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Abstract. Quantitative analysis of tumor growth kinetics has been widely
carried out using mathematical models. In the majority of cases, indi-
vidual or average data were fitted.
Here, we analyzed three classical models (exponential, logistic and Gom-
pertz within the statistical framework of nonlinear mixed-effects mod-
elling, which allowed us to account for inter-animal variability within a
population group. We used in vivo data of subcutaneously implanted
Lewis Lung carcinoma cells. While the exponential and logistic mod-
els failed to accurately fit the data, the Gompertz model provided a
superior descriptive power. Moreover, we observed a strong correlation
between the Gompertz parameters. Combining this observation with rig-
orous population parameter estimation motivated a simplification of the
standard Gompertz model in a reduced Gompertz model, with only one
individual parameter. Using Bayesian inference, we further applied the
population methodology to predict the individual initiation times of the
tumors from only three measurements. Thanks to its simplicity, the re-
duced Gompertz model exhibited superior predictive power.
The method that we propose here remains to be extended to clinical
data, but these results are promising for the personalized estimation of
the tumor age given limited data at diagnosis.

Keywords: Tumor growth kinetics, Gompertz model, Mixed-effects mod-
eling, Bayesian estimation

1 Introduction

Tumor growth kinetics have been studied since several decades both clinically
[8] and experimentally [18]. One of the findings of these early studies is that
tumor growth is not exponential provided it is observed on a long enough time
frame (100 to 1000 folds of increase) [13]. The specific growth rate slows down
and this deceleration can be particularly well captured by the Gompertz model
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[21, 13, 15]. The analytical expression of this model writes (where V0 is the initial
tumor size at t = 0 and α and β are two parameters):

V (t) = V0e
α
β (1−e−βt) (1)

While the etiology of the Gompertz model has been long debated [10], several
independent researchers have reported a strong correlation between the param-
eters α and β estimated on distinct subjects within the same species [13, 16, 6].
While some suggested this would imply a constant maximal tumor size (given
by V0e

α
β in (1)) across tumor types within a given species [6], others argued that

because of the presence of the exponential, this could vary over several orders of
magnitude [19]. To date, the generalizability, implications and understanding of
this observation remain open questions in quantitative tumor growth.

Mathematical models for tumor growth have been previously studied at the
level of individual kinetics and for prediction of future tumor growth [2]. How-
ever, up to our knowledge, a detailed study of statistical properties of classical
growth models at the level of the population (i.e. integrating structural dy-
namics with inter-animal variability) remains yet to be reported. Longitudinal
data analysis with nonlinear mixed-effect modelling provides an ideal tool for
such a task [14]. In addition, the reduced number of parameters (from p×N to

p+ p(p+1)
2 where N is the number of animals and p the number of parameters of

the model) ensures a higher robustness of the estimates, in the sense of smaller
standard errors. Therefore, this framework is particularly adapted to study the
above-mentioned correlation between the two Gompertz parameters.

Moreover, using the population distribution as prior allows to make predic-
tions on new subjects by means of Bayesian algorithm such as the Hamiltonian
Monte Carlo algorithm [12, 11], implemented in Stan [7]. The advantage of this
method is that only few measurements of the new individual are necessary to
have reliable prognosis.

2 Material and methods

Mice experiments. The experimental data consisted in murine Lewis lung car-
cinoma cells originally derived from a spontaneous tumor in a C57BL/6 mouse
[4]. They were implanted subcutaneously (106 cells at injection) on the caudal
half of the back in anesthetized 6- to 8-week-old C57BL/6 mice. Tumor size was
measured as described for the breast data. The data was pooled from two experi-
ments with a total of 188 observations. A precise description of the experimental
protocol is reported elsewhere (see [2]).

Tumor growth models. At the time of injection (t0 = 0), we assumed that
all the animal tumor volumes within a group have the same volume V0 (taken
to be equal to the number of injected cells converted in mm3) and denote by α
the specific growth rate (α = 1

V
dV
dt ) at this time and volume.
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We considered the exponential, logistic and Gompertz models [2]. The first two
are respectively defined by:

VE(t;α) = V0 exp(αt) and VL(t;α,K)
V0K

(V0 + (K − V0)e−αt)
. (2)

In the logistic equation, K is a carrying capacity parameter.
The Gompertz model VG(t;α, β) is characterized by an exponential decrease of
the specific growth rate with rate β. The differential form thus reads:

dVG
dt

=

(
α− β log

(
VG
V0

))
VG,

VG(t = 0) = V0.

(3)

Note here that the initial condition also appears in the differential equation
defining VG. This is natural from our assumption that α is the specific growth
rate at the injected volume V0.

Population approach. Let N be the total number of subjects within the
population and Y i = {yi1, ..., yini} the vector of longitudinal measurements of
the animal i, where yij is the observation of subject i at time tij for i = 1, ..., N

and j = 1, ..., ni (ni is the total number of measurements of individual i). We
assumed the following statistical model

yij = V (tij ;θ
i) + eij , j = 1, ..., ni, i = 1, ..., N, (4)

where V (tij ;θ
i) is the evaluation of one of the tumor growth models at time

tij , θ
i ∈ Rp is the vector of the parameters relative to the individual i and eij

the residual error model, to be defined later. We assumed that the individual
parameters θi follow a lognormal distribution that are therefore identified by

log(θi) = log(µ) + ηi,

where µ denotes the fixed effects and ηi denotes the random effects. The former
are identical within the population while the latter are specific for each animal
and follow a normal distribution ηi ∼ N (0,ω) with mean zero and variance
matrix ω.
We considered a combined residual error model eij , defined as

eij =
(
σ1 + σ2f(tij ;θ

i)
)
εij ,

where εij ∼ N (0, 1) are the residual errors and (σ1, σ2) are the residual error
model parameter.

In order to compute the population parameters, we maximized a population
likelihood, obtained by pooling together all the data. Usually, this likelihood can-
not be computed explicitly for nonlinear mixed-effect models. The optimization
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procedure can be implemented using the stochastic approximation expectation
minimization algorithm (SAEM) [14], implemented in Monolix [1].

From now on we denote by φ = {µ,ω,σ} the set of the population parameters
containing the fixed effects µ and the random effects ω of the parameters and
the vector of error model parameters σ = [σ1, σ2].

Individual predictions: Bayesian inference. We considered the problem of
predicting the age of the tumor of an animal based on three late measurements.
We splitted the data set into two subgroups: a training set, used to learn the
population parameters distribution, and a test set, to assess the performance of
the prediction.
Let us assume that the set of the population parameters φ has been identified
on a training set using the population approach. We used this information to
make predictions for a new animal j in the test set considering only its last three
measurements yj = {yjnj−2, y

j
nj−1, y

j
nj}. The posterior distribution P(θj |yj , φ)

of the parameters θj was then given thanks to the Bayesian approach [11]:

P(θj |yj ;φ) = P(θj ;φ)P(yj |θj ;φ), (5)

where P(θj ;φ) is the prior distribution of the parameters found with the nonlin-
ear mixed effects modeling and P(yj |θj ;φ) is the likelihood. Then we computed
the posterior predictive distribution of ỹj(u), with u < tnj−2 defined as

P(ỹj(u)|yj) =

∫
θj

P(ỹj(u)|θj ;φ)P(θj |yj ;φ)dθj . (6)

We draw realizations for (5) and for (6) using Pystan, a Python interface to
the software Stan [7] for Bayesian inference based on the No-U-Turn sampler, a
variant of Hamiltonian Monte Carlo [12]. These realizations were then used to
estimate tumor growth kinetic as the median value of the sample.

3 Results

In [20] other two data sets (two animal models of breast cancer, measured by
volume and fluorescence) are considered for the analysis with equivalent results.

3.1 Population analysis of tumor growth curves

We applied the population approach to test the descriptive power of the ex-
ponential, logistic and Gompertz models for tumor growth kinetics. The number
of injected cells at time t0 = 0 was 106, therefore we fixed the initial volume
V0 = 1 mm3 in the whole dataset [2].

We ran the SAEM algorithm with the Monolix software to estimate the
fixed and random effects. Moreover, different statistical indices were evaluated
in order to compare the different tumor growth models. We report them in
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Table 1, where the models are ranked according to their AIC (Akaike information
criterion). As shown below, the Gompertz model provided the lowest AIC values.
Different types of model diagnostic plots are reported in Figure 1. The visual
predictive checks (VPCs) in Figure 1A compare the empirical percentiles with
the theoretical percentiles, i.e. those obtained from simulations of the calibrated
models. Only in the case of the Gompertz model the observed percentiles were
close to the predicted ones and remained within the corresponding prediction
interval. The VPCs of the exponential and the logistic models exhibited model
misspecification. The observations vs individual predictions of the Gompertz
model in Figure 1B show a low percentage of outliers, i.e. the predictions outside
of the 90% prediction interval. Moreover, the distribution of the observations
were symmetrical around the predicted values with the Gompertz model (Figure
1C) while the exponential and the logistic models provided skewed distributions.
Figure 1D shows an example of individual fit with the three different models.
This confirms that the Gompertz model describes better the dynamic of tumor
growth.

Table 2 provides the values of the population parameters. The relative stan-
dard errors associated to population parameters were all low (< 10.7%), indi-
cating good practical identifiability of the model parameters. Relative standard
errors of the standard deviations of the random effects ω were all smaller than
34.1%.

Model -2LL AIC BIC

Gompertz 2232 2246 2253

Reduced Gompertz∗ +24 +20 +18
Logistic +83 +81 +80
Exponential +412 +406 +403

Table 1. Models ranked in ascending order of AIC (Akaike information criterion).
Other statistical indices are the log-likelihood estimate (-2LL) and the Bayesian in-
formation criterion (BIC). The reported values in the first row are the values of the
indices of the best model (the Gompertz model). The other rows provide the difference
of each statistical index between the model in the row and the Gompertz model. ∗The
reduced Gompertz model is introduced in Section 3.2.

3.2 The reduced Gompertz model

Correlation between the Gompertz parameters. Although the Gompertz
parameters α and β were assumed to be independent, a high correlation within
the population has been observed. Indeed, the SAEM algorithm estimated a
correlation of the random effects equal to 0.957. Moreover, Figure 2A shows
the relation between the individual parameters, where we found R2 = 0.929.
This correlation was observed in other experimental system: in a rat mammary
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Model Parameter Unit Fixed
effects

CV (%) R.S.E. (%)

Gompertz α day−1 0.713 22.57 3.79
β day−1 0.0731 318 5.77
σ - [28.2,0.081] - [13.8,14.3]

Reduced Gompertz∗ β day−1 0.0757 158.37 10.7
k - 9.51 - 5.26
σ - [27.6,0.106] - [14.03,11.7]

Logistic α day−1 0.477 25.48 2.84
K mm3 1.65e+03 0.006 4.67
σ - [38.5,0.11] - [13.2,14.01]

Exponential α day−1 0.403 28.01 2.75
σ - [87.8,0.37] - [19.1,14.8]

Table 2. Fixed effects (typical values) of the parameters of the different models. CV
= Coefficient of Variation, expressed in percentage and estimated as the standard
deviation of the parameter divided by the fixed effect and multiplied by 100. σ is vector
of the residual error model parameters. Last column shows the relative standard errors
(R.S.E.) of the estimates. ∗The reduced Gompertz model is introduced in Section 3.2.

carcinoma system [16], human lung metastases from testicular tumors [9] and
human benign tumors [17]. We write the relationship between the two parameters
as:

αi = kβi + c (7)

where c is the intercept of the regression line, which is found close to zero. The
slope of the regression line could be a characteristic constant of tumor growth
within a certain species. From a biological point of view, this characteristic
constant could be associated to the carrying capacity K, following the relation
K = V0 exp(k), where V0 is the initial volume of the tumor. As previously re-
marked by [6], this result might be supported by the fact that a particular species
is able to support a tumor of a certain maximum size.

Biological interpretation in terms of the proliferation rate. By defini-
tion, the parameter α is equal to the specific growth rate at the time of injec-
tion. Assuming that the cells do not change their proliferation kinetics when
implanted, this value should thus be equal to the in vitro proliferation rate (sup-
posed to be the same for all the cells of the same cell line), denoted here by λ.
The value of this biological parameter was assessed in vitro and found equal to
0.929 [3]. Confirming our theory, we indeed found estimated values of α close to
λ (fixed effects of 0.713), although strictly smaller in the majority of the cases
(Figure2A). This difference could be explained by the fact that not all the cells
“take” when grafted in an animal. Denoting by V̂ i0 < V0 the volume of these
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cells, our assumption would rather be expressed as:

λ = αi − βi log

(
V̂ i0
V0

)
> αi,

which was confirmed in our observations.

Population analysis of the reduced Gompertz model. The high corre-
lation among the Gompertz parameters, combined to the biological rationale
explained above, suggested that a reduction of the degrees of freedom could im-
prove identifiability of the parameters and yield a simpler model. Considering
the relation in (7), and assuming c negligible, we thus propose the following
reduced Gompertz model VR(t;β, k):

dVR
dt

= βik − βi log

(
VR
V0

)
, i = 1, ..., N (8)

where β has mixed effects, while k has only fixed effects, i.e. k is constant within
the population.
Figure 2 shows the results relative to the population analysis performed with
Monolix. We noticed a good description of the population (Figure 2B) and of
the individual trends (Figure 2C) even if only one parameter has mixed effects.
Moreover, the residuals are symmetrically distributed around zero (Figure 2D).
Table 1 shows the statistical indices of the 1-d Gompertz model. Comparing these
values with the other equations we noticed that the reduced model performes
well compared to the other growth curves. Moreover, we obtained an excellent
identifiability of the parameters (Table 2).

3.3 Prediction of the time since tumor initiation

We then studied the relative performances of the reduced Gompertz and the
Gompertz models for the problem of predicting the initiation time from the three
last measurements using Bayesian inference. For a given animal i, we consider
as first observation yini−2 and tried to predict tini−2. Initial conditions were not

considered equal to the number of injected cells anymore but rather to yini−2.

The value tipred was defined as the time when the median value of the posterior
predictive distribution of ỹ(u) reached V0.
Different data sets were used for learning the priors (training sets) and for mak-
ing predictions (test sets) by means of k-fold cross validation, with k equal to the
total number of animals of the dataset (k = N). At each iteration we computed
the parameters distribution of the population composed by N − 1 individuals
and used this as prior to predict the initiation time of the excluded subject i.
The Stan software was used to draw 2000 realizations from the posterior predic-
tive distribution of the animal i. We eventually estimated the model accuracy
(i.e. relative error of the prediction, defined by erri = tipred/t

i
ni−2) and the un-

certainty of the prediction (i.e. precision, measured by the width of the 90%
prediction interval (PI)).
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Figure 3 shows some examples of prediction of three individuals and Figure
4 shows the distribution of the relative error. The reduced Gompertz model was
found to have better accuracy in predicting the initiation time (mean error =
9.4%) and to have the smallest uncertainty (mean precision = 7.34 days), while
the Gompertz model had worse performances (mean error = 19.6% and precision
= 18.2 days). Indeed the reduced Gompertz had only one parameter to estimate
and the prior distribution allowed to have a reliable prediction.

4 Conclusions

We have performed a quantitative analysis of tumor growth kinetics using
nonlinear mixed-effects modeling. This allowed us to propose a novel, “reduced”
Gompertz model with one parameter less. We further developed a method for
prediction of individual tumor age given few measurements. The approach is
based on: (i) the application of the population approach in order to learn the
parameter distribution of the models, (ii) the reduced Gompertz model with only
one individual parameter and (iii) Bayesian inference to determine the posterior
predictive distribution used to compute the time since initiation.

Our results warrant against the use of the exponential or logistic models for
description of tumor growth, that were therefore excluded in the prediction of
the age of a tumor. On the other hand, combining the population approach with
a reduced version of the Gompertz model comprising one parameter only allows
to reach a level of accuracy which offers promising clinical perspectives.

The method that we propose here remains to be extended to clinical data,
although it will not be possible to have a firm confirmation since the entire
natural history of neoplasms cannot be observed. Nevertheless, the encouraging
results obtained here could allow to give approximate estimates. Such predictions
could be informative in clinical practice to determine the extent of invisible
metastatics at the time of diagnosis, by refining published methods [5].
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Fig. 1. Results relative to the population analysis: visual predictive check (A), observa-
tions vs predictions (B), distribution of the individual weighted residuals with respect
to time (C) and example of an individual fit (D) of the exponential (left), the logistic
(center) and the Gompertz (right) models.
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Fig. 2. Correlation between the parameters of the Gompertz model (A) and results of
the population analysis of the reduced Gompertz model : visual predictive check (B),
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Fig. 3. Three examples of backward predictions of individuals A, B and C computed
with Bayesian inference: Gompertz model (first row) and reduced Gompertz (second
row). Only the last three points are considered to estimate the parameters. The grey
area is the 90% prediction interval (P.I) and the dotted blue line is the median of the
posterior predictive distribution. The red line is the predicted initiation time and the
black vertical line the actual initiation time.
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Fig. 4. Accuracy of the prediction models: swarmplots of relative errors of the Gom-
pertz and the reduced Gompertz model.


