to detect blood
energy (without taking into account the possible presence of microemboli). Note also that the binary spectrogram is red
for the area of blood energy if IDEmb(n, f) > IDEmb and blue for the basic area of noise if IDEmb(n, f) < IDEmb .

of time-normalised sub-spectrograms, (2) detect mi-
croemboli from time-normalised sub-spectrograms
individually. An example of this step is illustrated
in Fig. 5.

First, as defined in eq. 6, the time-normalised
and clean sub-spectrograms IDEmb,segm(n, f) are
individually compared to the 2D-adaptive thresh-
old λEmb(n, f), for each time n and each frequency
f . This 2D-adaptive threshold λEmb(n, f) is de-
duced from statistical laws of the time-normalised
sub-spectrograms for each time n and frequency
f (as for example in Fig. 3). For k valid3 car-
diac cycles (as for example, from 1 to 300 in Fig.
3h), for each time position nk in the cardiac cy-
cle and each frequency fk (as shown in Figs 3c,
e, g), the amplitude Ak is extracted. Note that
this signal (with 300 samples in Fig. 3h) looks
like a random variable from which the 2D-adaptive
thresholds λEmb(n, f) and λArt (n, f) are computed,
and where the HITS are statistically rare events.
Moreover, to avoid assumptions on the statistics
of the time-normalised sub-spectrograms, the 2D-
adaptive threshold λEmb(n, f) corresponds to a per-
centile of the amplitudes of the time-normalised

3It is obvious that the computation of the 2D-adaptive
threshold λEmb(n, f) is made from all sub-spectrograms ex-
cept those ones removed during the segmentation step.

sub-spectrograms, as shown in Fig. 3:

λEmb(n, f) = P
(

IDEmb,segm(n, f), erf

(

µEmb√
2

))

, ∀n, ∀f,
(7)

where µEmb is the setting parameter of the 2D-
adaptive threshold for microembolus detection.
Note that the parameter µEmb is set during a train-
ing phase described in subsection 2.5.

Secondly, before identifying each event as micro-
embolus, the method has to check, if the HITS is
not an artefact, as defined in eq. 6. From the
time-normalised sub-spectrogram IDArt ,segm(n, f),
the 2D-adaptive threshold λArt (n, f) is computed
such as:

λArt (n, f) = P
(

IDArt ,segm(n, f), erf

(

µArt√
2

))

, ∀n, ∀f,
(8)

where µArt is the setting parameter of the 2D-
adaptive threshold for artefact rejection. Note that
the parameter µArt is set during a training phase
described in subsection 2.5.

Moreover, a HITS often appears with multiple
spots in the same area in the sub-spectrogram, sim-
ilar to the two spots in the example shown in Fig.
5c. However, only one detection should be counted.
Thus, multiple close detections must be combined
to avoid multiple countings. In image processing,
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Figure 5: Example of microembolus detection. (a) Time-normalised and clean sub-spectrograms IDEmb,segm(n, f). A
microembolus example is encircled in red, and the time boundaries of cardiac cycles are depicted by white crosses. (b)
Threshold λEmb(n, f). Note that the threshold λEmb(n, f) is repeated for the entire cardiac cycle. (c) Thresholding of
IDEmb,segm(n, f) by λEmb(n, f). A zoom is done around the detection. (d) Detection from (c) after the closing morphological
operation and labelling. A zoom is applied around the same detection. The label of the detected area is written in a white
box.

this merging is done using a closing morphological4

operation [33] on HEmb(n, f) and on HArt (n, f) by
using a structuring element B. Note that the size of
B has been evaluated throughout the gold standard
phase. It corresponds to 6% of the longest cardiac
cycle duration along the x-axis and 12% of sampling
frequency along the y-axis.

Finally, the events detected from

4The closing operation of the binary image I with the
structuring element B consists in a dilatation operation fol-
lowing an erosion operation, such I •B = (I⊕Es)⊖Es with
the dilatation I ⊕ B = {i + b | b ∈ B, i ∈ I} and the erosion
I ⊖ B = {i | Bi ⊂ I}.

IDEmb,segm(n, f) are compared with those de-
tected from IDArt ,segm(n, f) to reject artefacts (eq.
6). The events of IDEmb,segm(n, f) which have no
common point in time and frequency are kept. The
events are counted from a labelling algorithm of
connected components5 to 8 connections [34].

5The principle of algorithm consists in (1) browsing all
unlabelled positive pixels (positive detection with a value of
1), (2) associating the positive neighbouring pixels following
the 8 possible directions from the pixel, (3) repeat the pre-
vious operations until all positive pixel has a label. Finally,
by counting the label amount, the algorithm can give the
number of regions.
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2.4. Acquisition of Doppler Signals

The Doppler signals analysed in this study were
recorded, in a non-interventional practise, by a
Holter TCD (TCD-X, Atys Medical, Soucieu-en-
Jarrest, France), without online detection. An ul-
trasound wave with a 1.5 MHz frequency was trans-
mitted to the middle cerebral artery of patients with
carotid artery stenosis. To guarantee the absence of
energy measured in the negative frequencies of the
spectrogram (i.e. backward flow), the clinician has
to find a good location with a good angle. Note
that the good positioning is in the middle cerebral
artery [35], where backward flow was never present.
The pulse repetition frequency (PRF) was 6.4 kHz
and the ultrasound power was 150 mW/cm2.

These clinical recordings were carried out at the
Hospital of Lille (Centre Hospitalier Regional Uni-
versitaire de Lille, Lille, France) approved by its
research ethics council. All medical acts are per-
formed in the usual way, without any additional or
unusual procedure for diagnosis, treatment or mon-
itoring. Therefore, here, the recording analysis is a
retrospective study where the results have no inter-
ference with patient care.

Only recordings from patients with asymp-
tomatic high-grade carotid stenosis were kept. We
also excluded from the database the recordings from
patients with absence of an acoustic window neces-
sary for TCD and without non-biological prosthetic
heart valves.

After the clinical exam, these audio files were
played and their respective spectrograms were visu-
alized to constitute the gold standard of the detec-
tion. Microembolus signatures were manually iden-
tified based on their audible characteristics and a
visual inspection of the spectrogram [36] by three
blinded observers of our laboratory. These micro-
embolus signatures could be detected equally by
both experts and non-experts, since the experience
level of the experts is not considered as a crit-
ical factor [27, 37]. Thus the time positions of
microembolus events found by all observers were
recorded. Note that listening was performed twice:
first at the normal speed and second at the half
normal speed. Indeed, listening at half the normal
speed allows us to overcome the well-known tem-
poral and frequency masking effects in audio files,
which assures detecting several microemboli pre-
viously inaudible at normal speeds. Furthermore,
each microembolus detected could be gaseous or
solid, without differentiation of the microembolus
nature.

2.5. Database and Validation

The post-processing phase was performed with a
standard personal computer from which the Holter
recordings were converted into audio-wave files with
a sampling frequency of 4.4 kHz. The whole method
of microembolus detection is developed with Matlab
(The Mathworks, Natick, MA, USA). It was tested
on 38 signals recorded from 38 patients for about 64
± 7 minutes (i.e. 1 Doppler signal per patient) with
a signal-to-noise ratio between 12 and 32 dB. Note
that the size of this dataset is similar to previous
studies [14, 22, 23]. This database is divided into
two groups: 15 signals for the training phase and 23
signals for the testing phase. Also note that these
signals were randomly distributed in both groups.

Taking into consideration the high amount of
artefacts and the long duration of recordings, every
signal was cut into five-minute dataset, to remove
the loss of blood flow signal. Note that, because of
the resampling step, if the cardiac rhythm changes
highly or if the patient has strong arrhythmia, the
time-normalisation may deform slightly the spec-
trogram and the HITS. To limit this distortion, the
duration between two resets may be shorter than
the five minutes used in this study. The spectro-
grams of these five-minute signals described from
eq. 1 were then computed with N = 64 with an
overlap of 80% and a zero padding of 512, according
to the previous recommendations [25]. Each part of
the five-minute signal was analysed separately and
independently. Note that this slicing allowed us to
limit the impacts of modifications of signal dynamic
range and the cardiac rhythm, and the potential loss
of blood flow signal. Finally, the five-minute signals
were analysed for microembolus detection.

During the training phase, the 2D-adaptive
thresholds λEmb(n, f) and λArt (n, f) are empiri-
cally decreased using the parameters µEmb and µArt

in order to obtain the best compromise between the
false alarm rate FAR and the detection rate DR.
For each signal, we counted the number of true pos-
itive TP and the number of false positive FP for the
standard method and for the 2D-adaptive method
proposed here. The detection rate6 DR(%) and the
false alarm rate7 FAR(%) were thus deduced as:

DR(%) = 100 · TP

Demb

and FAR(%) = 100 · FP

Dtot

,

(9)

6Rate of good detection, i.e. a detection is a real micro-
embolus, among all real microemboli

7Rate of wrong detection, i.e. a detection is not a real
microembolus, among all detections
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where Demb is the number of real microemboli
counted in the gold standard, Dtot the total num-
ber of detections. In the last step, during the testing
phase, the 2D-adaptive thresholds λEmb(n, f) and
λArt (n, f) were not changed in assessing the 2D-
adaptive method.

For comparison, another analysis was done with
the same protocol, but with the most commonly
used standard method to detect the presence of mi-
croemboli. The detection is usually based on the
energy associated with a constant threshold [27].
Note that the detection in commercial device is
based on the maximum short-term power spectrum
IDEmb,stand :

IDEmb,stand (n) =
∑

f

S(y, n, f). (10)

The standard constant threshold λEmb,stand (n) is
thus set above the maximal detected energy of the
Doppler signal when no embolus is present:

λEmb,stand = 10·log10 (max [IDEmb,stand (n)])+µEmb,stand

(11)
Note that for this standard detection, the artefact
was manually rejected.

Finally, to evaluate the detection performance
of the detection of the weakest microemboli, the
“embolus-to-blood ratio” (EBR) is assessed. EBR
indicates how strong an embolic signal is relative to
the background Doppler signal, such as:

EBR = 10 log10

(

PE+B

PB

)

, (12)

where PE+B is the backscattered power measured
when an embolus and the blood are present in
the Doppler sample volume, PB the backscattered
power measured from blood alone in the sample vol-
ume [18]. Note that we can presume that the higher
the EBR, the bigger the microembolus [38].

3. Results

In this part, we present the results of the micro-
embolus detections during the training and testing
phases. First, we determine the best training phase
settings. Second, we compare the results obtained
in the testing phase from the new 2D-adaptive de-
tector and from the results of the standard detector,
to evaluate the performance of this new 2D-adaptive
detector.

The training phase allowed us to set the thresh-
olds by finding the best compromise between both

the false alarm rate FAR and detection rate DR.
Fig. 6 shows the detection rates as a function of
the false alarm rates obtained from several selected
threshold values for the standard detector (Fig. 6b)
and the 2D-adaptive detector (Fig. 6a). The ROC
curve of the new detector is closest to the ideal point
(0% FAR and 100% DR). The highest performance
of new detector was obtained with the thresholds
for microembolus detection µEmb = 2.5 (eq. 7) and
for artefact rejection µArt = 5 (eq. 8). It is three
times higher (dadapt/dstand = 56.1/18.9) than the
best performance obtained for the standard detec-
tor with µEmb,stand = 5. This result is confirmed
by the area under the ROC curve (AUC), which is
3.6 times closer to the ideal AUC (comparison of
the white areas in Fig. 6: (100−58.8)/(100−88.6))
in comparison with that of the standard detector.
Note that the AUC has to tend to 100% for optimal
detection.

In Fig. 7, we reported the detection rate and the
false alarm rate during the training and the testing
phases obtained with the best thresholds shown in
Fig. 6. As an illustration, we showed these rates
for the standard method for its training and test-
ing phases. Moreover, the rate of invalid cardiac
cycles correctly rejected (for artefact and strong ar-
rhythmia) was compared to the rate of non-rejected
invalid cardiac cycles.

The detection rate increased and the false alarm
rate decreased with the 2D-adaptive method in
comparison to the standard method. First, be-
tween the training and the testing phases, the per-
formances were very close, because our dataset had
to be homogeneous. Second, the detection rate was
increased by 22% (83% − 61%) in comparison to
the standard method. Moreover, the false alarm
rate was reduced by 28% (45% − 17%). However,
for the standard detector, note that artefacts were
manually excluded. The comparison remains rela-
tive, due to the addition of the artefact rejection
method. Here, the false alarm rate of the standard
method can be considered less penalised than that
of our proposed method, since the performance of
manual rejection is better than that of the proposed
rejection method.

Finally, Fig. 7 shows that the time boundaries of
24% (23+1) cardiac cycles were impossible to assess.
Therefore, they should be rejected. However, only
23% of cardiac cycles were correctly rejected. The
time boundaries of only 1% cardiac cycles were not
correctly assessed and hence not rejected. These
errors increased the false alarm rate by 3% only.
Note also that, among these 24% of cardiac cycles
highly corrupted by artefacts, microemboli are rare
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Figure 6: ROC curves of the 2D-adaptive detector (a) and the standard detector (b) during the testing phase: detection
rates as a function of false alarm rates obtained from several thresholds of microembolus detection µEmb (eq. 7) and of
artefact rejection µArt (eq. 8). Note that the ideal point is for 0% FAR and 100% DR.
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and undetectable, even manually, because drown in
artefacts.

As an illustration, in Fig. 8, the histogram of
the rate of microemboli detected (i.e. the ratio
between the number of microemboli for an EBR
and the total number of microemboli detected by
the gold standard) is reported as a function of the
embolus-to-blood ratio (EBR), by the 2D-adaptive
method (Fig. 8a), by the standard method (Fig.
8b), and by the gold standard (Fig. 8c) along with
those that are undetected (Fig. 8d):

• 61% of microemboli in our database had an
EBR higher than 24 dB. These microemboli
were detected by both the 2D-adaptive method
and standard method;

• 38% of microemboli in our database had an
EBR between 15 and 24 dB. They could be de-
tected only with the 2D-adaptive method, even
though 40% of microemboli with an EBR be-
low 19 were still undetectable;

• 1% of microemboli in our database had an EBR
lower than 15 dB and were undetectable.

The new method was more efficient, because it de-
tect more microemboli (88% vs. 61%), especially
those having smaller EBR. It may be more efficient
for microemboli with smaller sizes.

4. Discussions and Conclusion

The 2D-adaptive detector based on the time-
normalised sub-spectrogram analysis has been pro-
posed as a method to overcome limitations of stan-
dard energy detectors. This new detector allows
improving the performance of microembolus detec-
tion while reducing the false alarm rate. Moreover,
the new detector could detect microemboli weaker
than those detected by the standard method. These
performances were made possible by proposing the
2D-adaptive threshold in both time and frequency,
adjusted every five minutes and for every patient.
As long as the segmentation of the spectrogram is
possible, this 2D-adaptive time-frequency threshold
will be at the origin of detecting weaker microem-
boli. The segmentation of the spectrogram was
guaranteed by the pseudo-cyclostationarity prop-
erty and by the relatively rare microembolic events.
The cardiac cycle time boundaries were assessed.
Although a false alarm could occur due to artefacts
at the time boundaries of the cardiac cycle, its rate
was highly reduced. This showed that our detector

was effective. Therefore, the analysis of long acqui-
sitions could be possible, because the new detector
integrates an artefact rejection. Nevertheless, since
the new detector was designed to take into account
the features of mono-gated Holter TCD, the arte-
fact rejection proposed here is valid only if the blood
flow is forward as in the case of our database with
carotid stenosis. As soon as this assumption is in-
valid, e.g. by aliasing which can be generating by
intracranial stenosis, the artefact rejection method
should be changed (manual or automatic) and the
microembolus detection in the forward flow should
be extended to backward flow.

No hypothesis about statistical distribution of
data was required, due to threshold settings be-
ing based on percentile. However, the settings of
the detection had to be optimised during a training
phase. Note that, as for all detection methods based
on a threshold set by a parameter, the gain of per-
formances did not depend only on the method (e.g
segmentation step), but also on data from which the
threshold is computed. For instance, inter and intra
variations between patients or variations in signa-
tures of microemboli must affect the threshold; i.e.

in this study, the Doppler signals used in the train-
ing phase was done randomly.

Finally, the method has been designed for offline
detection meaning that the computational cost is
not an issue, and so it seems to be particularly
adapted on long Doppler signal acquired with a
mono-gated Holter TCD.

The long duration of acquisition would increase
the number of occurrences and thus increase the di-
versity of microembolic signatures (weak and high
EBR). The analysis of these long duration acquisi-
tions may provide more realistic information closer
to the living conditions of patients to improve the
diagnostic.
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Figure A.9: Detailed flow chart diagram of microembolus detection.
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