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Abstract—We present ASGriDS, an asynchronous Smart Grid
simulation framework. ASGriDS is multi-domain, it simulta-
neously models the power network along with its physical
loads/generators, controllers, and communication infrastructure.
ASGriDS provides a unified workflow in a pythonic environment,
to describe, run and control complex SmartGrid deployment
scenarios. ASGriDS is an event-driven simulator that can run
in either real-time or accelerated real-time. As it is modular
and its components interact asynchronously, it can run either
locally on a distributed infrastructure, also in hardware-in-the-
loop setups, and on top of emulated/physical communication
links. In this paper, we present the design of our simulator
and we demonstrate its use with a generation control problem
on a low voltage network. We use ASGriDS to deploy a real-
time controller based on optimal power flow, on top of TCP and
UDP based communication network, under various packet loss
conditions.

Index Terms—real-time simulation, asynchronous, co-
simulation, distributed simulation, HIL, Smart Grid
Communication

I. INTRODUCTION

The Smart Grid is a cyber - physical energy system,
where the physical processes of a power system are strongly
integrated with a communication network infrastructure and
a set of possibly complex controllers. This vision of the
modern power grid is motivated by the new challenges that are
currently raised by the need to massively integrate distributed
renewable energy generators. In addition to that, the Smart
Grid is expected to satisfy growing reliability and efficiency
demands, due to the fast transition to electrical power in public
transportation systems and the growing usage of electrical
vehicles.

The Smart Grid needs to solve a variety of reliability
and efficiency challenges [1]. In this context, Information
and Communication Technologies (ICT) come into play as
an enabler for more intelligence to manage a complex set
of operational, monitoring and optimization constraints, and
allow for innovative solutions and novel applications. On
the other hand, understanding the ICT infrastructure’s perfor-
mance limits, such as managing packet transmission delays, is

crucial for safety and stability of the power grid and efficiency
of control, monitoring and recovery of the network.

New techniques are needed to properly prototype, test
and validate a modern Smart Grid. Traditional testing and
domain-specific simulation techniques and software tools only
allow for partial representation of the system; for instance,
there exists many domain-specific tools for the simulation
of either the physics of a power grid, or for the simulation
of telecommunication networks, but none of these tools are
capable of embracing the complexity of a Smart Grid. Such
tools are simply not sufficient to trace the complex behavior of
intertwined power and telecommunication networks: for this
purpose, multi-domain frameworks must be developed.

ASGriDS is developed to provide a modular and generic
simulation description environment, that relies on an event-
driven architecture to model power network components, and
an asynchronous communication module that is scalable and
reliable. Our framework is capable of running both local and
distributed simulations. The nodes are asynchronous in the
sense that they don’t rely on heavy explicit synchronization,
but they rely instead on the fact that their execution is driven
by local clocks that are globally synchronous enough. This
choice of implementation allows for realistic modeling of
a real asynchronous Smart Grid behavior. It is also techni-
cally required to be able to account for real-time execution
and Hardware-In-the-Loop (HIL) integration. In addition, our
framework is capable of modeling complex communication
network behavior, through the use of Linux network emulation
that permits rich tuning capabilities of delay, jitter, loss,
duplication, reordering, corruption and rate. This allows the
modeling of wired and wireless networks [2].

The rest of the paper is organized as follows. In Section II,
we review the state of the art of Smart Grid simulators, and
put that in contrast with our own proposal. We describe the
architecture and design choices of ASGriDS in Section III and
evaluate its performance in Section IV. Finally, we present in
Section V a case study concerning photovoltaic production
control, in a low voltage network and lossy communication.



II. RELATED WORK

The Electric Power and Communication Synchronizing
Simulator (EPOCH) [3], is a simulation framework that aims
to study complex scenarios involving combined power and
communication networks. EPOCH runs in a federated sim-
ulation environment, using PSCAD and PSLF for power
simulations and UC Berkeley’s Network Simulator 2 (NS-
2) [4] for communication network simulations, with fixed
time-stepping clock synchronization.

The Global Event-Driven Co-Simulation Framework
(GECO) [5] is another framework that targets power system
monitoring and control using a communication network. It
also combines PSLF power system simulator and NS-2, but
differs than EPOCH in that it uses a global event-driven co-
simulation environment. GECO ensures full synchronization
of events, by encapsulating dynamic power system simulation
runs in discrete events queued in a global events queue and
ordered with the network simulator events.

Another co-simulation framework is the Integrated co-
Simulation of Power and ICT systems for Real-time Eval-
uation (INSPIRE) [6]. INSPIRE co-simulation environment
consists of running DIgSILENT PowerFactory for power sim-
ulation, in conjunction with OPNET Modeler with a model
of IEC 61850 communication protocol. Both are orchestrated
with dynamic time-stepped clock.

A different simulation approach is followed in
MECSYCO [7], where the authors adhere to strict formalism
using a Discrete Event System Specification (DEVS) to
describe their multi-agent system. The interaction of their
systems, though, is always strictly synchronized and does
not provide any real time capabilities or the possibility of
interaction with components outside the simulator.

T-RECS [8] is another interesting simulator, its stated ob-
jectives are close to what we intend to develop in ASGriDS,
in that it incorporates network emulation for more realistic
control over the communication medium, and provides an API
for the interaction with pre-existing components. However, as
pointed by their authors in [8], it cannot scale to more than
ten or a few tens of nodes, whereas ASGriDS can scale to
hundreds.

It is noticeable that a limiting factor for realism and scala-
bility of simulation, is the constraints of strong event/time syn-
chronization among simulation components, and/or the imple-
mentation of a global event scheduler. Time synchronization
can be a very fit choice, if the goal is to model synchronous
systems, and/or to guarantee reproducible simulations and easy
testing/debugging of certain system’s aspects, but it falls short
to capture the nature of an actually asynchronous system: such
a system may only be accurately modelled by means of an
asynchronous simulation framework, without a compromise
in terms of accuracy [9]. On the other hand, a global event
scheduler, does not allow for any real-time execution, and limit
the possibility to interact with other real-time components of
the system.

Our work is intended to provide scalability of simulation,
realism of modeling and flexibility of scenario description,
through an asynchronous design and event-driven node model.
• Asynchronism: ASGriDS does not enforce explicit time

synchronization of the different nodes. Each node is
driven by its local system’s clock. Asynchronous commu-
nication is also used to decouple network I/O operations
from nodes internal operations.

• Real-time: The simulation nodes all run in real-time, in
the sense that they are driven by system’s real-time clock.
This allows the nodes to interact with the outside world
— for example, with a real communication infrastructure.

• Scalability: Scalability comes as a consequence of the
modularity, event-driven and asynchronism of our archi-
tecture, as we show in section IV. The socket-based com-
munication module, also permits scalability both locally
and on a distributed deployment, without sacrificing of
its key features of asynchronism and real-time execution.

Our framework provides the necessary architecture for com-
plex modeling of power/communication interactions, using
either emulation of the ICT network, simulation models or
interaction with real setup.

III. DESIGN OF ASGRIDS
The general overview of ASGriDS’s architecture is outlined

in Figure 1. The components shown in the figure represent
the different aspects of a Smart Grid, whether it is the power
networks simulation, the optimization and control or the net-
work communication. These components, as seen in the figure,
interact with each other at two separate but complimentary
planes, a Deployment Plane and a Communication Plane.
In this section, we describe these two operational planes of the
simulator, after which we discuss the various building blocks
of ASGriDS and how it integrates both network emulation for
ICT modeling, and electrical network simulation.

Fig. 1. Simulation Deployment Architecture

A. Deployment Plane

At the Deployment Plane level, ASGriDS deploys and
orchestrates the simulation, the traffic flowing between the
components at this level is exclusively the traffic necessary
to control the various distributed elements of the simulator.



The distinction between this and the actual simulation traffic
is important, for instance in a distributed scenario one might
want to change the behavior of a controller reployed remotely,
or provide a remote node with a new production profile, or
schedule some events, this will incur network traffic generated
by the object-proxying mechanism that we rely on, this traffic
isn’t what we would like to observe or interact with, but it
is necessary for simulation deployment. On a local scenario,
this traffic will simply be the communication between sys-
tem processes/threads. ASGriDS basically triggers a “remote
object” mode when run distributively that allows the user to
handle simulation components, and network nodes as if they
were running locally. This was possible using the concept
of object-proxying and remote method invocation, and their
implementation provided by the free and open-source library
RPyC [10].

B. Smart Grid Communication Plane

At the Smart Grid Communication Plane level, ASGriDS
simulates the actual communication network of interest for
the end-users, where the traffic that is flowing is supposed
to represent a real Smart Grid deployment traffic. As we
mentioned before, ASGriDS can be deployed on a variety of
ICT models, whether emulated, simulated or real. By default,
it allows very easy and flexible manipulation of the commu-
nication link between simulated nodes, through binding to a
linux local network interface (local loop or virtual interface).
Network impairments (delay, packet loss, duplication. . . ) can
then be controlled by the user through an interface to linux
traffic shaping (tc) [11] utility and the netem module [2].

C. Event-Driven Real-Time Node

The basic component of the proposed framework is a real-
time Event-Driven “Node”, that is shown in Figure 2. The
“Node” component of ASGriDS, is an event-driven. It can
be deployed as a process, a thread or a remote object in
a distributed simulation. It interacts with its environment is
callback-based, for instance when handling network events
as in Figure 2. Most importantly, a node can be easily
deployed to interact with any real-time source of events, such
as hardware component (e.g. real communication network) or
software implementation of a certain behavior, that can already
be available to the user through external libraries, either to
test/validate software/hardware components or to implement
new ones in a configuration as close to reality as possible. This
renders the framework fit for a variety of HIL and Software-
In-the-Loop (SIL) setups.

D. Asynchronous Communication

In order for ASGriDS’s “Node” to truly communicate in a
network, it is supported by a communication layer module, and
the interaction between the two happens through a callback
mechanism, as shown in Figure 2. In designing the module,
our objective is a complete decoupling from the node through
asynchronism and non-blocking network Input/Output opera-
tions, and pluggability in the sense that the communication

Fig. 2. Node — Network interaction

layer can be modified/extended and easily plugged into a
“Node”.

We chose to implement this asynchronous communication
(“AsyncComm”) module around asyncio [12]. asyncio
is a standard python library, it features flexible and industry-
proven asynchronous API, and provides the necessary blocks
to implement a communication layer that is completely asyn-
chronous and modular, through its concurrent execution model
and customizable event-loops.

E. Electrical Simulation Integration

In ASGriDS, electrical simulation is handled as a back-
ground service, controlled at the Deployment Plane, and
interfacing with various other simulation components at the
Smart Grid Communication Plane. For instance, this service
keeps track of the electrical network state by solving load flow
equations in real time. It provides an interface to other nodes
so that they can access their local electrical state (i.e. voltage).

In our experiments (that we present in Section IV and V),
we implement this component around pandapower, a free
and open-source python library that provides access to various
power system simulations such as load flow and optimal power
flow solvers.

IV. PERFORMANCE OF ASGRIDS

In this section, we study the scalability of ASGriDS in terms
of CPU and memory consumption. Our assumption is that for
low-voltage distribution networks and micro-grids, a scalable
simulator should be able to handle in the order of hundreds
of network nodes. For an entire distribution network, one to
two additional orders of magnitude may be necessary.

To measure the scalability of ASGriDS, we design a set of
experiments according to the architecture in Figure 1. Every
component of the simulation is run as an independent com-
putation node, that is either part of the simulated grid (Smart
Grid Communication Plane), i.e. a load or a generator (PV or



otherwise) or part of the simulation management (Deployment
Plane). At the simulation plane, each node simulates either a
network load or a PV generator. These nodes communicate
with a special node acting as a central allocator as follows:
each node reports its voltage measurements and current pro-
duction/consumption levels, and receives production setpoints
in the case if PV generators. The allocator is running a control
algorithm, that observes the network state through the voltage
measures and acts accordingly to keep the network stable
within a defined voltage limit.

A. System Resources Consumption
We define a set of benchmarks by using pandapower’s

implementation of Washington Case300 network as a base-
case. By default this network includes 193 loads (which
corresponds to 193 nodes in our simulator). To vary the
number of nodes of the network, we add or remove randomly
nodes of this network. Every simulated node will be generating
fake producation/consumption values in the electrical network,
these values will be reported to an allocator (controller) along
with voltage measurements gathered from pandapower’s
power flow analysis, the allocator will then pandapower’s
optimal power flow solver to generate new setpoints for the
nodes.

Fig. 3. ASGriDS’s CPU and Memory consumption for various network sizes

In Figure 3, we report the maximal memory usage of
our simulator during the first 3 minutes of simulation as a
function of of the number of nodes deployed. We observe that
the memory consumption remains limited and roughly equals
140 MB plus 50 kB per simulated node. Note that we also run
the tests with other scenarios than the Washington Case300
and obtain similar values.

In all of our experiments, the CPU usage for our simu-
lator is mainly dominated by the load flow. To verify that
pandapower was fit for the need of our simulator, we
measured the time taken by this library to solve load flow
and optimal power flow equations. Our measures show that
solving one load flow takes less than 100 ms while computing
an optimal power flow takes a delay between 0.5 s for small
networks, and 2.5 s for ∼200 nodes network.

V. CASE STUDY: OPF-BASED CONTROLLER ON A LOSSY
NETWORK

To demonstrate the capabilities of ASGriDS, we present
a case study where we deploy CIGRE’s low voltage net-
work [13] in ASGriDS. CIGRE’s loads become ”Nodes”
capable of PV power generation, by incorporating load and
production profiles from [14]. The low voltage network con-
sists of 37 nodes distributed over residential, industrial and

commercial sub-networks, and includes 6 residential loads, 8
commercial and one industrial. This benchmark encapsulates
the most relevant technical aspects of a real electrical grid,
and it is developed for the purpose of modeling and simulating
modern micro-grids efficiently [15].

In the deployed simulations, every load from the CIGRE
network corresponds to a ”Node” in ASGriDS, running 24h
recorded consumption and PV production profiles from [14],
read from a database. In the simulations, for practical reasons,
we simulate the systems in accelerated real time (x300) so that
24h simulated time corresponds to 5min realtime.

An allocator (controller) “node” runs the control loop as
described in the petri net [16] diagram in Figure 4 and submits
new PV production setpoints to all concerned nodes every
cycle (15min simulation, 3s accelerated realtime). A power
flow solver runs in the background (using pandapower) to
provide timely voltage measurements to nodes (Deployment
Plane). Each node reports this voltage value along with
its consumption/production, to the allocator (Communication
Plane). When a node receives a new setpoint, it implements the
maximum between the new setpoint and the current maximum
production capacity.

Fig. 4. Power flow analysis and production control, running in parallel

We use the experiments to observe the performance of an
Optimal Power Flow based controller described in section
V-A. The controllers will be operating with a communication
packet loss ranging between no loss (ideal communication),
and 60 % of packet loss (extreme conditions). The network
is deployed on an emulated link, and losses are controlled
through linux’s netem module. Recall that the network losses
affect the transmission between the allocator node and the
loads. The communication between the nodes and the power
flow analyzer is not affected by the losses as such communi-
cations are done through the deployment plane.

A. Optimal Power Flow Controller

We implement the Optimal Power Flow (OPF) control loop
around the OPF formulation in Equation (1). Where P is the



production capacity every PV producer.

max
∑

i∈PV generators

Pi

subject to Vmin 6 Vg,i 6 Vmax, j ∈ bus
Lk 6 Lmax,k, k ∈ transformer
Ll 6 Lmax,l, l ∈ line
Pi 6 Pi,max

(1)

In our experiments, we use pandapower to solve the OPF
(with default parameters). The constraints are 100 % loading
for branch elements, and ±5% p.u. around nominal voltage
for bus voltages. The value of Pi,max is a forecast of what we
think could be the maximal production of the PV panel i.

B. Numerical Results

In Figure 5 we plot the performance of the OPF controller,
in terms of the rate of voltage violations (voltage outside
5% of nominal value) detected from all measurements in
the network, as a function of various losses configure in the
communication channel, while using either TCP or UDP as a
transport protocol. The baseline (in red), is when there is no
control. We observe that the OPF in TCP mode consistently
outperforms the OPF in UDP mode, although the difference
is small for packet loss of 0%, 10%, 20% and 30% the
performance is very good in both cases. With 60% packet loss,
we notice that the controller manages to perform better with
UDP, we explain that by the fact that TCP might exhibit high
retransmission rate with such high packet loss, thus delivers
outdated measurements and control information, the effect that
is absent in UDP.

Fig. 5. Voltage violations with TCP/UDP communication on a lossy network

VI. CONCLUSION

We have presented in this work, ASGriDS, a framework for
the design, prototyping and testing of Smart Grid deployment
scenarios through distributed and scalable simulation. In AS-
GrIDS, real-time control strategies can be implemented, and
deployed on a communication network. ASGriDS allows the
integration of emulated communication links, and/or the de-
ployment over a physical ICT infrastructure. It provides a con-
sistent workflow for describing complex multi-domain Smart
Grid deployment scenarios. It is scalable and flexible, through

a modular and asynchronous design. ASGriDS permits the
various simulated components to exhibit behavior at various
level of accuracy and complexity, and allows the integration
of simulated power-network components, and the deployment
of control strategies on physical communication hardware, or
in combination with other hardware and software network
components. A typical use-case is demonstrated, analyzing
control performance over a lossy link, with two modes of
communication, TCP and UDP. ASGriDS is publicly available
on a github repository [17] together with the results described
in this paper. We plan to continue its development, especially
in distributed setups, with real ICT infrastructure and in HIL
configurations. In this paper, we illustrated the capabilities of
ASGriDS with a simple OPF controller described in (1). For
future work, we plan to use ASGriDS to develop controllers
that are fault tolerant and that can deal with measurement
uncertainty and non-ideal communication.
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