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ARTICLE

A theoretical framework for controlling complex
microbial communities
Marco Tulio Angulo 1, Claude H. Moog 2 & Yang-Yu Liu 3,4

Microbes form complex communities that perform critical roles for the integrity of their

environment or the well-being of their hosts. Controlling these microbial communities can

help us restore natural ecosystems and maintain healthy human microbiota. However, the

lack of an efficient and systematic control framework has limited our ability to manipulate

these microbial communities. Here we fill this gap by developing a control framework based

on the new notion of structural accessibility. Our framework uses the ecological network of

the community to identify minimum sets of its driver species, manipulation of which allows

controlling the whole community. We numerically validate our control framework on large

communities, and then we demonstrate its application for controlling the gut microbiota of

gnotobiotic mice infected with Clostridium difficile and the core microbiota of the sea sponge

Ircinia oros. Our results provide a systematic pipeline to efficiently drive complex microbial

communities towards desired states.
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M icroorganisms form complex communities that play
critical roles in maintaining the well-being of their
hosts or the integrity of their environment1–4. Dis-

rupting these microbial communities can have severe con-
sequences. In humans, for example, a disruption to the gut
microbiota—the aggregate of microorganisms residing in our
intestine—is associated with several disorders including irri-
table bowel syndrome, Clostridium difficile Infection (CDI),
autism, obesity, and cavernous cerebral malformations5–7. For
agriculture crops, a disruption of rhizosphere microbiota can
reduce their disease resistance and hence decrease the overall
crop yield8,9. In the oceans, a disruption to their microbiota can
impact global climate by altering carbon sequestration
rates3,4,10. Driving disrupted microbial communities back to
their healthy states could offer novel solutions to prevent and
treat complex human diseases, enhance sustainable agriculture,
and regulate global warming11,12. For instance, inoculating soil
microbes can restore terrestrial ecosystems13, and fecal micro-
biota transplantation (FMT) is so far the most successful
therapy for treating recurrent CDI14. Despite the success of
these empirical strategies, a broad application of microbial-
manipulation strategies will be possible only if we can efficiently
control large complex microbial communities15.

There are two big challenges down the road. First, an efficient
control method should only manipulate a minimum set of species
in the community. However, we still lack a systematic method to
identify minimum sets of those “driver species” whose control
can help us drive a whole community to desired states. Here, we
use the term “species” without necessarily representing the low-
est major taxonomic rank. One could also organize microbes by
strains, genera, or operational taxonomical units. Second, even
when those driver species have been identified, designing the
control strategy that should be applied to them (e.g., how their
abundance needs to be manipulated) for driving the community
towards the desired state remains difficult. This difficulty arises
because of the inherent complexity of microbial dynamics and
our limited knowledge of them.

To address those two challenges, here we develop a control
framework using the ecological network underlying the
microbial community. First, we introduce the new notion of
“structural accessibility”, which generalizes the notion of
structural linear controllability16,17 to systems with nonlinear
dynamics. Then, we derive a complete graph-theoretical
characterization of structural accessibility. This result enables
us to efficiently identify minimum sets of driver species of any
microbial community purely from the topology of its under-
lying ecological network, even if some microbial interactions
are missing and its population dynamics is unknown. Once the
driver species are identified, we systematically design feedback
control strategies to drive a microbial community towards the
desired state, even if its dynamics is not precisely known. We
numerically validated our control framework in large microbial
communities, analyzing its performance for different para-
meters of the community (e.g., the connectivity of its under-
lying ecological network), and for errors in the ecological
network used to identify the driver species. Finally, we
demonstrate our framework by controlling the core microbiota
of the sea sponge Ircinia oros, and restoring the gut microbiota
of gnotobiotic mice infected by Clostridium difficile. Our results
provide a rational and systematic framework to control
microbial communities and other complex ecosystems.

Results
Modeling controlled microbial communities. Our framework
focuses on the impact that manipulating a subset of species has

on the abundances of other species. We thus consider a
microbial community whose state at time t is determined
from the abundance profile xðtÞ 2 R

N of its N species, where
the i-th entry xi(t) represents the abundance of the i-th species
at time t. The state evolves according to some population
dynamics

_xðtÞ ¼ f ðxðtÞÞ; ð1Þ

where the function f : RN ! R
N models the species intrinsic

growth and the inter/intra-species interactions of the commu-
nity (see Supplementary Note 1 for details). For most microbial
communities f is unknown and difficult to infer given the many
interaction mechanisms between microbes18. Thus, we assume
that f(x) is some unknown meromorphic function of x (i.e., the
quotient of analytic functions). This assumption is very mild as
it is satisfied by most population dynamics models19.

Instead of knowing the population dynamics of the microbial
community, we assume we know its underlying ecological
network G ¼ ðX;EÞ. This network is a directed graph where
nodes X= {x1, …, xN} represent species, and edges (xj → xi)∈ E
denote that the j-th species has a direct ecological impact (i.e.,
direct promotion or inhibition of growth) on the i-th species
(Fig. 1a). Mapping ecological networks requires performing
mono- and co-culture experiments20,21, using system identifica-
tion techniques with time-resolved abundance data22,23, or using
steady-state abundance data via a recently developed inference
method24. In general, ecological networks are different from
correlation networks20,25 because correlation does not imply
causation26,27.

Controlling the community consists in driving its state from an
initial value x0 ¼ xð0Þ 2 R

N at t= 0 (e.g., a “diseased” state)
towards the desired value xd 2 R

N (e.g., the “healthy” state,
Fig. 1b). We assume that the community will not evolve by itself
to xd. To drive the community, we use M control inputs uðtÞ 2
R

M directly affecting certain species that we call “actuated
species” (Fig. 1a). Control inputs encode a combination of M
control actions applied at time t. We consider four possible
control actions. If uj(t) < 0, the j-th control action at time t can be
a bacteriostatic agent or bactericide, decreasing the abundance28

of the species it actuates. If uj(t) > 0, the j-th control action at time
t can be a prebiotic29 or transplantation, stimulating the growth
or engrafting a consortium of the species it actuates, respectively.
Probiotics administration30 and FMTs14 are examples of
transplantations. To specify the species actuated by each control
input we introduce the controlled ecological network
G c ¼ ðX∪U;E∪BÞ. Here, U= {u1, …, uM} are the control input
nodes and (uj → xi)∈ B denotes that the j-th control input
actuates the i-th species (Fig. 1a).

We introduce two control schemes describing how the control
inputs change the species abundance (see Supplementary Note 1 for
details). The first control scheme models a combination of
prebiotics (if uj(t) > 0) and bacteriostatic agents (if uj(t) < 0) as
continuous control inputs modifying the growth of the actuated
species (Fig. 1c):

_xðtÞ ¼ f xðtÞð Þ þ g xðtÞð ÞuðtÞ; t 2 R: ð2Þ

The second control scheme models a combination of
transplantations (if uj(t) > 0) and bactericides (if uj(t) < 0) applied
at discrete intervention instants T ¼ ft1; t2; � � �g, rendering
impulsive control inputs that instantaneously modify the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08890-y

2 NATURE COMMUNICATIONS |         (2019) 10:1045 | https://doi.org/10.1038/s41467-019-08890-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


abundance of the actuated species (Fig. 1d):

_xðtÞ ¼ f xðtÞð Þ if t 62 T; xðtþÞ ¼ xðtÞ þ g xðtÞð ÞuðtÞ if t 2 T:

ð3Þ
Above, x(t+) denotes the state “right after time t”, so x(t)

“jumps” at t 2 T if u(t) ≠ 0. The pair {f, g} characterizes both
control schemes, describing the controlled population dynamics
of the microbial community. The function g : RN ! R

N ´M

models the direct susceptibility of the species to the control
actions. The j-th control input actuates the i-th species if gij 6� 0.
Because g is typically unknown, we just assume that g(x) is some
unknown meromorphic function of x such that gij 6� 0 iff (uj →
xi)∈ B.

Notice that when all species are directly controlled (i.e., an
independent control input actuates each species), the whole
microbial community can easily be driven to the desired state.
Fortunately, as we show next, actuating all the species is far from
being necessary. Thanks to the inter-species interactions encoded
in the ecological network G, we can identify minimum sets of
species that we need to actuate in order to drive the whole
community. We call those species “driver species”.

Identifying driver species. To understand when a set of actuated
species is a set of driver species, consider the three-species

community with Generalized Lotka–Volterra (GLV) population
dynamics of Fig. 2a. This toy community has one control input
actuating x3. Actuating only this species creates an autonomous
element—namely, a constraint between some species abundances
that the control input cannot break, confining the state of the
community to a low-dimensional manifold (Fig. 2a, right).
More precisely, our mathematical formalism reveals that ξ= x1x2
is the autonomous element (Example 2 in Supplementary
Note 2). Indeed, differentiating ξ with respect to time yields
_ξ ¼ x1x2ð1� x3Þ þ x1x2ð�1þ x3Þ � 0, confining the community
to fx 2 R

3jx1x2 ¼ x1ð0Þx2ð0Þg. Intuitively, the autonomous ele-
ment exists because the control input cannot change x1 without
changing x2 in a predefined way, making it impossible to drive the
community in the three-dimensional state space. This observation
indicates that x3 alone cannot be a driver species for this com-
munity. Introducing a second control input actuating x1 helps the
community jump out of the low-dimensional manifold elim-
inating the autonomous element, allowing us to drive this com-
munity to any desired state with positive abundance (Fig. 2b, and
Example 6 in Supplementary Note 5). Therefore, {x1, x3} is a
minimum set of driver species for this community.

In the general case of N species andM control inputs, we define a
set of actuated species as a set of driver species if the corresponding
controlled population dynamics {f, g} lacks autonomous elements.
For linear dynamics {f(x), g(x)}= {Ax, B}, A 2 R

N ´N , B 2 R
N ´M ,
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Fig. 1 Controlling a microbial community. a Ecological network G for a toy microbial community of N= 3 species (green, yellow, blue). The controlled
ecological network Gc contains M= 1 control input actuating the third species. b Initial and desired abundance profiles (bars). Controlling the community
consists in driving its state from the initial state x0 to the desired state xd, represented by two points in the state space of the community. c In the
continuous control scheme, the control inputs u(t) are continuous signals modifying the growth of the actuated species. The controlled population
dynamics of this community is given by _x1 ¼ 0:1þ x1ð1� x1=5Þðx1=3� 1Þ � ð0:1x1x3Þ=ð1þ x3Þ, _x2 ¼ 0:1þ x2ð1� x2=4Þðx2 � 1Þ þ ðx2x3Þ=ð1þ x3Þ,
_x3 ¼ x3ð1� x3=2Þðx3 � 1Þ þ u. In the absence of control, this community has two equilibria x0 ¼ ð3:14;4:58; 1Þ> and xd ¼ ð4:57;4:73; 2Þ>, chosen as the
initial and desired states, respectively. d In the impulsive control scheme, the control inputs u(t) are impulses applied at the intervention instants
T ¼ ft1; t2; � � �g, instantaneously changing the abundance of the actuated species. The controlled population dynamics is the same as in panel (c), except
that _x3 ¼ x3ð1� x3=2Þðx3 � 1Þ and x3(t+)= x3(t)+ u(t) if t 2 T ¼ f5; 10; 15g. Under this controlled population dynamics, our mathematical formalism
identifies x3 as the solo driver species needed to drive this microbial community (Example 1 in Supplementary Note 2)
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the absence of autonomous elements is equivalent to
their controllability31—the ability to drive the system between
any two states, easily verified using Kalman’s condition
rank ½B;AB; � � � ;AN�1B� ¼ N . In the case of nonlinear dynamics,
the absence of autonomous elements can be characterized using a
mathematical formalism based on differential one-forms (see
Methods and Supplementary Note 2). For the continuous control
scheme of Eq. (2), the conditions for the absence of autonomous
elements are well understood as they define when a system is
accessible31, a cornerstone concept in nonlinear control theory.
Because it is more natural to control microbial communities with
impulsive control actions, in this paper we extended the study of
autonomous elements to the impulsive control systems of Eq. (3).
We first introduced a definition of autonomous elements for
impulsive control systems (Definition 3 in Supplementary Note 2).
We then characterized necessary and sufficient conditions for the
absence of autonomous elements in a controlled population
dynamics (Theorem 2 in Supplementary Note 2). To our surprise,
the conditions for the absence of autonomous elements for
the continuous and the impulsive control schemes are identical
(Remark 2 in Supplementary Note 2). This result means that
transplantations and bactericides (impulsive control actions) can

be as effective as prebiotics and bacteriostatic agents (continuous
control actions).

Structural accessibility characterizes the generic absence of
autonomous elements. In general, it remains extremely difficult
finding a pair {f, g} that models the controlled population dynamics
of a microbial community. This fact might suggest it is impossible
to predict if the controlled community has autonomous elements or
not, making it impossible to identify its driver species. We now
show that this seemingly unavoidable limitation can be solved using
the topology of the controlled ecological network of the community.

Define the network Gf ;g ¼ ðX∪U;Ef ;g ∪Bf ;gÞ associated with
{f, g} as follows: (xj → xi)∈ Ef,g if xj appears in the right-hand side
of _xi in Eq. (2) or xi(t+) in Eq. (3). Similarly, (uj → xi)∈ Bf,g
if gij 6� 0. Using this definition, we next describe the class D of
all possible controlled population dynamics that a controlled
microbial community can have given we know its Gc. Mathema-
tically, D contains all base models {f*, g*} such that Gf �;g� ¼ Gc,
together with all deformations {f, g} of each of those base models.
The base models characterize the simplest controlled population
dynamics that the community can have, leading us to choose
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Fig. 2 Autonomous elements constrain the state of microbial communities, characterizing their driver species. a A three-species community with GLV
dynamics _x1 ¼ x1ð�1þ x3Þ, _x2 ¼ x2ð1� x3Þ, _x3 ¼ x3ð�0:5þ 1:5x3Þ. For actuating x3, we consider the impulsive control scheme with x3(t+)= x3(t)+ u1(t)
for t 2 T. With this controlled population dynamics, our mathematical formalism reveals the autonomous element x1x2 that constraints the state of this
microbial community to the low-dimensional manifold fx 2 R

3jx1x2 ¼ x1ð0Þx2ð0Þg (gray) for all control inputs. Five state trajectories (in colors) with
random control inputs illustrate this fact. Hence, {x3} alone cannot be a set of driver species for this controlled population dynamics. b Including a second
control input u2(t) actuating x1 (i.e., x1(t+)= x1(t)+ u2(t) for t 2 T) eliminates the autonomous element, since the state of the microbial community
(colors) can explore a three-dimensional space (gray). Hence {x1, x3} is a minimum set of driver species for this community with GLV dynamics. c We
proved that, generically, increasing the complexity of the controlled population dynamics cannot create autonomous elements. In this example, increasing
the deformation size C from the GLV in panel (a) (with C= 0) to the controlled population dynamics in Fig. 1 (with C > 0) eliminates the autonomous
element that was present by actuating x3 alone (Example 1 in Supplementary Note 2). Therefore, increasing the complexity of the population dynamics
makes {x3} a solo driver species
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them as controlled GLV models with constant susceptibilities:

f �i ðxÞ ¼ rixi þ
XN

j¼1

aijxixj; g�ijðxÞ ¼ bij; ð4Þ

for i= 1, …, N. The parameters A ¼ ðaijÞ 2 R
N ´N ,

r ¼ ðriÞ 2 R
N , and B ¼ ðbijÞ 2 R

N ´M represent the interaction
matrix, the intrinsic growth rate vector, and the susceptibility
matrix of the community, respectively. As the simplest population
dynamics, the GLV model has been applied to microbial
communities in lakes, soils, and human bodies14,15,20,32–38.

A deformation of {f*, g*} is any meromorphic pair {f, g} such
that: (i) Gf ;g ¼ Gf �;g� ; (ii) there exists a finite set of parameters

θ 2 R
C such that ff ðxÞ; gðxÞg ¼ f~f ðx; θÞ; ~gðx; θÞg; and (iii) the

identity f~f ðx; 0Þ; ~gðx; 0Þg ¼ ff �ðxÞ; g�ðxÞg holds. The smallest
integer C ≥ 0 satisfying these three conditions is called the size of
the deformation. A general class of controlled population
dynamics are deformations of Eq. (4), including

fiðx; θÞ ¼ θi;1 þ xi �ri � θi;2xi
� �

θi;3xi � 1
� �

þ
XN

j¼1

aij
xixj

1þ θij;4 þ θij;5xi þ θij;6xixj þ θij;7xj
;

ð5Þ

for i= 1, …, N. Above, θi,1 are migration rates from/
to neighboring habitats, θ�1

i;2 are the carrying capacities of

the environment, θ�1
i;3 are the Allee constants, and fθij;kg7k¼4

characterize the functional responses39. θi,1 > 0 also models species
like C. difficile that sporulate into “inactive” forms and then
recover. “Higher-order interactions” (e.g., θixixjxk) and suscept-
ibilities mediated by species abundance (e.g., gij(x;θ)= bij+ θijkxk)
are deformations as well.

We call D structurally accessible if almost all of its base models
and almost all of their deformations lack autonomous elements.
This definition means that except for a zero-measure set of
“singularities,” all the controlled population dynamics that
the community may take have to lack autonomous elements.
The conditions under which D is structurally accessible are fully

characterized using our mathematical formalism and they depend
only on Gc (see Methods and Supplementary Note 3). Hence, if D
is structurally accessible, hereafter we also call Gc structurally
accessible. We first proved that, generically, increasing the size of
a deformation cannot create autonomous elements (Proposition 1
in Supplementary Note 3). See also Fig. 2c for an illustration. This
result reduces the search for autonomous elements to the
deformations in D with minimum size C= 0 (i.e., all base
models whose graph matches Gc). Finally, we proved that D is
structurally accessible if and only if Gc satisfies the following two
graph–theoretical conditions: (i) each species is the end-node of
a path that starts at a control input node; and (ii) there is a
disjoint union of cycles (excluding self-loops) and paths that
cover all species nodes (Theorem 3 of Supplementary Note 3).
Note that the conditions for structural accessibility depend on
the chosen base model.

Structural accessibility is a nonlinear generalization of
“structural controllability” for linear systems16. The latter notion
has received increasing attention in Network Science17. Interest-
ingly, the two graph–theoretical conditions for structural
accessibility are almost the same as those for structural linear
controllability16. The key difference is that for structural linear
controllability self-loops (corresponding to intrinsic nodal
dynamics) can be used to satisfy condition (ii). See Remark 4
in Supplementary Note 3 for more details.

Identifying minimum sets of driver species in microbial com-
munities. The above result provides a complete graph-
characterization of driver species: a set of actuated species is a
set of driver species (for all but a zero-measure set of controlled
population dynamics that the community may have) if and only if
its corresponding Gc satisfies the two graph–theoretical condi-
tions. See Fig. 3 for an illustration. With this characterization, one
can apply the maximum matching algorithm directly to G to
calculate the minimum number of control inputs needed to
ensure the structural accessibility of Gc, as did in the structural
linear controllability case17,40. However, this may not provide a
minimum set of driver species because one control input may
actuate multiple species. Fortunately, we can dedicate one control
input to one species. Therefore, we adapted the notion of a
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“feasible dedicated input configuration”41 and a polynomial-time
algorithm (combining maximum matching with a strongly con-
nected component decomposition of G) to identify one minimum
set of driver species (Methods and Supplementary Note 4). Note
that once Gc is structurally accessible, it cannot lose its structural
accessibility when new edges are added to it. This observation
implies that the driver species can be identified from an
“incomplete” ecological network (e.g., containing only high-
confidence interactions).

Driving the driver species. We next calculate the control inputs
to be applied to a set of driver species for driving the whole
community towards the desired state xd. We will show that it is
more efficient to calculate impulsive control inputs. To calculate
these impulsive control inputs fuðtkÞ; tk 2 Tg we adopt a model
predictive control (MPC) approach42. Based on the current state
of the community x(tk) at tk 2 T, we use knowledge of its con-
trolled population dynamics {f, g} to predict the sequence of states
X̂k;L ¼ fx̂ðtkþ1Þ; � � � ; x̂ðtkþLþ1Þg that the community will take in
response to a sequence of L impulsive control inputs
Uk;L ¼ fuðtkÞ; � � � ; uðtkþL�1Þg. The prediction horizon L > 0
determines how far into the future we predict. Then, we choose
uðtkÞ ¼ u�1ðtkÞ where u�1ðtkÞ is the first element of the optimal
control sequence U�

k;L calculated as:

U�
k;L ¼ arg min

Uk;L2RM ´ L
JxdðX̂k;L;Uk;LÞ subject to Uk;L 2 Ω: ð6Þ

Here, Ω � R
M ´ L specifies constraints in the control inputs, and

Jxd is some cost function penalizing deviations of the predicted

trajectory X̂k;L from xd. For example, the cost function

JxdðX̂k;L;Uk;LÞ ¼ kx̂ðtkþLþ1Þ � xdk penalizes the deviations of the
predicted final state. By recalculating U�

k;L at each tk using the actual
state of the community the MPC creates a feedback loop enhancing
its robustness against prediction errors42. The prediction horizon
can be chosen based on the controlled population dynamics of the
community (Methods). For L= 1, this methodology is similar to
ref. 43. Equation (6) is a finite-dimensional optimization problem
that can be solved using algorithms like DIRECT44. Solving the
analogous optimization problem for continuous control inputs is
more challenging because the optimization is over the infinite-
dimensional space of continuous functions.

We illustrate the above MPC strategy driving the microbial
community of Fig. 1 with its solo driver species. According to its
dynamics, L= 3 impulsive control inputs are sufficient (see
caption in Fig. 1, and Example 4 in Supplementary Note 5). We
chose JxdðX̂k;L;Uk;LÞ ¼ x̂ðtk;LÞ � xd

�� ��
2
. Solving Eq. (6) using

DIRECT yields the nonlinear MPC strategy u*(t1)=−0.8815, u*

(t2)= 2.0089 and u*(t3)=−10−4 (pink in Fig. 4a). We compared
the performance of two other control strategies. The first strategy
uses one transplantation to increase the abundance of the driver
species to its desired value, reminiscent of one probiotic
administration restoring its “healthy” abundance (purple in
Fig. 4a). The second control strategy ignores the driver species,
setting the abundance of the two non-driver species to their
desired values (blue in Fig. 4a).

Among the above three control strategies, only the nonlinear
MPC applied to the driver species succeeds (Fig. 4b). This strategy
succeeds in a somewhat unconventional way: although the driver
species is more abundant in the desired state than in the initial
state, the first control action decreases its abundance further. Such
control action lets the non-driver species reach their desired
abundances and, once that happens, the abundance of the driver
species is finally increased to its desired value (pink in Fig. 4b).
Just restoring the abundance of the driver species succeeds in

driving x2 and x3, but it fails to drive x1 to the desired abundance
(purple in Fig. 4b). Ignoring the driver species is the worst control
strategy, failing to drive any of the three species to their desired
values (blue in Fig. 4b). This toy example demonstrates the
advantage of identifying and actuating driver species.

Driving large communities with uncertain dynamics. Solving
the non-convex optimization problem of Eq. (6) is challenging as
N or L increase, and it also requires knowing {f, g}, which may be
impossible for large communities. We next circumvent these two
drawbacks leveraging the network underlying the controlled
microbial community.

Consider we can obtain a weighted adjacency matrix Â 2
R

N ´N from G, providing a proxy for its interaction matrix.
Without additional knowledge of the community, we just
assume that we can increase or decrease the abundance of
each driver species. We thus use B̂ 2 f0; 1gN ´M as a proxy for
the susceptibility matrix, with bij= 1 if the j-th control
input actuates the i-th driver species. By rewriting
ff ðxÞ; gðxÞg ¼ fÂx þ wx; B̂þ wug, we use fÂx; B̂g to provide a
linear prediction for the response of the community to the control
inputs. Here, wx ¼ f � Âx and wu ¼ g � B̂ are considered as
“perturbations”. Using fÂx; B̂g, we design a linear MPC by
solving Eq. (6) with the quadratic cost function

JxdðX̂k;1;Uk;1Þ ¼
X1

i¼k

x̂ðtiÞ � xd½ �>Q x̂ðtiÞ � xd½ � þ uðtiÞ>RuðtiÞ:

Above, the positive definite matrices Q ¼ Q> 2 R
N ´N and R ¼

R> 2 R
M ´M are design parameters. Q penalizes the deviations of

the predicted trajectory from the desired state, and R penalizes the
control inputs magnitude. Under this scenario, Eq. (6) can be
solved in closed form45 yielding the linear MPC u(tk)= Kx(tk),
where K 2 R

M ´N is the solution of a Riccati equation
(Supplementary Note 6). Since the Ricatti equation can be
efficiently solved for large N, the linear MPC can be calculated for
large communities. This linear MPC is robust against (wx, wu)
and it allows calculating the control inputs for the continuous
control scheme (Supplementary Note 6). However, its perfor-
mance strongly depends on the chosen ðÂ; B̂Þ and the distance to
the desired state (Supplementary Note 6).

We applied the linear MPC for driving the toy three-species
community of Fig. 1, assuming its dynamics is uncertain.
Considering the ecological network of this community and
its nonlinear population dynamics, we chose Â ¼
ð�0:5; 0;�0:1; 0;�5; 1; 0; 0;�1Þ as a proxy for its interaction
matrix. Here Â is a rough approximation of the linearization
of the population dynamics at the desired state given by (−0.37,
0, −0.05; 0, −5. 31, 0.52; 0, 0, −1). Choosing Q ¼ diagð20; 1; 10Þ,
we compared the performance of three different linear MPCs
obtained with R= 10−4, 10−3, 10−2 (Fig. 4c). For R= 10−4,
without using knowledge of the population dynamics, the
performance of the linear MPC (pink in Fig. 4d) is very similar
to the performance of the nonlinear MPC that uses full knowledge
of the nonlinear population dynamics (pink in Fig. 4b). This
success illustrates the robustness of the linear MPC against the
perturbations. As R increases, the performance of the linear MPC
deteriorates (green and blue in Fig. 4d).

Numerical validation on large uncertain microbial commu-
nities. To validate our control framework for large communities,
we built communities of N= 100 species having random directed
Erdös–Rényi ecological networks with connectivity c∈ [0, 1], see
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Fig. 5a. The network edge-weights were chosen from a normal
distribution with zero mean and standard deviation σ > 0, where σ
characterizes the typical interspecies interaction strength. Nega-
tive self-loops with weights −1 were added to each species. We
used this ecological network to identify the driver species of the
community, and its corresponding weighted adjacency matrix as
the interaction matrix to construct the linear MPC. We simulated
the population dynamics of these communities using Eq. (5)
ensuring all share xd 2 R

N as equilibrium. The resulting com-
munities have nonlinear population dynamics, and their linear-
ization at the desired state is different from the interaction matrix
used for the linear MPC (Supplementary Note 8).

To quantify the success of our control framework on a given
community, we generated 300 initial species abundances that are
uniformly distributed at a distance d > 0 from xd. The success rate
at distance d is defined as the proportion of those initial

conditions that are driven to xd only when the linear MPC is
applied to a minimum set of driver species of the community
(Fig. 5b–d). Namely, we discard all initial conditions that
naturally evolve to xd. Finally, we calculated the mean success
rate by averaging the success rate over 100 random communities
(see Supplementary Note 8 for details).

The mean success rate is close to 1 for small d regardless of the
community’s parameters (Fig. 5e, f), confirming the theoretical
guarantee that the linear MPC succeeds if d is small enough.
The mean success rate decreases as σ increases, especially for large
distances (Fig. 5e). Since increasing σ damages the stability of the
population dynamics46, this result suggests that microbial
communities become “harder” to control as they lose stability.
The mean success rate is higher in communities with low
connectivity (Fig. 5f). In general, the size of a minimum set of
driver species increases as c decreases, indicating that the success
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rate increases as the number of driver species increases. Indeed,
regardless of d, our control framework attains a mean success rate
>0.8 provided that at least 6 from 100 species are driver species
(Fig. 5g). This result suggests that the success rate can be
enhanced by actuating a few additional species. Finally, to
investigate the robustness of our control framework to errors
in the ecological network, we randomly rewired each of its
edges with probability p∈ [0,1] (e.g., p= 0.05 corresponds to a
5% error). The success rate deteriorates but remains larger than

zero despite large errors (Fig. 5h), showing the robustness of
our control framework. However, a 5% error decreases the
mean success rate in about 30%, emphasizing the importance
of accurately mapping ecological networks for controlling
microbial communities.

Application. We analyzed the ecological network of the gut
microbiota of germ-free mice that were pre-colonized with a
mixture of human commensal bacterial type strains and then
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infected with C. difficile spores22. In Fig. 3a, we identified a
minimum set of five driver species in this 14-species community:
Ruminococcus obeum (x1), Raphitoma mirabilis (x12), Bacteroides
ovatus (x2), Clostridium ramosum (x6), and Akkermansia muci-
niphila (x10). We also used the ecological network underlying the
core microbiota of the sea sponge I. oros23, finding ten driver
species in this twenty-species community (Fig. 3b).

We studied by simulation the efficacy of the identified driver
species and the linear MPC for driving these two microbial
communities, assuming that their dynamics are uncertain (see
Supplementary Note 7 for details of the simulation). For the mice
gut microbiota, our framework succeeds in driving the community
from an initial state where C. difficile is overabundant towards the
desired state with a better balance of species (Fig. 6a, c). Similar
results were obtained for controlling the core microbiota of I. oros
(Fig. 6b, d). These results show again that the linear MPC method
is robust enough to drive nonlinear microbial communities.

Discussion
Our theoretical framework allows systematically and efficiently
controlling microbial communities towards desired states by
identifying their driver species. Identifying the driver species of a
microbial community only requires knowledge of its underlying
ecological network. Note that there could be multiple different
minimum sets of driver species for the same community. If the
cost of choosing any species as a driver species is known, a

combinatorial optimization scheme will allow selecting the best
minimum driver species set. We emphasize that the driver species
discussed here may not coincide with other notions in ecology
such as keystone47,48 or core49 species. For example, the selection
of driver species do not directly depend on their abundances,
while keystone species do47.

For large uncertain communities, the linear model predictive
controller gives a robust and efficient way to calculate the control
inputs. The performance of this controller could be further
improved by modeling the susceptibility of species to the control
actions (e.g., pharmacokinetics). In such case, different control
actions could be modeled by different pairs {f, g}, making the
conditions for the absence of autonomous elements different for
continuous and impulsive control actions. Control algorithms
based on reinforcement learning50 (RL) could provide even better
performance. Our characterization of minimum sets of driver
species will help to efficiently apply those control algorithms to
microbial communities, as RL algorithms require specifying the
“driver variables” they can actuate51. Here, controlling small
synthetic communities could provide valuable insights for
designing such controllers. We also note that altering the ecolo-
gical network or obtaining a “simplified” network, in the spirit of
refs. 52,53, could be complementary control approaches (e.g.,
for reducing the minimum number of driver species).

It has been suggested that the success of ecosystem manage-
ment strategies could be predicted using the notion of controll-
ability54. However, this notion is somewhat inadequate for
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microbial communities and other biological systems. By their
nature, biological systems cannot be fully controllable because
there are states they cannot reach (e.g., states with negative
abundances). Furthermore, since dynamic models for microbial
communities are nonlinear and uncertain, it is impossible even
to test if those systems are controllable. Structural accessibility
overcomes these two limitations, generalizing the notion of
accessibility31 to systems with uncertain dynamics. Counter-
intuitively, our mathematical formalism suggests that commu-
nities with more complicated population dynamics (i.e.,
deformations with larger size) require fewer driver species.
However, using fewer driver species could complicate the design
of control strategies (Remark 9 in Supplementary Note 5). Indeed,
by choosing an adequate base model55 and making mild
assumptions on the dynamics (i.e., f and g are meromorphic
functions), our framework can identify minimum sets of “driver
variables” for general nonlinear systems when their underlying
networks are known (see Supplementary Note 9 for an example of
a small gene regulatory network).

There are two limitations in our current framework for con-
trolling microbial communities. First, stochastic effects are con-
sidered negligible. Incorporating stochastic effects yields
stochastic differential equations for which the notion of autono-
mous elements still needs to be mathematically formulated.
We anticipate that this is quite challenging, but definitely mer-
its further studies. Second, our current framework does not
explicitly model the dynamics of resources provided to and/or
chemicals produced by the microbial species56–63. Our char-
acterization of driver species only applies to some instances of
resource-based models, e.g., the classical MacArthur’s consumer-
resource model64 when the resource dynamics is much faster than
the species dynamics65. For general resource-based models,
identifying their driver species requires analyzing a new kind of
“output accessibility” that characterizes the absence of autono-
mous elements in the species abundances and ignores autono-
mous elements in the resource abundances. Then, the notion of
“structural output accessibility” (i.e., generic output accessibility
given an adequate base model) would provide a nonlinear
counterpart of linear target controllability66. Structural output
accessibility could allow us to identify driver species and/or
“driver resources” of a community from knowing the bipartite
interaction network of species and resources. This is beyond the
scope of this work and deserves dedicated efforts.

To fully harvest the benefits of controlling microbial commu-
nities, a stronger synergy between microbial ecology and control
theory is necessary. We hope that this work will catalyze new
interdisciplinary approaches that enhance our ability to control
complex microbial communities inside and around us.

Methods
Detecting autonomous elements in the continuous control scheme. For the
continuous control systems of Eq. (2), the notion of autonomous elements and the
conditions for their absence are well understood, since they define when a system is
accessible (see Supplementary Note 2.2 and ref. 31 for details). An autonomous
element for Eq. (2) is a non-constant function ξ(x) such that there exists an integer

ν ≥ 0 and a meromorphic function F such that Fðξ; _ξ; � � � ; ξðνÞÞ ¼ 0. In words, an
autonomous element ξ is an “internal variable” of the system that evolves com-
pletely unaffected by the control inputs. System (2) is said accessible if it has no
autonomous element31.

The absence of autonomous elements can be characterized by using a
mathematical formalism based on differential one-forms31. Consider the set of
meromorphic functions K in the variables fx; u; _u; €u; � � �g, and the sets of
differential symbols dx ¼ ðdx1; � � � ; dxN Þ> and du ¼ ðdu1; � � � ; duMÞ> . Let X ¼
spanKfdxg be the vector space spanned over K by the elements of dx, intuitively
playing the role of “all functions of state variables”. Any ω 2 X is a “one-form”31

(see Supplementary Note 2.1 for details). In this setting, the chain rule provides
a way to formally operate with one-forms, such as taking time derivatives: if
ω ¼ β>dx then _ω :¼ _β>dx þ β>d _x. To identify the presence of autonomous

elements in the dynamics with continuous control of Eq. (2), one calculates the
sequence of subspaces Hk � X defined recursively by

Hk ¼ fω 2 Hkj _ω 2 Hkg; k 	 1; ð7Þ

starting withH1 ¼ X . Then, one can prove that Eq. (2) lacks autonomous elements
if and only if there exists an integer k* such that Hk� ¼ f0g, see ref. 31 (page 49,
Thm.3.17).

Detecting autonomous elements in the impulsive control scheme. For the
impulsive control systems of Eq. (3) the notions of autonomous elements and
accessibility are rather unexplored. Recall that an autonomous element is an
internal variable of the system that is completely unaffected by the control actions.
To introduce a suitable definition of autonomous element for the impulsive
control systems, note that the control inputs cause “jumps” in the actuated vari-
ables (i.e., discontinuities). These jumps are propagated to other state variables by
the continuous dynamics. Thus, we define an autonomous element of Eq. (3) as a
non-constant function ξ(x) such that ξ(x(t)), t 2 R, is a C1 function (i.e., infinitely
differentiable function) under any impulsive input (see Supplementary Note 2.3 for
details). By analogy to the case of continuous control, we say that system (3) is
accessible if it has no autonomous element according to the above definition.

To characterize the accessibility of impulsive control systems, we built the
sequence of subspaces Hk of all functions of the state variables that can be
differentiated at least (k− 1) times (see details in Supplementary Note 2.3). The
functions belonging to the limit H1 are the autonomous elements of the system,
since they are completely unaffected by the control inputs. Consequently, because
the limit subspace H1 is also “integrable” (informally, it does not contain
“fictitious” autonomous elements), accessibility is equivalent to the condition
H1 ¼ f0g (see Theorem 2 in Supplementary Note 2). We further prove that
the limit H1 is attained in a finite step (i.e., there exists a finite k* such that
Hk� ¼ Hk�þ1 ¼ � � � ¼ H1).

We illustrate the above formalism using the three-species microbial
community of Fig. 1 where x3 is the actuated species (see caption for its population
dynamics). To compute the sequence Hk , one starts by definition with
H1 ¼ spanKfdx1; dx2; dx3g. Next, H2 are all one-forms in H1 that can be
differentiated once (i.e., they are continuous, so they are not directly affected by u).
Because u actuates x3, we get H2 ¼ spanKfdx2; dx1g. Similarly, H3 are all
those one-forms in H2 that can be differentiated twice (i.e., their first derivative
is continuous), yielding H3 ¼ spanKfx2dx1 þ x1dx2g. Finally, H4 ¼ f0g (see
details in Example 1 in Supplementary Note 2). This implies that the controlled
population dynamics is free of autonomous elements and hence it is accessible.
See also Example 2 in Supplementary Note 2 for a community with autonomous
elements.

Detecting autonomous elements without knowledge of the population
dynamics. When the controlled population dynamics of the microbial community
is unknown, we consider the class D of all controlled dynamics that the community
may have given we know its controlled ecological network. Identifying the presence
of autonomous elements in the full class D becomes possible thanks to so-called
“generic properties” of meromorphic functions31. This is a mathematical property
implying that a meromorphic function will satisfy a certain condition in almost all
points of its domain—that is, everywhere except for a zero-measure set of “sin-
gularities”—provided that such condition holds at a single point. We exploited this
property to prove that, generically, increasing the size C of a deformation cannot
create new autonomous elements (Proposition 1 in Supplementary Note 3). See
Fig. 2c for an illustration. This result allows us to only search for autonomous
elements on the subset D0 � D of all ff ; gg 2 D with size C= 0, corresponding to
all base controlled GLV models of Eq. (4). Finally, we proved that the generic
absence of autonomous elements in D0 can be determined only from the topology
of the controlled ecological network Gc (Theorem 3 in Supplementary Note 3).

Identifying a minimum set of driver species. Let ~GðXÞ be the subgraph obtained
by removing all self-loops from the ecological network GðXÞ of the (uncontrolled)
community. Let ~BðX� ∪XþÞ be the bipartite representation of ~GðXÞ, built by
placing the edge ðxþj ; x�i Þ in ~B if the directed edge (xj → xi) is in ~G. Then, to identify
a minimum set of driver species, we applied the notion of a “dedicated input
configuration” introduced in ref. 41 (see details in Supplementary Note 4).

A strongly connected component (SCC) is said “non-top linked” if it has no
incoming edges from other SCCs. Let M* be a maximum matching in ~B. Then, a
non-top linked SCC is said to be “top assignable” with respect to M* if it contains
at least one right-unmatched node in M*. Let Z ⊆ X be the set of right-
unmatched nodes of some maximum matching of ~B with maximum top
assignability. Let W⊆ X be a set consisting of one state node from each non-top
linked SCC of ~G not already present in Z. Then, we prove that XD⊆ X is a
minimum set of driver species if and only if there exist two disjoint subsets Z and
W as defined above, such that XD= Z ∪W (Proposition 3 in Supplementary
Note 4). Using this result, we applied Algorithm 1 of ref. 41 to ~G to obtain a
minimum set of driver species. This algorithm is implemented in Julia as the
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DriverSpecies function in the DriverSpeciesModule package. This algorithm is
illustrated for communities of N= 100 species in Fig. 5a and Supplementary Fig. 2.

Choosing the prediction horizon. To choose the prediction horizon L for the
nonlinear MPC we proved there are two possible cases (Theorem 4 in Supple-
mentary Note 5). First, when the community can be driven to xd using L <∞
impulsive control inputs. Second, when the community can only be asymptotically
driven to xd, meaning that L 
 N should be chosen sufficiently large. This second
case could be circumvented by increasing the number of actuated species (Remark
8 in Supplementary Note 5).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. A Julia implementation of the algorithm for identifying a
minimum set of driver species, as well as all other functions necessary to reproduce
the results of the paper, is provided at the GitHub repository: https://github.com/
mtangulo/DriverSpecies.

Data availability
All the experimental datasets analyzed in this study are publicly available.
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