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ABSTRACT

This study proposes a method for the cross-calibration of tide gauges. Based

on the combination of at least three co-located sea level time series, it takes

advantage of the Least-Squares Variance Component Estimation method to

assess both sea-level biases and uncertainties in real conditions. The method

was applied to a multi-instrument experiment carried out on Aix island,

France, in 2016. Six tide gauges were deployed to carry out simultaneous

sea level recordings for 11 hours. The best results were obtained with an elec-

trical contact probe, which reaches a 3-millimeter uncertainty. The method

allows assessing both the biases and the precision – i.e., the full accuracy – for

each instrument. The results obtained with the proposed combination method

have been compared to that of a buddy-checking method. It showed that the

combination of all time series also provides more precise bias estimates.
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1. Introduction30

Tide gauges aim at measuring the vertical distance between the sea level and a reference level31

(or datum). Historically, tide gauges were first used for tide prediction and navigation (Cartwright32

2000); today, their applications have been extended (Pugh and Woodworth 2014). Clustered33

into networks of continuously operating stations, they are the key components of storm surge or34

tsunami warning systems and climate-related monitoring programs, such as the Global Sea Level35

Observing System (GLOSS) (IOC et al. 2012).36

A wide range of distance meter technologies can serve to implement a tide gauge, as long as it37

can resolve both sea level and datum along the vertical. The datum of a sea level station is a local38

and conventional reference level, independent from any instrument. It enables the construction39

of long time series with successive or overlapping tide gauges. The datum is defined through a40

network of benchmarks grounded around the sea level station, some of them can be benchmarks41

from leveling networks (IOC 1985; Pugh and Woodworth 2014). Thus, a preliminary step in field42

calibrations consists of tying the reference gauge to the station datum or controlling whether it is43

properly tied.44

The simplest and oldest types of tide gauge are graduated poles or tide poles placed against a45

vertical structure at the coast (Cartwright 2000). Tide poles requiring human-made measurements46

are still in-use, along with electric tape probes for on-site field calibration of more elaborated47

self-recording tide gauges. Since 1985, the manuals of the Intergovernmental Oceanographic48

Commission (IOC) have covered the basic principles of the main types of tide gauges in use49

across the world, ranging from mechanical float gauges (IOC 1985) to radar technologies (IOC50

et al. 2016), including pressure and acoustic gauges (IOC et al. 2002, 2006).51
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Over the past decade, radar-based technologies appeared as the preferred ones (IOC et al. 2016).52

However, new technologies are emerging, based on Global Navigation Satellite System (GNSS)53

buoys (André et al. 2013), GNSS reflectometry (GNSS-R) (Larson et al. 2017), or laser distance54

measurement (MacAulay et al. 2008). A tide gauge complying with GLOSS standards should be55

capable of measuring instantaneous sea level with an accuracy better than 1 cm, in all conditions56

of tide, waves, currents and weather (IOC et al. 2016). As laboratory testings do not ensure those57

performances, the practice has evolved towards field experiments (Mı́guez Martı́n et al. 2008b,a;58

Park et al. 2014; Pérez et al. 2014).59

When dealing with accuracy requirements, it is useful to distinguish random and systematic60

errors. The random error is the error component that, in replicate measurements, varies in an61

unpredictable manner, whereas the systematic error is the error component that, in replicate mea-62

surements, changes in a predictable manner (BIPM et al. 2008).63

Given the crucial role of tide gauges in coastal sea level observation, the increasing number of64

available technologies and the evolution of accuracy requirements, this study aims at providing a65

cross-calibration method that quantifies both systematic errors – the biases – and random errors –66

the uncertainties – of sea level time series.67

Determining the errors of given time series can be achieved through three approaches : (a) the68

observed time series can be compared with that from a more precise instrument, (b) it can be69

compared with theory in cases where the observed phenomena can be very precisely modeled, and70

(c) observed time series of three or more instruments can be analyzed to obtain enough information71

to determine the uncertainty of each.72

The approach (a), also known as buddy-checking, is routinely used during calibration campaigns73

where a pair of tide gauges are compared over a tidal cycle, sometimes with the help of the so-74

called Van de Casteele diagram (Lennon 1968; IOC 1985). During the last decade, several studies75
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have investigated the performances of radar gauges, pressures gauges, GNSS buoys or GNSS76

reflectometry based on this approach (Watson et al. 2008; Mı́guez Martı́n et al. 2008a, 2012; Pérez77

et al. 2014; Larson et al. 2017; Pytharouli et al. 2018). Even if this approach can provide bias78

estimates and general accuracy metrics, such as mean error or root mean square error (RMSE), it79

cannot rigorously separate the uncertainties of each gauge.80

Approach (b) would correspond to removing a tide model from the measured sea level time81

series. But, because of the complexity of meteorological and ocean dynamics involved in sea level82

fluctuations, these models cannot help to assess the performance of tide gauges at the targeted83

centimeter level.84

Approach (c) is classically used in metrology (Pálinkáš et al. 2017) and has often been used85

in geodesy through the three-cornered-hat (TCH) estimation method (Gray and Allan 1974), for86

example, to determine the stability of reference station positions (Feissel-Vernier et al. 2007; Ab-87

bondanza et al. 2015) or the precision of space gravity model (de Viron et al. 2008; Valty et al.88

2013). The TCH is not the only possible implementation of the approach (c): the more gen-89

eral framework of Variance Component Estimation (VCE) can similarly address this problem, as90

shown by the theoretical example 4.10 of Amiri-Simkooei (2007). The TCH and VCE examples91

can separate the uncertainty of each gauge, but assume the absence of sea level biases.92

To take advantage of both approaches (a) and (c), this study proposes a combination model93

that extends the use of approach (c) to the analysis of potentially biased time series. Obtaining94

the tide gauge uncertainties in addition to the sea level bias parameters is made possible by the95

use the Least-Squares Variance Component Estimation (LS-VCE) method (Teunissen and Amiri-96

Simkooei 2008). As the model can handle an arbitrary number of time series, it is suited for97

multi-instrument experiments.98
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The method is applied to an on-site field calibration experiment carried out at Aix Island, mid-99

Atlantic coast of France, where a permanent radar gauge has operated for several years (Gouriou100

et al. 2013), and various types of tide gauges (including some emerging technologies) were tem-101

porarily deployed during the experiment within meters from each other over a tidal cycle in 2016.102

2. The Aix Island experiment103

This experiment was carried out on June 7, 2016, by a team of scientists (see Acknowledgment104

section). They measured one semi-diurnal spring tidal cycle with an amplitude of 5.22 m using 6105

different instruments.106

Tide gauges recorded the sea level for 11 hours. Each tide gauge record is defined as the average107

over a 2 minutes acquisition window every 10 minutes.108

The 6 tide gauges were a permanent radar gauge (RADAR), a permanent tide pole (POLE), an109

electrical contact probe (PROBE), two GNSS buoys (BUOY1 and BUOY2) and a laser distance-110

meter (LASER). RADAR, POLE, PROBE, and LASER are shown in Figure 1 and the two GNSS111

buoys in Figure 2. All tide gauges and the reference GNSS station were referenced to the station112

datum by leveling.113

The radar gauge (RADAR) is the primary tide gauge of the permanent sea level observatory114

of the Aix Island. This station contributes to the French sea level observation network (RONIM)115

operated by the French hydrographic service (SHOM). It is a Krohne Optiwave 7300C gauge that116

measures the air range between the transmitter fixed above the sea surface and the sea surface with117

a sampling frequency of 1 Hz using a frequency modulated continuous wave technology (IOC118

et al. 2016).119
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The tide pole (POLE) is a permanent instrument made of a plastic staff with graduations every120

10 centimeters fixed vertically by a stainless steel structure (Figure 1). The operator estimates the121

sea level visually over the standard pre-defined 2 minutes acquisition period.122

The electrical contact probe (PROBE) is a measuring tape with millimeter graduations ended by123

an electrical device that emits a short signal when detecting the seawater surface. We used a Schill124

probe installed within a stilling pipe anchored along the tide pole (Figure 1). A sea level record125

from PROBE is an average over the 2 minutes of human-made readings every 15 seconds. Electric126

probes are typically used as the reference gauge in tide gauge calibrations, so was it in our study.127

The stilling pipe was too short to allow measurements at the lowest sea levels, which resulted in a128

gap between 10:00 and 12:10 A.M.129

The first GNSS buoy (BUOY1), designed at the Institut de Physique du Globe de Paris (IPGP),130

is a GNSS antenna installed above a lifebuoy and protected from the water by a radome (Figure 2).131

The second one (BUOY2), designed by the Division Technique de l’Institut National des Sciences132

de l’Univers (DT INSU), is a GNSS antenna housed in the center of a tripod floating structure133

(Figure 2). The receivers and batteries of the buoys are located inside a metallic cylinder under134

each antenna. These two buoys (BUOY1 and BUOY2) were already used in previous campaigns135

(André et al. 2013). The heights between their phase centers and the water surface are known at136

the sub-centimeter level thanks to previous testings carried out under calm conditions.137

The buoy vertical positions, i.e., ellipsoidal heights, from GPS were assessed by post-processing,138

using a double-differences strategy with a baseline of about 300 m from the ILDX GNSS reference139

station. Only satellites with elevation angles above 15 degrees were used, with a combination of140

both L1 and L2 frequencies. The centimeter level accuracy was achieved, using full ambiguity141

resolution with the RTKlib software suite with RTKPOST v2.4.2 program (Takasu 2013).142
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LASER is a reflector-free distance-meter Leica DISTO A6. This type of instrument is built for143

solid surface ranging but showed fair to good performances during this experiment. This instru-144

ment uses an optical laser beam with a wavelength of 635 nm. Each LASER record corresponds145

to an average of measurements done every 4 seconds.146

All instruments time series are presented in Figure 3. Due to data transmission loss and GNSS147

recording issues during the experiment, some records from the LASER, BUOY1, and BUOY2148

instruments are missing.149

3. Calibration methods150

This study proposes a combination method to go beyond the classical difference methods, al-151

lowing a better determination of the biases and their precision. For comparison, we processed the152

time series using both the combination method and the classical difference method used by the153

hydrography community, the so-called Van de Casteele (VdC) diagram (Lennon 1968).154

a. Sea level error model155

Due to the short recording period, this study only considers the influence of the three most156

common types of range measurement biases on the resulting sea level time-series, namely: the157

height references, scale, and clock synchronization errors (Watson et al. 2008; Mı́guez Martı́n158

et al. 2008b).159

While converting original range measurements into sea level time series, range biases turn into160

sea level biases that must be quantified and removed. This study proposes a linear sea level bias161

model, which expresses the sea level bias as a function of the measured sea level itself. More162

precisely, the model links the i-th sea level time series yi(t) to the real sea level h(t) through163
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yi(t) = h(t− τi)+βi× yi(t)+αi + ei(t), (1)

where βi× yi(t)+αi is the linear sea level bias model, and ei(t) is a random error modeled by a164

centered normal distribution of unknown variance σ2
i .165

In equation (1), αi corresponds to the intercept: a constant term representing the sea level bias166

when yi(t) = 0. It may result from a height reference error, but also from the influence of a scale167

error, as mentioned by (Pérez et al. 2014). βi corresponds to the scale error: a multiplying factor168

that causes a sea level bias proportional to the tidal range. It can result from both instrument or169

installation defaults. Finally, τi is the time delay between different tide gauges: it results from170

clock synchronization issues.171

The measured sea-level yi(t) depends non-linearly on the time delay τi, which makes linear172

determinations, like the one proposed in this paper, impossible. However, it can be corrected be-173

fore the other bias estimations, e.g., by computing the delay that maximizes the cross-correlation174

between a tested signal and a reference signal. Obtaining τi by cross-correlation avoids any as-175

sumptions on the periodicity of the measured signal. In our case, the time delay estimation showed176

that the best correlation was achieved with no delays added i.e., τi = 0,∀i.177

The sea level bias model directly quantifies the amplitude of the bias associated with a measure-178

ment yi(t). The correction of the sea level time series can be done after the calibration experiment179

by subtracting the estimated bias model from the measurements. This linear model can be adapted180

to other types of biases. For example, longer time series analysis (several days, months, or years)181

may require to consider time-dependent biases such as trends and jumps (Pytharouli et al. 2018).182
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b. Difference-based calibration methods (DIFF)183

Difference-based methods (DIFF) consist in analyzing the differences ∆yi(t) = yi(t)− yre f (t)184

between the time series of a tested instrument yi(t) = h(t)+ βi× yi(t)+αi + ei(t) and that of a185

reference instrument yre f (t) = h(t)+ ere f (t).186

A commonly used tool for DIFF methods is the Van de Casteele (VdC) diagram, which rep-187

resents the sea level difference ∆yi(t) as a function of yi(t). Initially developed in 1962, for me-188

chanical tide gauges (IOC 1985), the VdC diagram is nonetheless still applicable for modern sea189

level measurement technologies (Mı́guez Martı́n et al. 2008b). The most attractive feature of this190

diagram is a fast, visual, detection of possible biases with only one tidal cycle. Figure 4 shows the191

sea level error patterns resulting from the most common range measurement errors IOC (1985).192

In the presence of the linear biases mentioned before, ∆yi(t) follows193

∆yi(t) = βi× yi(t)+αi + ei(t)− ere f (t). (2)

In other words, estimates of the sea level bias parameters αi and βi of equation (1) can be194

obtained by linear regression of ∆yi(t) on yi(t), which corresponds to fitting a line on a VdC195

diagram.196

Assuming that both random errors ei(t) and ere f (t) are uncorrelated, the term ei(t)− ere f (t) in197

equation (2) follows a centered normal distribution with an unknown variance σ2
i +σ2

re f . The198

merge of the random errors ei(t) and ere f (t) in the differences ∆yi(t) imply that, without assump-199

tion, DIFF methods can only assess the variance σ2
i +σ2

re f , which is just an upper bound to the200

tested gauge variance σ2
i (Lentz 1993; Mı́guez Martı́n et al. 2008b; Pytharouli et al. 2018). To201

separate σ2
i and σ2

re f , a piece of additional information is needed: a third time series.202
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c. The combination-based calibration method (COMB)203

When more than 2 time-series are available, it becomes possible to assess the uncertainties and204

biases from each tide gauge by estimating a weighted combination of all the time series, using205

a variance component estimation method. In the following, the acronym COMB refers to the206

combination method.207

1) FUNCTIONAL MODEL OF THE OBSERVATIONS208

Noting yi the i-th gauge k×1 observation vector (or time series), the full pk×1 stacked vector209

y, containing all observations from the p instruments, can be written as210

y =

[
yT

1 . . . yT
i . . . yT

p

]T

.

The functional model links the expectation E(.) of the pk×1 observations vector y to q unknown211

parameters by using a model of observation equations. When there is no theoretical model for the212

observed signal, we can estimate a combined time series h, from the k× 1 vector of the p time213

series written as214

h =

[
h1 . . . h j . . . hk

]T

.

In the case of unbiased gauges, the functional model would be E(yi) = h for every gauge. In215

the case of the cross-calibration of possibly biased time series, the functional model should also216

account for the biases. The model of observation equations of the i-th gauge can then be written217

as218

E(yi) =


h, if the i-th gauge is unbiased

h+βi ·yi +αi, otherwise

. (3)
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Because biases are always defined with respect to a conventional reference, at least one time se-219

ries must be considered as conventionally unbiased to avoid an ill-posed equation system. Hence,220

in the following, the first time series y1 will be considered as conventionally unbiased.221

The linear parametric functional model can be expressed using matrix algebra:222

E(y) =AAAx =

[
AhAhAh AαAαAα AβAβAβ

]


h

ααα

βββ

 . (4)

with h = [h1 · · ·hk]
T , the combined solution vector, ααα = [α2 · · ·αp]

T , the intercepts parameter vec-223

tor, and βββ = [β2 · · ·βp]
T , the scale error parameter vector.224

The combination design pk× k matrix AhAhAh corresponds to p stacked identity matrices IIIk×k such225

as226

AhAhAh =


IIIk×k

...

IIIk×k

 ,

and both the intercept design pk×(p−1) matrix AαAαAα and the scale error design pk×(p−1) matrix227

AβAβAβ are constituted with block non-zeros vectors such as AαAαAα reads228

AαAαAα =



0k×1 · · · · · · 0k×1

1k×1
. . . ...

0k×1
. . . . . . ...

... . . . . . . 0k×1

0k×1 · · · 0k×1 1k×1


,
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and AβAβAβ follows229

AβAβAβ =



0k×1 · · · · · · 0k×1

y2
. . . ...

0k×1
. . . . . . ...

... . . . . . . 0k×1

0k×1 · · · 0k×1 yp


,

where 0k×1, 1k×1 refer to k×1 vectors respectively filled with zeros and ones.230

2) STOCHASTIC MODEL FOR THE OBSERVATIONS231

The stochastic model describes the variance var(.) of the observation vector y. Considering232

that all measurements are statistically independent and that the uncertainty of the i-th instrument233

follows a multivariate normal distribution with a precision σ2
i , the pk× pk co-variance matrix of234

the observations var(y) =QQQy reads :235

QQQy =



σ2
1 IIIk×k 000k×k · · · · · · 000k×k

000k×k
. . . . . . ...

... . . . σ2
i IIIk×k

. . . ...

... . . . . . . 000k×k

000k×k · · · · · · 000k×k σ2
pIIIk×k


, (5)

where IIIk×k and 000k×k are respectively the k× k identity and null matrices.236

To use the LS-VCE method, QQQy needs to be expressed as a linear combination of cofactor ma-237

trices QQQi such as238

QQQy = σ
2
1 ·QQQ1 + . . .+σ

2
p ·QQQp =

p

∑
i=1

σ
2
i ·QQQi, (6)
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where the σ2
i are also referred to as variance components, and correspond to the instrument239

uncertainties. The QQQi are known pk× pk linearly independent cofactor matrices such as240

QQQi =



000k×k · · · · · · 000k×k

... . . . ...

000k×k

IIIk×k

000k×k

... . . . ...

000k×k · · · · · · 000k×k



.

3) LEAST-SQUARES ESTIMATION241

According to the least-squares estimation theory, for normally distributed observations, a min-242

imum variance estimation of the q× 1 parameter vector x can be achieved by solving a normal243

equation system NNNx = c where NNN is the normal q× q matrix defined by NNN = AAATQQQ−1
y AAA and c is a244

q×1 vector defined by c = AAATQQQ−1
y y (Caspary et al. 1987; Teunissen 2000). Hence, the unbiased245

and minimum variance estimator of the functional parameter x̂ is given by246

x̂ =NNN−1c = (AAATQQQ−1
y AAA)−1AAATQQQ−1

y y, (7)

and its co-variance matrix QQQx̂ follows247

QQQx̂ =NNN−1 = (AAATQQQ−1
y AAA)−1. (8)

In the case of a lack of knowledge on the on-site variance of the tide gauges, i.e., on QQQy, a248

variance component estimation method can be used to assess the uncertainty of each gauge. As249
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the minimum variance property of least-squares estimates requires a realistic weighting between250

sea level time series, the use of a variance component estimation method also allows for more251

realistic estimates of the parameter vector x̂ and its co-variance matrix QQQx̂.252

4) LEAST-SQUARES VARIANCE COMPONENT ESTIMATION253

A review of most variance components estimation methods can be found in Fotopoulos (2003)254

and Amiri-Simkooei (2007). Here, we consider the application of the Least-Squares-Variance255

Components Estimation (LS-VCE), which is based on the same least-squares estimation princi-256

ples used in sub-section 3. LS-VCE was first introduced in 1988 by Teunissen (1988) and further257

developed by Amiri-Simkooei (2007) and Teunissen and Amiri-Simkooei (2008). Under the hy-258

pothesis of the multivariate normal distribution considered in section 2, the method provides an259

unbiased and minimum variance estimator of the variance components. The method also allows260

for a direct derivation of the uncertainty of each variance component estimate.261

The LS-VCE consists in using the redundancy of information of a system to infer the variance of262

the observations. In the case of a linear parametric functional model, one can compute a residual263

pk×1 vector ê such as264

ê = y−AAAx̂ =PPP⊥AAAy, (9)

where PPP⊥AAA is a projector matrix defined by265

PPP⊥AAA = III−AAA(AAATQQQ−1
y AAA)−1AAATQQQ−1

y . (10)

The residual vector ê gives pieces of information about observation quality, potential model266

miss-specifications, and the presence of outliers. By assuming the absence of outliers and func-267
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tional model miss-specifications, the LS-VCE provides an estimator of the observation precisions268

using ê and PPP⊥AAA .269

As for the standard least-squares estimation, the LS-VCE method estimates the unknown vari-270

ance components p×1 vector σ̂2σ̂2
σ̂2 =

[
σ̂2

1 · · · σ̂2
p

]T
by solving a normal equations system:271

σ̂
2

σ̂
2

σ̂
2 = N̄̄N̄N−1c̄ =



n̄11 · · · · · · n̄1p

... . . . ...

n̄i j

... . . . ...

n̄p1 · · · · · · n̄pp



−1

c̄1

...

c̄i

...

c̄p


, (11)

where the normal matrix N̄̄N̄N and the vector c̄ are specific to the stochastic model, and thus different272

from the normal matrix NNN and vector c in equation (7).273

For the stochastic model defined in sub-section 2, for which all variance components are to be274

estimated, the elements n̄i j and c̄i of N̄̄N̄N and c̄ are defined by (Amiri-Simkooei 2007) :275

n̄i j =
1
2

tr(QQQiQQQ
−1
y PPP⊥AAAQQQ jQQQ

−1
y PPP⊥AAA) (12)

c̄i =
1
2
(êTQQQ−1

y QQQiQQQ
−1
y ê) (13)

where tr(.) stands for the trace operator.276

Note that σ̂2σ̂2
σ̂2 is involved in the definition of n̄i j and c̄i through QQQ−1

y . Hence, equation (11)277

expresses σ̂2σ̂2
σ̂2 as a function of QQQy, which is already a function of σ̂2σ̂2

σ̂2 in equation (6). Such system278

of equations, where the equations for the unknowns include functions of the unknowns, can be279

numerically solved using an iterative procedure starting with an initial guess on the unknowns: the280

prior variance component vector σ2
0σ2
0σ2
0 .281
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The first iteration consists in using the prior vector σ2
0σ2
0σ2
0 and cofactor matrices QQQi to compute QQQy282

and then PPP⊥AAA , which are necessary to build the normal equations system (11). Solving this normal283

equations system (11) leads to the estimation of an updated variance component vector σ2
1σ2
1σ2
1 . The284

next n iterations consist in successively updating the variance component vector σ̂2
nσ̂2
nσ̂2
n by solving285

the normal equations system (11) built using the previously estimated variance component vector286

σ̂2
n−1σ̂2
n−1σ̂2
n−1. The iterations stop when the difference between two estimated variance component vectors287

becomes negligible. To obtain more details on the implementation of the LS-VCE method, a288

symbolic algorithm can be found in Figure 4.2 of Amiri-Simkooei (2007).289

When encountering a convergence issue with an arbitrary prior variance component vector, using290

more realistic prior tide gauge uncertainties may be necessary. One could, for example, use the291

information provided by the tide gauge manufacturers. In the case of convergence, changes in292

prior variance components should not change the final LS-VCE results.293

Once convergence is achieved, an insight into the quality the variance component estimates σ̂2σ̂2
σ̂2

294

– the co-variance matrix of the variance component estimates – can be obtained by inverting the295

normal matrix N̄̄N̄N:296

Qσ̂2Qσ̂2Qσ̂2 = N̄−1N̄−1N̄−1, (14)

The i-th diagonal element of Qσ̂2Qσ̂2Qσ̂2 corresponds to the variance of the i-th variance component σ2
σ̂2

i
.297

As for QQQx̂, the uncertainties of variance component estimates depend on the system redundancy298

and the precision of the observations.299

To get interpretable variance component estimates, one can change variance components σ̂2
i into300

standard deviation components σ̂i =
√

σ̂2
i . To obtain variance component uncertainties with inter-301

pretable units, one can follow Amiri-Simkooei et al. (2009), and approximate the new variance of302
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the standard deviation component σ2
σ̂i

by applying variance propagation law through the linearized303

square root function:304

σ
2
σ̂i
≈ σ

2
σ̂2

i
· ( 1

2
√

σ̂2
i

)2, (15)

The more interpretable standard deviation of the standard deviation component σσ̂i =
√

σ2
σ̂i

can305

then be derived by taking the square root of both sides of equation (15), which gives:306

σσ̂i ≈
σ

σ̂2
i

2σ̂i
, (16)

where σ
σ̂2

i
is the standard deviation of the i-th variance component σ

σ̂2
i
=
√

σ2
σ̂2

i
.307

Hence, one can express the uncertainty estimate of the i-th tide gauge as σ̂i±σσ̂i (cm).308

4. Results309

To compare COMB and DIFF methods on a similar basis, the PROBE time series has been310

considered conventionally unbiased for both methods.311

To remove the influence of potential outliers, residuals time series were computed using equation312

(9) before the actual processing of both methods. The functional model (4) and the co-variance313

matrix QQQy = III were considered in equation (10). Observations that showed residuals above five314

times the median absolute deviation of the gauge residual time series were removed from the315

data-set. In practice, it concerned less than 2 observations by time series.316

a. Calibration with the combination (COMB) method317

Before the assessment of the unknown bias parameters and the combined solution, a realistic co-318

variance matrix QQQy was first computed using the LS-VCE method. An arbitrary standard deviation319
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of 0.8 cm for all time series was used to build the prior variance component vector. Starting320

with σ2
0σ2
0σ2
0 , the iterative procedure, summarized in section 4 and fully described in (Amiri-Simkooei321

2007), provided the final variance components vector estimate σ̂2σ̂2
σ̂2 and its co-variance matrix Qσ̂2Qσ̂2Qσ̂2 .322

As the elements of both σ̂2σ̂2
σ̂2 and Qσ̂2Qσ̂2Qσ̂2 are not directly interpretable, the equation (16) was used to323

express each tide gauge uncertainty estimate as σ̂i±σσ̂i (cm).324

Realistic bias parameters and combined solution were estimated by solving the functional model325

(4) using the variance component estimates: σ̂2σ̂2
σ̂2 was substituted in equations (7) and (8) through326

equation (6), which led to the estimation of the unknown vector x̂ and its co-variance matrix QQQx̂.327

Both estimated sea level bias parameters and uncertainties for 10 min records are given, in cen-328

timeter, in Table 1. The electrical PROBE is found to be the most precise gauge in this experiment,329

with an uncertainty of 0.3 cm. The least precise tide gauges are the tide pole POLE (1.23 cm) and330

the BUOY1 (1.25 cm). BUOY1 is nearly two times less precise than BUOY2 (0.74 cm).331

In Table 1, 4 time series – RADAR, LASER, BUOY1, and BUOY2 – show intercept estimates332

α̂i significant at the 3σα̂i – or 99% – confidence level. Their amplitudes range from -1.87 cm333

(RADAR) to -4.30 cm (BUOY1). For the scale errors β̂i, only RADAR and POLE show estimates334

above 3σ
β̂i

, with about 0.5 cm m−1 and -0.3 cm m−1 respectively.335

Residual time series of each tide gauge are presented in Figure 5. BUOY1 exhibits a mean shift336

of about -2 cm between 07:20 and 09:40. This artifact appears in the residual time series because337

it cannot result from the combination model. It means that the other tide gauges did not observe338

such a shift, otherwise, it would have been modeled by the combined solution. The presence of339

this artifact in the BUOY1’s residual time series lowers its precision in Table 1. For the other340

gauges, no clear pattern appears in the residual time series, which suggests that their biases are341

correctly modeled.342
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The combined solution ĥ and its uncertainty σĥ are presented in Figure 6. Each missing value in343

one of the time series increases the uncertainty of the combined solution to an extent proportional344

to its precision. The available measurements are displayed for each tide gauge, in the bottom345

of Figure 6. When the most precise tide gauge (PROBE) is not recording, between 10:00 and346

12:10, the uncertainty σĥ of the combined solution increases by almost a factor of two. Despite347

the missing values of PROBE, the combined solution is estimated for the entire experiment period348

because all available observations are taken into account.349

To investigate whether PROBE is found to be the most precise gauge because it is the conven-350

tionally unbiased gauge, the calibration has been reprocessed by instead considering BUOY1 as351

conventionally unbiased. The alternative calibration results are presented in Table 2. The choice352

of another conventionally unbiased gauge does not change uncertainty estimates but changes bias353

parameter estimates and their uncertainties. Bias parameters are the most affected because because354

they intrinsically depend on the definition of a convention. As BUOY1 does not exhibit any scale355

error in Table 1, the changes in scale error estimates in Table 2 are not dramatic. The sea level356

time series uncertainty estimates are identical in both alternatives because all biases are considered357

in each case. An alternative functional model ignoring an existing bias would not have provided358

identical results.359

b. Comparison with the difference (DIFF) method360

Using PROBE as the reference tide gauge, we plotted the VdC diagram for RADAR, POLE,361

LASER, BUOY1, and BUOY2. A linear regression on each diagram provided intercept and scale362

error estimates for each gauge. The DIFF method estimates are presented in Table 3. The differ-363

ences with the COMB method estimates are summarized in Table 4.364
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The deviations between the COMB and DIFF methods reach 0.75 cm for the intercepts (BUOY1)365

and 0.15 cm m−1 for the scale errors (BUOY1). In Table 5, the changes in bias uncertainty between366

methods are expressed in terms of percentage of bias uncertainty reduction. The DIFF method367

provides slightly different results from the COMB method because it only considers a smaller368

subset of the data-set for each pair of gauge and because it does not take into account the precision369

of each time series. In this study, the DIFF method can only take into account the overlapping370

observation PROBE and the tested gauges. Given that PROBE has no observation between 10:00371

and 12:10, the DIFF method ignores several observations, which deteriorates the precision of bias372

estimates. As a consequence, Table 5 shows that the COMB method provides 30% to 55% smaller373

uncertainties than the DIFF method for bias parameter estimates.374

The presence of the scale error induces a height-dependency of both sea level bias models and375

their confidence intervals. To illustrate this, Figure 7 displays the estimated sea level bias models376

and their uncertainties, obtained with both methods, on the VdC diagram for BUOY1, which is the377

time series with the most substantial differences between the two models. At the lowest tide, sea378

level bias models obtained with COMB and DIFF method differs of about 3 millimeters. Besides,379

both sea level bias models are more precise around the mean tide than near the tidal extrema. As380

a consequence, the combined solution of the COMB method is also less precise near the tidal381

extrema, which results in the few millimeter changes for σĥ that also appears in Figure 6 at lowest382

tide: between 10:00 and 12:10.383

A representation of all bias estimates obtained with both DIFF and COMB methods is given in384

Figure 8. Bias estimates are shown as points in the bias parameter space - intercept vs scale error.385

Their uncertainties appear as 1σ confidence ellipses. The correlations between bias parameters,386

always around -0.9, induce an inclination of the ellipses. As the cause of the correlation is the same387

– same signal and same bias model – for every time series, so are the inclinations in Figure 8. The388
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figure shows that the COMB method globally agrees with the DIFF method for bias detection389

while providing smaller confidence ellipses and thus, more precise bias parameter estimates.390

5. Discussion391

a. Performance of the tide gauges392

The PROBE time series is twice more precise than that of the next most precise tide gauge. Its393

good performance results probably from the use of the stilling pipe, which stabilizes the water394

level and allows accurate readings on the measuring tape. This result comforts the use of electrical395

probes as references in tide gauge calibration campaigns. The results also show that RADAR,396

LASER, and BUOY2 uncertainty estimates are below the centimeter level, which confirms that397

they could provide sea level records with the level of accuracy specified by the IOC with a confi-398

dence level of more than 67% if they were not affected by biases.399

Among the 6 tested gauges in this work, only two, of which one automatic gauge, present an400

uncertainty above 1 cm: POLE (1.23 cm) and BUOY1 (1.25 cm). The 1.23 cm uncertainty of401

POLE might result from the limitation of human eye reading on the 10 cm graduations. The402

lower performance of BUOY1 compared to BUOY2 is assigned to the presence of the artifact403

between 07:20 and 09:40. Considering its floating structure is less stable than the more recent404

model BUOY2, this artifact could be due to the buoy instability in the presence of currents during405

the ebb tide. BUOY2 did not measure when BUOY1 observed the artifact; one cannot exclude406

that the artifact is due to a miss-modeling of the GNSS data.407

b. Nature of the biases408

Separating instrumental and environmental parts of bias estimates is difficult, especially when409

the gauges are not fully co-located. We can nonetheless draw some hypotheses for bias attribution.410
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Usually, significant intercept estimates are caused by instrumental height errors. But in this411

experiment, other explanations are plausible for BUOY1, BUOY2, LASER, and RADAR.412

BUOY1 and BUOY2 show similar intercept estimates while being deployed a few tens of meters413

away from the ground-based instruments. Hence, changes in the dynamic topography due to414

currents likely impacted their intercept estimates Pérez et al. (2014). In that case, an environmental415

effects is detected, not instrumental biases.416

As LASER is not dedicated to water surface measurements, the intercept estimate is likely417

caused by a few centimeters penetration of the laser beam into the water. More appropriate laser418

systems have already been developed, using floating mirrors (MacAulay et al. 2008).419

For RADAR, the significant intercept estimate likely results from not an instrumental height420

error and the influence of the significant scale error.421

Theoretically, LASER, RADAR, and POLE could show scale error estimates in the case of range422

overestimation issues due to vertical alignment defaults. This is a plausible cause for RADAR and423

LASER. As the vertical alignment of POLE can be considered as reliable, the human-reading is424

the most likely source of its scale error.425

Even though the nature of significant bias parameters αi and βi could remain unclear, one can426

still obtain corrected sea level time series by subtracting the bias model βi× yi(t) + αi to the427

measured sea level yi(t).428

c. Improvement over difference based methods429

The proposed calibration method provides an unbiased and minimum variance estimate of the430

tide gauge uncertainties, their sea level biases, and the combined solution from all times series.431

The variance of all estimates, including tide gauge uncertainties, are also determined. Thus, the432

COMB method leads to a more complete tide gauge calibration than the DIFF method.433
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The application to the Aix Island experiment revealed that the proposed methodology also leads434

to more precise bias estimates. This improvement is attributed to the combination of all avail-435

able observations along with the realistic weighting between each gauge. The drastic precision436

improvement, from 30% to 55% on the uncertainty of the bias parameters, mostly shows that this437

method is more robust to the missing values of the most precise time series (PROBE), which is438

used as a reference to build the VdC diagrams.439

For comparison purposes, the study considers only one conventionally unbiased time series.440

However, the COMB method allows using several unbiased time series and partially unbiased441

time series at the same time, which is not possible with the DIFF method. Adding unbiased time442

series should further improve the results of the COMB method.443

6. Conclusion444

The present contribution proposes a method for the cross-calibration of tide gauges. Based on the445

combination of multiple co-located time series, it takes advantage of the Least-Squares Variance446

Component Estimation method to assess both instrumental biases and measurement uncertainties447

in real conditions. The method was applied to a multi-instrument experiment carried out at Aix448

Island in 2016. Six instruments were deployed and performed simultaneous sea level recordings449

for 11 hours, with a 10 minutes sampling.450

The electrical probe was found to be two to four times more precise than the other gauges.451

RADAR, LASER, and BUOY2 uncertainty estimates are below the centimeter level, which con-452

firms that, in those conditions, they could provide sea level records with the level of accuracy453

specified by the IOC if they were not affected by biases. We showed that, within our time series,454

significant bias parameters were found for all the tested gauges. Hence, this study shows that it is455

possible to assess both the biases and the precision – i.e. the full accuracy – for each gauge.456
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The results obtained with the combination method have been compared to that of a difference457

based method. It showed that the combination of all time series provides more precise bias esti-458

mates.459

Because this study is based on an 11 hours experiment, time-dependent biases and random460

errors have not been considered. Further studies using the COMB methods are thus necessary to461

investigate the time dependency of sea level bias parameters and tide gauge precisions.462
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TABLE 1. Tide gauge cross-calibration results obtained using the COMB method. PROBE scale error and

intercept are conventionally set to zero.

563

564

Gauges α̂i±σα̂i (cm) β̂i±σ
β̂i

(cm m−1) σ̂i±σσ̂i (cm)

RADAR -1.87 ± 0.30 0.52 ± 0.07 0.81 ± 0.08

PROBE . . 0.31 ± 0.10

POLE -0.13 ± 0.39 -0.32 ± 0.09 1.23 ± 0.12

BUOY1 -4.30 ± 0.41 0.00 ± 0.11 1.25 ± 0.14

LASER -3.42 ± 0.35 0.13 ± 0.08 0.90 ± 0.10

BUOY2 -3.53 ± 0.30 0.17 ± 0.07 0.74 ± 0.09
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TABLE 2. Alternative tide gauge cross-calibration results obtained using the COMB method and by defining

BUOY1 as the conventionally unbiased gauge. BUOY1 scale error and intercept are conventionally set to zero.

565

566

Gauges α̂i±σα̂i (cm) β̂i±σ
β̂i

(cm m−1) σ̂i±σσ̂i (cm)

RADAR 2.34 ± 0.42 0.55 ± 0.11 0.81 ± 0.08

PROBE 4.18 ± 0.42 0.03 ± 0.11 0.31 ± 0.10

POLE 4.07 ± 0.49 -0.29 ± 0.13 1.22 ± 0.12

BUOY1 . . 1.25 ± 0.14

LASER 0.72 ± 0.45 0.15 ± 0.12 0.90 ± 0.10

BUOY2 0.68 ± 0.42 0.19 ± 0.11 0.74 ± 0.09

33



TABLE 3. Tide gauge calibration results obtained using the DIFF method. PROBE is the reference gauge.

Gauges α̂i±σα̂i (cm) β̂i±σ
β̂i

(cm m−1)

RADAR -1.54 ± 0.47 0.42 ± 0.10

PROBE . .

POLE 0.09 ± 0.66 -0.36 ± 0.14

BUOY1 -5.05 ± 0.72 0.15 ± 0.18

LASER -3.07 ± 0.77 0.12 ± 0.17

BUOY2 -3.42 ± 0.47 0.18 ± 0.10
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TABLE 4. Difference between DIFF and COMB calibration results.

Gauges ∆α̂i (cm) ∆σα̂i (cm) ∆β̂i (cm m−1) ∆σ
β̂i

(cm m−1)

RADAR -0.33 -0.17 0.10 -0.03

PROBE . . . .

POLE -0.22 -0.27 0.04 -0.05

BUOY1 0.75 -0.31 -0.15 -0.07

LASER -0.35 -0.42 0.01 -0.09

BUOY2 -0.11 -0.17 -0.01 -0.03
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TABLE 5. Reduction of the standard deviations of the bias parameters obtained using the COMB method with

respect to the DIFF method.

567

568

Gauge ∆σα̂i (%) ∆σ
β̂i

(%)

RADAR -36 -30

PROBE . .

POLE -41 -36

BUOY1 -43 -39

LASER -55 -53

BUOY2 -36 -30
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FIG. 1. The four ground-based tide gauges: RADAR, POLE, PROBE and LASER.
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FIG. 2. The two GNSS buoys: BUOY1 and BUOY2.
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FIG. 3. Sea level time series yi recorded by all tide gauges.
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FIG. 4. Synthetic examples of Van de Casteele diagrams for the most common types of range measurement

errors: (a) random measurement errors only; (b) random measurement errors and a height reference error; (c)
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